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Abstract— Current twig join algorithms incur high mem- Over the past decade, many algorithms for evaluating
ory costs on queries that involve child-axis nodes. In twig queries over indexed XML documents have been
this paper we provide an analytical explanation for this proposed (e.g., [2], [3], [4], [5], [6], [7], [8]). Much

phenomenon. In a first large-scale study of the space has b dei i ider f s of
complexity of evaluating XPath queries over indexed XML progress has been made in supporling wider fragments o

documents we show the space to depend on three factors:XPath and XQuery and in achieving better performance
(1) whether the query is a path or a tree; (2) the types of in terms of running time, memory usage, and /O costs.

axes occurring in the query and their occurrence pattern; ot ;
and (3) the mode of query evaluation (filtering, full-fledged Many of the existing algorithms follow two trends.

or “pattern matching”). Our lower bounds imply that The first trend |s_the tenc_iency to achieve 9009' per-
evaluation of a large class of queries that have child-axis formance on queries that involve descendant-axis only
nodes indeed requires large space. nodes, while suffering from poor performance on queries

Our study also reveals that on some queries there is a that involve child-axis nodes. The second trend relates

large gap between the space needed for pattern matching t the mode of evaluation: many current algorithms

and the space needed for full-fledged evaluation or filtering find all ibl tch f thashol in th
This implies that many existing twig join algorithms, which Ind a pOS“S' e maitc eslo ., whole query In the
work in the pattern matching mode, incur significant space document (“pattern matching”), even though they are
overhead. We present a new twig join algorithm that required to output only the matches of the queptsput
avoids this overhead. On certain queries our algorithm is node(s)(“full-fledged evaluation”) or to simply return a

exceedingly more space-efficient than existing algorithms it jngicating whether there is at least one match of the
sometimes bringing the space down from linear in the . et
query in the document (“filtering”).

document size to constant.
These trends raise two natural questions. First, is the
|. INTRODUCTION space overhead incurred by child-axis nodes inherent or
) ) is it an artifact of the way existing algorithms work?
XQuery and XPath [1] queries are typically '®Pr€second, does the pattern matching evaluation mode incur

sented as nodejlabelewlg patterns(i.e., small trees).. any overhead relative to full-fledged evaluation and/or
Evaluating a twig pattern over an XML document 'sfiltering?

therefore a core database operation. As with relational

databases, creating an index over the XML docume®ur results. In order to address the above questions, we
at a pre-processing step can significantly reduce teenbark on a large-scale study of the space complexity
costs (time, space) of query evaluation. Similarly tof evaluating twig queries over indexed documents. Our
text search, an index for an XML document consists déwer bound results are quite strong, since they apply
posting listsor streams one for each XML label that to the instance data complexit}], rather than to the
occurs in the document. The stream consists of positiorsthndarddata complexity That is, we fixany query, not
encodings of all the elements that have this label, in dojeist a worst-case query, and then prove lower bounds
ument order. In this paper we focus on the most populéor evaluating this query. Therefore, our lower bounds
encoding scheme, tHBEL encoding2], in which each are given in terms of properties of the query as well as
element is encoded as a (Begin,End,Level) tuple. Tiparameters of the document. Our analysis shows that the
BEL encoding, although being compact, enables simpdpace complexity of twig query evaluation depends on
testing of structural relationships between elements. three parameters: (i) whether the query is a path or a tree;



(i) the types of the axes in the query and their occurrenéeng chains of same-label element§)(d) space may
pattern; and (iii) the mode of evaluation: filtering, full-be needed. The second, and possibly more significant,

fledged evaluation, or pattern matching. explanation applies to the full-fledged evaluation and
pattern matching modes and to (a subset of) the tree
TABLE | gueries that contain the (//)(/) pattern (see the lower
SUMMARY OF OUR RESULTS right corner at the second and third tables). We prove

Filtering that processing such queries additionally requitésut)
Path queries Tree queries space, where “out” is the output size (approximately, the
Axis pattern | Upper Lower bound | VPP Lower number of matches of the query in the document). As
bound bound bound the output size can be as large as the document itself,
(XM O ) o) () it may be unavoidable to use a lot of memory on such

v anaunn | O Qd) 0@) Qd) queriest

Our study reveals another notable phenomenon. On

Full-fledged evaluation i X |
tree queries that do not contain the (//)(/) pattern (i.e.,

Path queries Tree queries . X
Axis pattern | Uppor Uppor Lowor ones that consist of descendant-axis nodes only or ones
bound | OV bound| " nd bound in which child-axis nodes always precede descendant-
'y 0(1) Q1) 0(1) Q1) axis nodes; see the upper right corners in all three tables),
un’annunn’ | O Q(d) OD) |Q(max(d.out)) pattern matching is subject to &a(out) lower bound,
while the other modes are not. We present a new twig
Pattern Matching join algorithm that is adapted for the filtering and full-
Path querics Tree querics fledged evaluation modes and uses otiyistantspace

Axispattern | Upper || - | Upper Lower for these queries. Thus, our algorithm demonstrates

bound bound | __bound that working in the pattern matching mode, while only

(?*(”)? ?(1) _Q(l) et $(out) filtering or full-fledged evaluation are needed, incurs
Oepen” | O [Qtmindout)) B0 Qo) significant space overhead.

X N Q OD) |© . .
(//Z) (//)((j/)f//l/)” g o9 — o . O(_ )d :}m(‘;’(’:t» Due to lack of space, we feature in this extended
D, d, and "out” denote t esizc:“rgs;t size, It depth, and the OUPYpstract only an(out) lower bound for full-fledged

evaluatiord of tree queries and the new twig join algo-
rithm. The full draft of this papérdiscusses our other

Table | summarizes our results (marked in shadedsults: (1) theQ(d) lower bound; (2) the(out) lower
background) as well as previously known bounds. Weound for pattern matching of tree queries (last column
analyze each evaluation mode separately. We also catéthe third table); (3) af2(min(d, out)) lower bound for
gorize the queries according to the axis pattern of patpattern matching of certain path queries (second row of
in the query (represented as a regular expression). ffe third table); (4) extensions to our twig join algorithm
classify a query, we check if at least one path in thand to the TwigStack algorithm [2] that are able to
query fits the regular expression, starting from the lowestatch the lower bounds we have in the pattern matching
row of the table upwards. As the query size is typicallynode (first two rows of the third table). Tf(é(d) upper
small relative to the document size or the output sizepund for path queries (in all evaluation modes) follows
we did not focus on it as a parameter. We use ¢he from the PathStack algorithm [2]. Th@(d) upper bound
notation to suppress factors that are linear in the quefgr filtering tree queries follows from the TurboXPath
size or logarithmic in the document size. algorithm [10f (see also [8], [9]). Obtaining space-

Our results provide two theoretical explanations fopptimal algorithms for tree queries that contain the {/)(/
the difficulty in handling queries with child-axis nodespattern remains an open problen@({) is the space
The first explanation applies to all evaluation modeseeded by an in-memory algorithm that simply stores
and to queries that contain the (/)(/) pattern (i.e., ond#ise whole document in main memory.)
that consist of at least one descendant-axis node that
is followed by a child-axis node, such ag/ll; see the INote that in general the algorithm does not need to allocate
last row in all three tables). We show that the spacPensive main memory storage for the output, since theudutan

- . be written to a write-once output device.

needed to evaluate such que”eSﬂsd)’ where d is 2The Q(max(d, out)) lower bound in the second table consists of
the document's depth. The lower bound follows fronwo bounds$2(out) andQ(d). Here we present the proof of tiiout)
the need to simultaneously hold in memory candidateund.
matches of the descendant-axis node that are nestegVaiable from htip:/iwww.ee.technion.ac.ilipeopleizy.

. . TurboXPath is designed for XML streams, yet it can be made
within each other. Thus, when evaluating the query

; i X work on indexed XML documents with a constant factor space
on highly recursive documents (ones that consist oferhead.



Our techniques. Space lower bounds for data streanscheme on the classes of twig patterns that can be eval-
algorithms are normally proved via communication comsated “optimally”, i.e., without redundant intermediate
plexity. It turns, however, that the standard commuesults. However, their focus is on the two latter schemes,
nication complexity model is inadequate for provingnd not on lower bounds for the first scheme, which is
lower bounds formultiple data stream(MDS) algo- the subject of study in this paper.
rithms. We therefore introduce a new model of multi- Several previous works proved space lower bound for
party communication complexity—thieken-based mesh evaluating XPath queries in other models. Gottlob, Koch,
communication mode(Ttmc)—which enables proving and Pichler [14], Segoufin [15], and Go6tz, Koch and
space lower bounds fombs algorithms. The model Martens [16] studied the complexity of evaluating XPath
allows a clean abstraction of the information-theoretigueries over XML documents stored in main memory.
arguments made in the lower bound proofs. It alsGrohe, Koch, and Schweikardt [17] proved lower bounds
enables us to recycle arguments that are repeatedly ugmdXPath evaluation on external memory machines with
in the proofs, thus making them more modular. We provgnited random accesses. As the models studied in these
communication lower bounds in thie1c model for three works are completely different from the model studied in
problems:delayed intersectiognreverse set-disjointnessthis paper, their lower bounds are not applicable to our
problem, andensor produc{the latter two are addressedsetting. Bar-Yossef, Fontoura, and Josifovski [9], [18]
in the full version). Our space lower bounds for twigshowed space lower bounds for evaluating XPath queries
query evaluation are obtained via reductions from thesger asingle XML stream. Lower bounds in our model
problems. derive the same lower bounds in the their model, while
Our new twig join algorithm differs substantially fromupper bounds in their model also apply in our model.
previous approaches. Like TwigStack and its successorsThe multiple-cursor multiple data stream model was
our algorithm is “holistic”, as it treats the whole queryanalyzed in [19] and a lower bound for reverse set-
as one unit. Yet, unlike TwigStack, our algorithm is nogisjointness was provided. Yet, the paper focuses on
“document-driven”, but rather “query-driven”. That isrelational algebra queries and not on XPath.
rather than traversing the elements in document order
and at each step looking for the largest query subtree [1l. PRELIMINARIES
that is matched by the current document subtree, our
algorithm traverses the query top-down and advances hgta model. XML documents are modeled as ordered
stream cursors to the next match. We include detailegoted trees. Each node in the tree is callecelment
theoretical correctness and performance analysis of 3Hd is labeled by a name or a text value. The edges
algorithm. represent direct element-subelement or element-value
relationships. Every document has an (invisible) root
whose label we denote by “$". Figure 1 depicts an
Starting with the seminal work of Brunet al. [2] example document tree.
on holistic twig join algorithms, there have been many Similarly to previous papers on twig joins, we assume
follow-up studies that presented improvements in thg,y |eaf elements in the document may contain text.

/O and memory costs (e.g., [11], [S], [6], [4]) orThis makes the relationship element-value easier to rep-
extended the supported fragment of queries (e.9., [$ksent and evaluate.

[7]). However, none of these papers presents a systematic

II. RELATED WORK

study of lower bounds as we do.

The only previous work to address space lower bound a .
for processing twig queries was a paper by Chobi \ @
al. [12]. They state that any algorithm evaluating the Book

query /k[a and a] requires super-constant memdry.

Our study does not address a single worst-case quel @ @ @ @ @
but provides lower bounds for evaluation afiy query.

Our lower bounds are also finer-grained and vyield ¢ @ @ @ @ @ @

guantitative characterization of the space complexity.

Chen et al. [3] compared three different indexing @ @ @
schemes: by label, by label and level, and by ance:
tors’ labels. They demonstrate the impact of the chose @

SWhile this statement is true, we suspect the proof inclusted2]  Fig. 1. Example XML document (right) and twig query (lefty fne
to be flawed, as it relies on a reduction to, and not from, ededo  XPath query: /Book[.//Title="Web” and Y ear=2003].
of Select-Project-Join queries over continuous data rsisefd 3].



XPath fragment. We focus on a fragment of XPath,Modes of evaluation. We consider three modes of query
which we callbasic twig queriesMany existing algo- evaluation:filtering, full-fledged and pattern matching
rithms focus on this type of queries [2], [6], [11]. TheThe underlying notion in all modes israatch

syntax of a basic twig query is defined as follows : For a query@ and a node: € @), we denote by),, the
Twig ::= Step | Step Twig sub-query rooted at. Similarly, for a documenD and
Step ::= Node [Predicate]? an element € D, we denote byD. the sub-document
Path ::= Node | Node Path rooted ate.

Node ::= (/|//) label Definition 3.1 (Sub-query matchA match of a sub-
Predicate ::= Twig | Path = textvalue | Predicate query@, in a sub-documenb,, is a mappingp from
and Predicate the nodes of@, to elements inD., satisfying the

A basic twig query can be represented as a tree, whéalowing: (1) root match: ¢(u) = e,, (2) labels match:
each internal node is marked by a label and each leafand¢(w) have the same label, for evenye @, and
is marked by a label or by a text value. Similarly tq3) structural match: the structural relationship between
documents, every query has an invisible root labeled lpy{w) and¢(parent(w)) matches the axis ab, for every
“$". One of the tree’s nodes is designated as the outpute Q, w # u.
nodé€. Figure 1 depicts an example basic twig query. A matchof a queryQ in a documentD is a match of
The output node is pointed by an arrow. Qroot(Q) IN Dyoor(py- Given a query and a document

Evaluation model. We consider query evaluation overD: thefiltering of D using@, denotedriLTERq (D), is
indexed XML document#én XML document is repre- & bit indicating whether) has at least one match in
sented inpositional encodingEach document node is - The pattern matchingf @ in D, denotedPMq (D),
encoded as a triple: (Begin, End, Level), based on it§ the collection of all matches of in D. The full-
position in the document. “Begin” and “End” are thdlédged evaluatioof Q on D, denoted=rey (D), is the
positions of the beginning and the end of the elemerollection of elements)(¢), for all matchesp of @ in
respectively, and “Level” is the nesting depth. Positiond? (¢ is the output node of)).

encoding is the most popular format for representing
XML documents, since it is simple and compact, yet it

allows for efficient evaluation of structural relationship : i
between document nodes. lower bound for full-fledged evaluation of tree queries

An indexed XML document consists of a collectioffn@t contain the (//)(/) pattern. We define thetput size

of index streams, one stream for every label that occf§ the evaluation of a querg on a documeni to be
in the document. For every label’; streamZ;, contains |7-Ee(D)], that is, the number of document nodes fo
positional encodings of all elements with labelin the Which the query’s output node can be matched. Strictly

document, sorted by the “Begin” attribute. Each que’%feaking, the lower bound does not apply to all queries

IV. Q(ouTPUTSIZE) LOWERBOUND
In this section we present th@(outputSiz¢ space

nodeu is associated with a cursor in the corresponding@t contain (//)(/), but rather only to a subset of them,
streamT’,. An algorithm can read from a cursor positiorfeéPending on the location of the output node in the
many times, until it decides to advance it. Cursors can [J&/€"Y: _
advanced only forwards, and not backwards. The output!"€orem 4.1 (Output size lower boundjet Q be
is written to a write-only stream. If two query node€NY basic twig query that contains the path segmefit //
u,v share the same label, the algorithm maintains twgHthermore, assume the following: (1) the output node
separate cursors on streaffis and T, which represent IS @ descendant of the node labelecout not of the
the same stream. We therefore abuse notation and {}94€ labeled (this is where we requir€) to be a tree
T, to denote thecursor on the stream corresponding tg@d Not & path); (2) the output node’s label and are
u. As mentioned earlier, the algorithms we consider aféStinct and do not appear elsewheredh Then, for
restricted to access only streams corresponding to lab8¥§TY algorithm forFrgy and for everyS > 1, there
that occur in the query. All known twig join algorithms®€XiSts @ documenb, for which [FFeg (D)| < S and on
conform to this restriction. which the algorithm uses at lea®Q(S) bits of space.
When analyzing the space complexity of an algorithm The proof of the theorem appears in the full draft o_f
that runs over an indexed XML document, we do not takB€ Paper. Here, we prove the theorem for the special

into account the space used for storing the input strearf@SeQ = //z[b)/a. This proof captures the main technical
the cursors, or the output stream. challenges of the general case. Formally, the theorem

is proven by a reduction from the problem délayed

The output node in an XPath query is always the path’s leaf. Ydntersectionin the multiple data streamsnodel.

in the tree representation, this leaf may become any labsbeid in .
the tree. For example, the two queries[#/ and c] and /ka[b])/c are The MDS model. In the multlple data StreamMDS)

represented by the same tree, but their output nodes aegetiff model, the input data: is divided into several read-



only streams, and the required outpyitx), is written 7, on the fly. The streant, is fixed and does not

to a write-only output stream. Each of the input streantdepend on the input. WhenevBrneeds to read a tuple

is associated with a cursor that can move only in tHeom T, (resp., 1), A advances the cursor of o ¢
forward direction. The cursor specifies which part of thé&esp.,u o v) until its next set bit, and “feedsB with
stream has already been read. An algorithm can reie corresponding tuple, which can be easily computed
from a cursor position many times, until it decides tdased on the position of that bit. Whenevgoutputs an
advance it. When the entire input has been read, theslement, i.e., ars;) or (¢;) element,A outputs “1” in
output stream containg(z). This model generalizes ourthe same positiofisNv™); or (t Nw);, respectively. It is
evaluation model for basic twig queries. easy to check that the index streams constructed are well-

Delayed intersection. Given three binary vectors formed. Note also that the size BFEQ(G(s, ¢, u, v)) is
s,t,u € {0,1}" and a bitv € {0,1}, the delayed &t MOst2n =5, as required bys.

intersectionfunction, DINT,,(s,t,u,v), is defined ags N A uses onlyk + O(log n) bits: & bits for simulating
v™) o (t Nu), wheren denotes bitwise-and,” is the B and O(logn) bits for keeping the positions of the
n-dimensional vector obtained by takimgcopies ofy, WO cursors. We next prove that this algorithm computes
and o denotes concatenation of vectors. For exampleINT,, correctly.

DINT,(101,011,101,1) is 101001. When computed in the ~ Proposition 4.3:Let 1 < k < 2n. The k-th bit
MDS model, s o ¢ is given on one stream ando v on N DINT,(st,uw) is set iff (i) if & < n, s €

another stream. FFEQ(G(s,t,u,v)), and (i) if & > n, ty—p €
Theorem 4.2:For anyn > 7, the space complexity of FFEq (G (s, t,u,v)).

DINT,, in the MDS model is at least — log(n + 1) — 4. Proof: If k < n, then thek-th bit is in (s N v™),
The proof appears in Section V. and it is set iff boths; andv are set. This means that

The reduction. We prove Theorem 4.1 for the casdne labels of elements, andu, in the document; are
Q = /1z[b]/a by reducingdINT,, to FFE,. Letn = S/2. :a’ and v, r.espectlvely. The latter hgppens if and only
We prove that given an algorithm that solvese, on If the mappinge = (a — sy, b — vo) is @ match ofQ
documents for whichFFE, (D)] is at mostS (i.e., 2n) 1N G- If ¢ is a match, thes; € FFEQ(G(s,1,u,v)). We
using k bits of space, we can design an algorithm th&nly have to prove now that ;. € FFEQ(G(s,t, u,v)),
solvesDINT,, with k + O(logn) bits of space. Theorem then¢ is a match, i.e., prove that Fhe Iabe_ls of elements
4.1 would then immediately follow from Theorem 4.2. 5+ andvo are ‘a’ and 't’", respectively. Sinces; was

In the reduction we use the inpsitt, u, v to construct OUtPUL, then there is a match that maps- si. As the
the index streams of an XML docume@ts, ¢, u, v) (see only element mG that is a child ofsk_’s parent and may
Figure 2). The document structure is the same for dlfve @b’ label is vy, the only possible match is.
inputs, except for the labeling of elements. When=1  The second case is whén> n. Now the correspond-
or t; = 1, the corresponding elemest or ¢; is labeled NG bit is the (k — n)-th bit in (¢ N w), which is set iff
'a’, and otherwise it is labeledc”. When u; = 1 or both¢;_,, andu_, are set. The proof here is similar
v =1, the corresponding element or v, is labeled t0 the previous case, but with elemenis., and u—»,

'y, and otherwise it is labeled?. instead ofs; andvy. u
o V. THE TMC MODEL
° In this section we present a new model of commu-
nication, thetoken-based mesh communication model

(TmcC), which can be used to prove space lower bounds
in the MDs model. After investigating basic properties of
e e Voo 9 @ . protocols in the model, we use them to prove the lower
bound for the delayed intersection problem (Theorem
@ @@@ 4.2). We note that the same properties are used in
proving the other space lower bounds included in the full
Fig. 2. The documenti(s, £, u, ) draft of the paper. These lower bounds c_ould hav_e been
proved directly through theibs model, without using
the newtmc model. However, we believe that theic
We now describe an algorithm for DINT,, based on model presents in an explicit way the various possible
a given algorithmB for FFEgy. Given the input vectors computations of a multiple data stream algorithm, i.e.,
s,t,u,v, A simulatesB on the documentZ(s,t,u,v). the various cursor configurations, and enables cleaner
To this end,A creates the two index streanf and and more modular proofs.



The TMC model. In the token-based mesh commuand the memory-content continues the executiod @t
nication (TMC) model, there aren players, who wish the same way. Whenevet writes to the output stream,
to jointly compute a functiory on a shared input € the simulating player does the same. Playés the last
{0,1}™. The players are placed on nodes of a networtg executeA, and it finishes the simulation. Note that
whose underlying topology is @-dimensional mesh. P correctly computes (becaused does) and its max

Specifically, the set of nodes ® = [m4] x [mz2] x communication isS. [ |
- % [mg], where[m;] = {0,1,...,m;}. Every node Properties of the TMC model. We now investigate
(i1,12,...,1q) has an outgoing edge (@,4,...,i4)+ some basic properties of themc model, which are
ej, for all j for which i; < m;. Here,e; is the d- crucial to our lower bound proofs. For simplicity of
dimensionalj-th standard unit vector. exposition, we focus oR-dimensional meshes, yet the
The inputz € {0,1}™ is viewed as a concatenationdefinitions and results can be easily extendeddio
of d stringsxy, s, ...,xq, Wwherez; € {0,1}™. Node dimensional meshes as well.
(i1,d2,...,1q) receives (bi,,b2,,---,baq,), Where  Let P be a protocol that compute§z,y) in the 2-
b;x is the k-th bit in z;, for 1 < k < m;, and isO, dimensionalrmc model.
for k = 0. Definition 5.2 (Communication path)fhe communi-

The communication in the network is not in broadcasgation path of protocol P on input (z,y), denoted
as is in the more standard models, butdken-based PATH(z, %), is the sequence of playefsi, )} through
At each round of the protocol, a single player hold@ghom the token passes during the executionPobn
a “token”, indicating she is the only one who carny,y).
send messages in the round. She sends a single privatgne following fact states that all communication paths

message to one of her outgoing neighbors. The neighkfyst pass through the diagonals j = C:
who receives the message holds the token at the nexbroposition 5.3:¥1 < C' < min(my,ms) and ¥z, y,

round. The communication always starts at the nodey < ; < ¢ such that(i, C' — i) € PATH(z, y).

_ nd “ ”
s = 0% (the “start player) and ends at the node= Proof: The diagonal +j = C'is an (s, t)-cut, and
(m1,ma,...,mq) (the “end player’). All players share y, any path frons to ¢ crosses this cut. ]

a write-only output stream, to which only a player yvho Definition 5.4 (Passing set)The passing-input-sebf
holds the token can write. The stream should contain t| Cotocol P wirt. player(i, j), denotedPAss(i, j), is the

value f(x) by the end of the protocol. set of all inputs(x,y) s.t. (i,j) € PATH(x, ).

The max communication costf a protocol P> in this Let PREF, (x) denote the first bits of z, and letsuFF,; (z)
model is the length of the longest message sent dunagnote the last bits of = for 0 < i < m+. Fori —
1 — — 1- -

execution ofP on the worst-case choice of input ;
. . mi + 1, SUFF,, +1(z) is 0o x. (The same goes fons.)
The following shows a reduction from thiiemc model o
Let player(i, j) € PATH(z,y). MSG; ;(z,y) denotes the

to themps model. message sent by playét, j) during the execution of

Lemma 5.1 (Reduction lemmal)et f : {0,1}™ x .
{0,132 x - - >E {0,171 — B Ifat)heré exi{sts ;n algo- on input(x,y). sSUCG ;(z,y) denotes the successor of
’ ’ i (,7) in PATH(z,y).

rithm that computeg in the MDs model with S bits of Definition 5.5 (Packet)Let player (i, ) c

space, then there exists a protocol that compyitiesthe Th ket t by (i), denoted
d-dimensionalTMc model whose max communicationPATH(x’y)' € packet sen y (.9, denote
PACKET; ;(z,y), is defined as the combination of

cost is at mostS bits. MSG, - 4SUCC -
Proof: Let A be an algorithm that compute’sin i.5(2,Y) an Gij(,9)-
the MDs model with S bits of space. The input ofl is The following lemma shows that_the packgt sent by
d streams{x, ..., xa} of sizes{m,, ..., ma}, respec- a player depends only on the prefix of the input seen
R T ' by players along the communication path leading to this

tively. In theTmc model we have @-dimensional mesh, o . .
where every dimension corresponds to one stream. E%ﬁyer (the proof, which is quite technical, appears at the
ull draft):

setting of thed cursors in theubs model corresponds to o

one player in thel-dimensional mesh. We now describe Lemm/a 53'6 (Suffix independencept /

a protocol P that computeg in the TMC model. At the (%:9),(2,y") € PASS(i,j). If PREF(z) = PRER(2')
beginning, playes (i.e., 0%) holds the token, and it has@nd PREFJ(CU/) i PREF;(y'), then PACKET, ;(z,y) =
received no input (by definition). It starts to execute thBACKETij(a",y") _ _
algorithm A. Wheneverd moves a cursor, say the cursor Definition 5.7 (Prefix set)The passing-prefix-sef
of streama;, the player who currently holds the tokenpProtocol P w.r.t. player(i, j), denotedPRER(, j), is the
denoted agir, i, . . ., iq), Sends the token together withSet: { (PREF; (), PREF;(y)) | (x,y) € PASS(i,j)}

the current content of the memory df(S bits) to player ~ The following is proved by induction, similarly to the
(i1,72,...,iq4) + e;. The player who receives the tokerProof of Lemma 5.6:



Proposition 5.8 (Rectangle propertyY(a, 3) € s.t. PACKET; ,—i(s’,u) = PACKET; ,—;(s”,v”), and
PREFi,j), and Vy € {0,1}™~% & € {0,1}m277, sl =s";, andul,_, =u"p_;.

(d¢ov,B00) € PASH,j). Recall that we excluded zero prefixes, which means
The following bound on the size of the passing sehat the output depends erandv, which have not been
derives from Proposition 5.8: read yet. Therefore we know that no bit has been written

Corollary 5.9: |PASS(i, j)| = |[PREFi,7)| - to the output stream yet. We now define two different
2(m1—1)+(m2—3) inputs for P, on one of whichP must err. The above

The following is proved by induction, similarly to the prefixes (s’,«') and (s”,«”) differ in at least one bit.
proof of Lemma 5.6: First assume this is thé-th bit in s’ and s”, where

Proposition 5.10:Let (z,y),(z',y") € PASS4,j). k <i.
If  PACKET;;(z,y) = PACKET; ;(z,¥),  Consider any stringse € {0,1}"~%, 8 € {0,1},
SUFFn, —i+1(2) = SUFFy,—i+1(z’), and andt € {0,1}". We next show thaP must output the
SUFFn,—j+1(y) = SUFFRn,—;1+1(y'), then the output same answer on the two inputs! o o, t,u/ o 3,1) and
written from the time playei, j) sent his packet and (s” o a,t,u” o 3,1). Recall thatPACKET; ,,_;(s’,u) =
until the end is the same on both inputs. PACKET; ,,_;(s”,u”), and that the suffixes) o o ot

Delayed intersection. We now use thermc model to andwu,_; o fo 1 are the same for the two executions.
prove the space lower bound for delayed intersection Trherefore, by Proposition 5.1GP outputs the same
the MDs model. value.
/
Theorem 4.2 (restated) For any n > 7, the space On/the other hand, 7\7Ne now”show th?LNT”(S Ej
complexity ofdINT,, in the MDS model is at leasth — .O"t’u 0f,1) # DINTy(s” 0 0,1, u” 0 3,1). | is wod I
log(n + 1) — 4. imply that P errs on at !east one of the inputs. Reca
that DINT,,(s,t,u,v) is defined to be(s Nv™) o (t Nw).
Proof: We will prove that any2-dimensionalrMc  Since in both inputse = 1, but they differ in thek-th
protocol computing the delayed intersection problem h&d in s, then their corresponding outputs also differ in
a max communication cost of at least=n —log(n+ the k-th bit in (s N ov™).
1)—4 bits. Using Lemma 5.1, this would imply the same The proof for the other case, where the two prefixes
lower bound in thevbs model. (s',u') and(s”,w”) differ in the k-th bit in ' andw”,
To reach a contradiction, we assume there existsisavery similar. We choose a suffix for the two prefixes,
protocol P that solvesDINT,, with max communication such that thék-th bit in ¢ is set. This way the value of
of m bits, wherem < n —log(n+1) —4. We will prove the (n+ k)-th bit in DINT,, of the two inputs is different,

that there must be an input on whi¢herrs. but the protocol outputs the same value. ]
According to Proposition 5.3, all communication paths

go through the diagonal + j = n. There are23"*! VI. THE TWIG JOIN ALGORITHM

different inputs(s, ¢, u, v), which means there agg"+! We now present our new constant space twig join

communication paths, while there are-1 players in this - gigorithm for full-fledged evaluation of queries that do
diagonal, i.e., players of the forifi, n —i). Therefore, not contain the (//)(/) pattern. The main procedure of
by the pigeonhole principle, there exists< i < n, S.t. tpe algorithm, depicted in Figure 3, is Ex@l(t, D),

23n+1

[PASS(i,n — i)| = . We call the player(i,n — i) which gets as input a query), its output nodet,
the congested player . . PASS i) and a documen), and works by iteratively looking
By Corollary 5.9,[PRERi,n —i)| = 55+ > for a match ofQ in D. For each match found, it:

25 (note that herem; = 2n,m; = n + 1). NoWw (i) outputs the document element to which ¢ is
consider the-th bit of s and the(n—z’)-th bit of w in any mapped by this match, and (||) advances thlecursor
input in PRER, n — 7). There are four possible settingsheyonde,. The basic procedure used in the algorithm is
for these bits, inducing a partition @RER:, n — i) iNto  NextMatchUnderSelf(, e,,), which gets as input a query
four sets. We exclude fromRERi, n—i) the four inputs, node« and the element,, on which thecursor 7,

in which all bits are zero, except maybe forandu,—;.  corresponding ta: is currently positionetf and returns
By the pigeonhole principle, one of these sets is of sizfue if and only if the sub-quer), has a match in the

27173

at leasts . Call this setA. Since the message sentub-documenb.,. Moreover, if such a match exists, the
by the congested play&i, n — i) has at mostn bits, procedure advances the stream cursors to the positions
wherem < n—log(n+ 1) —4, and since this player hasthat indicate the match.

only two neighbors, the number of possible packets it

. on—4 n—3 . 7 : H ¢
can send is less tha&2 —. There are2 . different As mentioned in Section I!I, we u$u to denote the cursor on the
n+ nt stream corresponding te. This way, if two query nodes, v share

prefixes _in A, ther_efore by Fhe pigeonhole principle e same label, thef,, and T, denote two separate cursors on the
there exist two pairs of prefixe&’,v'), (s”,u”) € A same stream.



NextMatchUnderSelf relies on the special structure,. Therefore, both NextMatchUnderPareénif) and
of @ and works by recursively searching for matcheNextMatchUnderParent@.,) return true, which means
of the sub-queries rooted at the childrenwofTo this that NextMatchUnderParent$) and NextMatchUnder-
end, it calls the procedure NextMatchUnderParent(Self($, $) return true. Eval outputs,, advancesl, to
ey). The latter gets as input a query nodeand the a3 and calls NextMatchUnderSelf again when the three
elemente,,, on which the cursoff,, (u = parent(v)) cursors point to(as, b3, c1). Now NextMatchUnderSelf
is currently positioned, and returns true if and only ifeturns false, as there is no additional match, and Eval
@, has a match irD.,, wheree, is a descendant af, ends.
whose relationship witle, matches the axis of. This

procedure works by repeatedly advancing the cufsor 9 9
until finding the desired element. If a match is found, Ie Q
the cursors of the corresponding nodes are advance: PN

positions that indicate the match. Q e Q @
1:Function Eval@, t, D) @ ee

2: while ( NextMatchUnderSelfoot (Q), root(D)) ) then

3: outputT;.ReadElement()

4:  Ti.Advance() Fig. 4. An example XML document (right) and query (left). The
query is//al.//b and .//c].

1:Function NextMatchUnderSelft, e.,)

2: for every childv of u

3 if ( !NextMatchUnderPareni( e, .
( Cew) We now present a correctness analysis of the al-

4: return false ) ) )

5. return true gorithm. We omitted several technical proofs, but the
_ complete analysis appears in the full draft of this paper.

1:Function NextMatchUnderParenti( e.,) . . . .

2: e, = T,,.ReadElement() Cursor configurations. A notion that will play a

3: while (e, != T:.End) and ¢,.Begin < e..End)) crucial role in our analysis isursor configurations

4: if ( (relationship betweem, ande, matches Let u b d fi i

axis(v)) and NextMatchUnderSelf( e,) ) elu e a qu_ery_no e. AQ_U-CUt’SOI’_COﬂ iguration(or
return true Q.-configuration in short) is a setting of the cursors

T, .Advance() {T\}veq, - For a@,-configurationC' and for a node

5
6:
7: ey = T,.ReadElement()
8

return false v € Qu, C[v] denotes the position of the cursy, as

specified byC. We sometimes abuse notation and think

of C[v] as the document element pointed by this cursor.
A Q. -configuration can be viewed as a mapping from
The recursion depth of the algorithm equals the quefy,, to elements ofD that preserves label matches. If

depth. Each level requires space for storingl) docu- this mapping is a match, we say that the configuration

ment elements. Therefore, the space complexity(is). induces a match

The running time of the algorithm is linear in the Let Ci,C> be two Q,-configurations.C; is said to

document size. dominateCs, denotedC; = Cs, if for every v € @,

1[v] > Cs[v]. As stream cursors move only in the

Example run. Consider the document and the querf T ) ) .
orward direction, configurations encountered during an

depicted in Figure 4. Suppose thats the output node. ) X :
Initially, the three cursors point téus, b1, c1). The first execution of an algorithm always dominate one another.
' L h The Q.-configuration at the time a functiorf is

iteration of Eval calls NextMatchUnderSelf($,$), whic balled is thestarting O, -configuration of f. The Q.-

looks for ana node that hash and ¢ descendants. i . ) .
configuration whenf returns is called thending Q.-

The first « element to be checked ia;. The call . . . ‘
to NextMatchUnderSeli( a,) advances the cursof, configuration off. By the above, the ending configura-
| tion always dominates the starting configuration.

and T, separately, until they point td and c ele-
ments that are descendants (le, or begin afteral Analysis of NextMatchUnderSelf. We start by analyz-
ends. Since; is not nested withimu;, T} is advanced ing the main subroutine, NextMatchUnderSelf. It is easy
to bg, which matches the required axis. However, to Verify that whenever NeXtMatChUnderSle(eu) is
begins aftera; ends, and therefore; is rejected as called, thene, is the element on which the curs@,

a possible match ta:, and 7}, is advanced toas. is currently positioned. In the following we prove that
Now the three cursors point tus, by, ¢1). Again, we NextMatchUnderSelf is bothound(returns true, only if
look for b and ¢ descendants ofi». b, is not nested @ Match exists) andomplete(if a match exists, returns
within a,, and T} is advanced tobs, which matches true). We denote by) and D any basic twig query and
the required axis.c; is a already a descendant oftny document, respectively.

Fig. 3. FFE algorithm (no (//)(/))



Lemma 6.1 (Soundnesdf. NextMatchUnderSelf¢, the cursorT, points toe,. Then,C! < C.
ey) returns true, then its endin@,-configuration in- Before we prove this claim, let us use it to con-
duces a match of),, in D.,. clude the proof of Lemma 6.2. Sinc€![v] = e
Lemma 6.2 (Completenesspuppose ¢ does not and C) is dominated byC!, which induces a match
contain the (//)(/) pattern and &t be the starting?,,- of Q,, then by the induction hypothesis, the function
configuration of NextMatchUnderSelf( e,). If there NextMatchUnderSelf(, e/) returns true, and so does its
exists a@,-configurationC’ = C that induces a match calling function NextMatchUnderParent(e,,). We con-

of Q. in D.,, then NextMatchUnderSeli( e,) returns clude that NextMatchUnderParent¢,,) returns true for

true. all childrenv of u, and thus also NextMatchUnderSelf(
The proof of the soundness lemma is relatively easy,) returns true. ]
and is done by induction on the height of(see the Proof: [Proof of Claim 6.5] Suppose, to reach a

full draft of the paper). We next prove the completenesontradiction, thatC!’ is not dominated byC!. This

lemma. We assume from now on tl@tdoes not contain implies that there exists a nodee Q, s.t. C//[b] >

the (//)(/) pattern. The following propositions are a key! [b]. If there is more than one such node, we choose

to proving the lemma: b to be the node, for whichl}, is the first to be
Proposition 6.3:Let ¢ be a match of in D. Then, advanced beyond’ [b]. Let a be the parent 0b in Q.

for every child-axis node:, depth(é(u)) = depth(u). T, must be advanced beyoidg [b] during the execution
Proposition 6.4:1f NextMatchUnderSelfg, e,) is of NextMatchUnderParerit(e!), wheree!/ is some node

called with a child-axis node:, then depth(e,) = in the streanil,. Note that at the timd}, is advanced
depth(u). beyondC [b], the cursorT, points toe!/. By the choice

The two proofs, which we omitted, are done byf b, the position ok, in the streant, is at mostC/ [a],
induction ondepth(u). i.e., e/.Begin< C![a].Begin.

Proof: [Proof of Lemma 6.2] We prove the lemma There are two possible positions feff in the docu-
by induction onk = height(u). Fork = 0, u is a leaf. ment: (1)e”.End < C![a].Begin, or (2)e/ is an ancestor
In this case the function always returns true. of (or equals)C)[a]. We prove that both lead to a

Suppose that the lemma holds for all nodes afontradiction.
height at mostt. Consider a node: of heightk + 1. Consider the first option, i.ee/!.End < C! [a].Begin.
NextMatchUnderSeli(, e,,) returns true only if the calls C! [b] is nested withinC/ [a] since C’ induces a match.
to NextMatchUnderParent(e,), for each childv of u, Thereforee!/.End< C/[b].Begin, which means that the
return true. Consider such a child then. condition of the while loop in NextMatchUnderParént(
Let C, be the restriction ofC to @,. Note ¢) is not satisfied, and the function could not advance
that C, is the starting Q,-configuration of T, beyondC![b], in contradiction to our assumption.
NextMatchUnderParent( e,), even if v is not the Consider then the second option, i€, is an ancestor
first child to be processed. This is because a call tf (or equals)C)[a]. There are two sub-cases here. (i)
NextMatchUnderParent(, e,), for any other childv’ « is a child-axis node ana! # C![a], (i) a is a
of u, cannot change cursors corresponding to nodesdescendant-axis node, or (iigf = C/[a]. In case (i),
Q. el is an ancestor o [a] and thereforelepth(e!) <
Let C!, be the restriction ofC’ to Q,. C), induces depth(C}[a]). SinceC’ induces a match, then according
a match of@, in D.,, wheree; = C’[v]. Note that to Proposition 6.3depth(C}[a]) = depth(a), and thus
el € D., and its structural relationship with, matches depth(e!) < depth(a). Therefore, based on Proposition
axis(v). 6.4, there is no call to NextMatchUnderSelf(/), which
SinceC’ dominates”, then alsoC! dominate<”,. It means there is no call to NextMatchUnderParealf],
follows thatC,,[v] precedes (or equals]}, in the stream in contradiction to the assumption.
T,. When calling NextMatchUnderParent(e,), the To deal with cases (ii) and (iii), we first show that
function enumerates the elementson the strean¥,, in both of them the relationship betweef{ [] and
starting withC,,[v]. We next show that the enumeratiore’ matchesaxis(b). In case (ii),a is a descendant-
has to stop either at, or before in success. axis node. Hence, alsé must be a descendant-axis
If the enumeration stops at somg that precedes node (Y does not have the (//)(/) pattern), and sirce
el , then NextMatchUnderParent(e,,) returns true. So induces a match, the@’ [a] is an ancestor of [b]. In
suppose the enumeration has not stopped at any of thadéition, recall that!’ is an ancestor of (or equals) [a].
nodes. We would like to show it must stop et Therefore,C/[b] is a descendant of!/, and thus the
Claim 6.5: Let C! be the Q,-configuration when relationship betweei®, [b] and ¢!/ matchesaxis(b). In
the algorithm starts processing:), i.e., when case (iii),e// = C/[a], and thus the relationship between
NextMatchUnderParent( e,) reaches line 3 and C/[b] and e/ matchesaxis(b), becauseC’ induces a



match. query are not accessed. In the full draft of this paper,
Now consider the @Qp-configuration when we show how to eliminate the latter restriction when
NextMatchUnderParerit( e!/) starts processing the label alphabet is sufficiently large. Overcoming the
C![b], i.e., when it reaches line 3 and the cursdiormer restriction is more challenging and would require
T, points to C![b]. The relationship condition in extension of our lower bound techniques or resorting to
line 4 is satisfied, therefore the function callsrguments similar to the ones used by Grehal.[19].
NextMatchUnderSel#C/[b]). Since we assumed We focused on the dependence of the space complex-
is the node in@, whose cursor is the first to moveity on parameters of the document, such as its depth and

beyond C/[b], then the currentQ,-configuration is the output size. Query size may be an interesting factor

dominated byC; (the restriction of C’ to Q). By
the induction hypothesis, NextMatchUnderSelf( [b])
returns true. NextMatchUnderParént()) would also
return true, without advancin@;, in contradiction to
our assumption. [ ]

to investigate in future work. Finally, empirical analysis
of our algorithm could provide insights for its usefulness
on real data.
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Analysis of Eval. In order to prove Eval is correct, weintegration Grant.

need to show it isound(every element it outputs indeed
matchest) and complete(every element that matches
node is output). We sketch below the proofs. The full
details appear in the full draft of the paper. 2]

To prove soundness, let be an element that Eval
outputs. e, must have been the element pointed by[s]
the cursorT; after the function NextMatchUnderSelf
returned true. By Lemma 6.1, the ending configuration of
NextMatchUnderSelf (if it returns true) induces a match*!
¢ of Q in D. Thereforee, = ¢(¢) indeed matches.

Showing completeness is more intricate. Let5]
ety -, €, be the elements that matah in document [6]
order. We prove that Eval outputs them in this
order. To this end, we show that theth call to
NextMatchUnderSelf in line 2 of Eval advances thel”
cursor configuration to the “minimum” match, for
which ¢(t).Begin > ¢;,.Begin. Here, the “minimum”
is w.rt. the partial order induced by the domination[]
relation, and the existence of the minimum is guaranteeg
by the fact@ does not have the (//)(/) pattern. Due to
the completeness property of NextMatchUnderSelf, wel
always move to the minimum match, and hence we agg;
guaranteed not to miss a match ofwith one of the 2]
e:.’S.

i

(8]

VIl. CONCLUSIONS [13]
In this paper we initiated a systematic study of
memory lower bounds for evaluating twig queries ovef 4
indexed documents. We provide an analytical explana-
tion for the difficulty in handling queries with child- (13]
axis nodes, and also point out the overhead incurrgg;
by algorithms that work in the pattern matching mode.
We present a new twig join algorithm that avoids thi§’]
overhead, and achieves dramatic improvements in space
for certain types of queries. [18]
In the lower bound proofs, we make two assumptions
about the model of query evaluation: (1) that every quepyg
node is associated with only a single cursor; and (2) that
streams corresponding to labels that do not occur in the
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