
The Space Complexity of Processing XML
Twig Queries Over Indexed Documents

Mirit Shalem#1, Ziv Bar-Yossef∗2

#Department of Computer Science, Technion
Haifa, Israel

1mirit2s@cs.technion.ac.il
∗Department of Electrical Engineering, Technion

Haifa, Israel
and Google Haifa Engineering Center

Haifa, Israel
2zivby@ee.technion.ac.il

Abstract— Current twig join algorithms incur high mem-
ory costs on queries that involve child-axis nodes. In
this paper we provide an analytical explanation for this
phenomenon. In a first large-scale study of the space
complexity of evaluating XPath queries over indexed XML
documents we show the space to depend on three factors:
(1) whether the query is a path or a tree; (2) the types of
axes occurring in the query and their occurrence pattern;
and (3) the mode of query evaluation (filtering, full-fledged,
or “pattern matching”). Our lower bounds imply that
evaluation of a large class of queries that have child-axis
nodes indeed requires large space.

Our study also reveals that on some queries there is a
large gap between the space needed for pattern matching
and the space needed for full-fledged evaluation or filtering.
This implies that many existing twig join algorithms, which
work in the pattern matching mode, incur significant space
overhead. We present a new twig join algorithm that
avoids this overhead. On certain queries our algorithm is
exceedingly more space-efficient than existing algorithms,
sometimes bringing the space down from linear in the
document size to constant.

I. I NTRODUCTION

XQuery and XPath [1] queries are typically repre-
sented as node-labeledtwig patterns(i.e., small trees).
Evaluating a twig pattern over an XML document is
therefore a core database operation. As with relational
databases, creating an index over the XML document
at a pre-processing step can significantly reduce the
costs (time, space) of query evaluation. Similarly to
text search, an index for an XML document consists of
posting listsor streams, one for each XML label that
occurs in the document. The stream consists of positional
encodings of all the elements that have this label, in doc-
ument order. In this paper we focus on the most popular
encoding scheme, theBEL encoding[2], in which each
element is encoded as a (Begin,End,Level) tuple. The
BEL encoding, although being compact, enables simple
testing of structural relationships between elements.

Over the past decade, many algorithms for evaluating
twig queries over indexed XML documents have been
proposed (e.g., [2], [3], [4], [5], [6], [7], [8]). Much
progress has been made in supporting wider fragments of
XPath and XQuery and in achieving better performance
in terms of running time, memory usage, and I/O costs.

Many of the existing algorithms follow two trends.
The first trend is the tendency to achieve good per-
formance on queries that involve descendant-axis only
nodes, while suffering from poor performance on queries
that involve child-axis nodes. The second trend relates
to the mode of evaluation: many current algorithms
find all possible matches of thewhole query in the
document (“pattern matching”), even though they are
required to output only the matches of the query’soutput
node(s)(“full-fledged evaluation”) or to simply return a
bit indicating whether there is at least one match of the
query in the document (“filtering”).

These trends raise two natural questions. First, is the
space overhead incurred by child-axis nodes inherent or
is it an artifact of the way existing algorithms work?
Second, does the pattern matching evaluation mode incur
any overhead relative to full-fledged evaluation and/or
filtering?

Our results. In order to address the above questions, we
embark on a large-scale study of the space complexity
of evaluating twig queries over indexed documents. Our
lower bound results are quite strong, since they apply
to the instance data complexity[9], rather than to the
standarddata complexity. That is, we fixany query, not
just a worst-case query, and then prove lower bounds
for evaluating this query. Therefore, our lower bounds
are given in terms of properties of the query as well as
parameters of the document. Our analysis shows that the
space complexity of twig query evaluation depends on
three parameters: (i) whether the query is a path or a tree;



(ii) the types of the axes in the query and their occurrence
pattern; and (iii) the mode of evaluation: filtering, full-
fledged evaluation, or pattern matching.
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D, d, and “out” denote the document size, its depth, and the output
size, resp.

Table I summarizes our results (marked in shaded
background) as well as previously known bounds. We
analyze each evaluation mode separately. We also cate-
gorize the queries according to the axis pattern of paths
in the query (represented as a regular expression). To
classify a query, we check if at least one path in the
query fits the regular expression, starting from the lowest
row of the table upwards. As the query size is typically
small relative to the document size or the output size,
we did not focus on it as a parameter. We use theÕ
notation to suppress factors that are linear in the query
size or logarithmic in the document size.

Our results provide two theoretical explanations for
the difficulty in handling queries with child-axis nodes.
The first explanation applies to all evaluation modes
and to queries that contain the (//)(/) pattern (i.e., ones
that consist of at least one descendant-axis node that
is followed by a child-axis node, such as //a/b; see the
last row in all three tables). We show that the space
needed to evaluate such queries isΩ(d), where d is
the document’s depth. The lower bound follows from
the need to simultaneously hold in memory candidate
matches of the descendant-axis node that are nested
within each other. Thus, when evaluating the query
on highly recursive documents (ones that consist of

long chains of same-label elements),Ω(d) space may
be needed. The second, and possibly more significant,
explanation applies to the full-fledged evaluation and
pattern matching modes and to (a subset of) the tree
queries that contain the (//)(/) pattern (see the lower
right corner at the second and third tables). We prove
that processing such queries additionally requiresΩ(out)
space, where “out” is the output size (approximately, the
number of matches of the query in the document). As
the output size can be as large as the document itself,
it may be unavoidable to use a lot of memory on such
queries.1

Our study reveals another notable phenomenon. On
tree queries that do not contain the (//)(/) pattern (i.e.,
ones that consist of descendant-axis nodes only or ones
in which child-axis nodes always precede descendant-
axis nodes; see the upper right corners in all three tables),
pattern matching is subject to anΩ(out) lower bound,
while the other modes are not. We present a new twig
join algorithm that is adapted for the filtering and full-
fledged evaluation modes and uses onlyconstantspace
for these queries. Thus, our algorithm demonstrates
that working in the pattern matching mode, while only
filtering or full-fledged evaluation are needed, incurs
significant space overhead.

Due to lack of space, we feature in this extended
abstract only anΩ(out) lower bound for full-fledged
evaluation2 of tree queries and the new twig join algo-
rithm. The full draft of this paper3 discusses our other
results: (1) theΩ(d) lower bound; (2) theΩ(out) lower
bound for pattern matching of tree queries (last column
of the third table); (3) anΩ(min(d, out)) lower bound for
pattern matching of certain path queries (second row of
the third table); (4) extensions to our twig join algorithm
and to the TwigStack algorithm [2] that are able to
match the lower bounds we have in the pattern matching
mode (first two rows of the third table). ThẽO(d) upper
bound for path queries (in all evaluation modes) follows
from the PathStack algorithm [2]. ThẽO(d) upper bound
for filtering tree queries follows from the TurboXPath
algorithm [10]4 (see also [8], [9]). Obtaining space-
optimal algorithms for tree queries that contain the (//)(/)
pattern remains an open problem. (Õ(D) is the space
needed by an in-memory algorithm that simply stores
the whole document in main memory.)

1Note that in general the algorithm does not need to allocate
expensive main memory storage for the output, since the output can
be written to a write-once output device.

2The Ω(max(d, out)) lower bound in the second table consists of
two bounds:Ω(out) andΩ(d). Here we present the proof of theΩ(out)
bound.

3Available from http://www.ee.technion.ac.il/people/zivby.
4TurboXPath is designed for XML streams, yet it can be made

to work on indexed XML documents with a constant factor space
overhead.



Our techniques. Space lower bounds for data stream
algorithms are normally proved via communication com-
plexity. It turns, however, that the standard commu-
nication complexity model is inadequate for proving
lower bounds formultiple data stream(MDS) algo-
rithms. We therefore introduce a new model of multi-
party communication complexity—thetoken-based mesh
communication model(TMC)—which enables proving
space lower bounds forMDS algorithms. The model
allows a clean abstraction of the information-theoretic
arguments made in the lower bound proofs. It also
enables us to recycle arguments that are repeatedly used
in the proofs, thus making them more modular. We prove
communication lower bounds in theTMC model for three
problems:delayed intersection, reverse set-disjointness
problem, andtensor product(the latter two are addressed
in the full version). Our space lower bounds for twig
query evaluation are obtained via reductions from these
problems.

Our new twig join algorithm differs substantially from
previous approaches. Like TwigStack and its successors,
our algorithm is “holistic”, as it treats the whole query
as one unit. Yet, unlike TwigStack, our algorithm is not
“document-driven”, but rather “query-driven”. That is,
rather than traversing the elements in document order
and at each step looking for the largest query subtree
that is matched by the current document subtree, our
algorithm traverses the query top-down and advances the
stream cursors to the next match. We include detailed
theoretical correctness and performance analysis of our
algorithm.

II. RELATED WORK

Starting with the seminal work of Brunoet al. [2]
on holistic twig join algorithms, there have been many
follow-up studies that presented improvements in the
I/O and memory costs (e.g., [11], [5], [6], [4]) or
extended the supported fragment of queries (e.g., [8],
[7]). However, none of these papers presents a systematic
study of lower bounds as we do.

The only previous work to address space lower bounds
for processing twig queries was a paper by Choiet
al. [12]. They state that any algorithm evaluating the
query //a[a and a] requires super-constant memory.5

Our study does not address a single worst-case query,
but provides lower bounds for evaluation ofany query.
Our lower bounds are also finer-grained and yield a
quantitative characterization of the space complexity.

Chen et al. [3] compared three different indexing
schemes: by label, by label and level, and by ances-
tors’ labels. They demonstrate the impact of the chosen

5While this statement is true, we suspect the proof included in [12]
to be flawed, as it relies on a reduction to, and not from, evaluation
of Select-Project-Join queries over continuous data streams [13].

scheme on the classes of twig patterns that can be eval-
uated “optimally”, i.e., without redundant intermediate
results. However, their focus is on the two latter schemes,
and not on lower bounds for the first scheme, which is
the subject of study in this paper.

Several previous works proved space lower bound for
evaluating XPath queries in other models. Gottlob, Koch,
and Pichler [14], Segoufin [15], and Götz, Koch and
Martens [16] studied the complexity of evaluating XPath
queries over XML documents stored in main memory.
Grohe, Koch, and Schweikardt [17] proved lower bounds
for XPath evaluation on external memory machines with
limited random accesses. As the models studied in these
works are completely different from the model studied in
this paper, their lower bounds are not applicable to our
setting. Bar-Yossef, Fontoura, and Josifovski [9], [18]
showed space lower bounds for evaluating XPath queries
over asingleXML stream. Lower bounds in our model
derive the same lower bounds in the their model, while
upper bounds in their model also apply in our model.

The multiple-cursor multiple data stream model was
analyzed in [19] and a lower bound for reverse set-
disjointness was provided. Yet, the paper focuses on
relational algebra queries and not on XPath.

III. PRELIMINARIES

Data model. XML documents are modeled as ordered
rooted trees. Each node in the tree is called anelement
and is labeled by a name or a text value. The edges
represent direct element-subelement or element-value
relationships. Every document has an (invisible) root
whose label we denote by “$”. Figure 1 depicts an
example document tree.

Similarly to previous papers on twig joins, we assume
only leaf elements in the document may contain text.
This makes the relationship element-value easier to rep-
resent and evaluate.����������	�
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Fig. 1. Example XML document (right) and twig query (left) for the
XPath query: //Book[.//T itle=”Web” and Y ear=2003].



XPath fragment. We focus on a fragment of XPath,
which we callbasic twig queries. Many existing algo-
rithms focus on this type of queries [2], [6], [11]. The
syntax of a basic twig query is defined as follows :
Twig ::= Step | Step Twig
Step ::= Node [Predicate]?
Path ::= Node | Node Path
Node ::= (/|//) label
Predicate ::= Twig | Path = textvalue | Predicate
andPredicate

A basic twig query can be represented as a tree, where
each internal node is marked by a label and each leaf
is marked by a label or by a text value. Similarly to
documents, every query has an invisible root labeled by
“$”. One of the tree’s nodes is designated as the output
node6. Figure 1 depicts an example basic twig query.
The output node is pointed by an arrow.

Evaluation model. We consider query evaluation over
indexed XML documents. An XML document is repre-
sented inpositional encoding. Each document node is
encoded as a triple: (Begin, End, Level), based on its
position in the document. “Begin” and “End” are the
positions of the beginning and the end of the element,
respectively, and “Level” is the nesting depth. Positional
encoding is the most popular format for representing
XML documents, since it is simple and compact, yet it
allows for efficient evaluation of structural relationships
between document nodes.

An indexed XML document consists of a collection
of index streams, one stream for every label that occurs
in the document. For every label ’a’, streamTa contains
positional encodings of all elements with label ’a’ in the
document, sorted by the “Begin” attribute. Each query
nodeu is associated with a cursor in the corresponding
streamTu. An algorithm can read from a cursor position
many times, until it decides to advance it. Cursors can be
advanced only forwards, and not backwards. The output
is written to a write-only stream. If two query nodes
u, v share the same label, the algorithm maintains two
separate cursors on streamsTu andTv, which represent
the same stream. We therefore abuse notation and use
Tu to denote thecursor on the stream corresponding to
u. As mentioned earlier, the algorithms we consider are
restricted to access only streams corresponding to labels
that occur in the query. All known twig join algorithms
conform to this restriction.

When analyzing the space complexity of an algorithm
that runs over an indexed XML document, we do not take
into account the space used for storing the input streams,
the cursors, or the output stream.

6The output node in an XPath query is always the path’s leaf. Yet,
in the tree representation, this leaf may become any labelednode in
the tree. For example, the two queries //a[b and c] and //a[b]/c are
represented by the same tree, but their output nodes are different.

Modes of evaluation.We consider three modes of query
evaluation:filtering, full-fledged, and pattern matching.
The underlying notion in all modes is amatch.

For a queryQ and a nodeu ∈ Q, we denote byQu the
sub-query rooted atu. Similarly, for a documentD and
an elemente ∈ D, we denote byDe the sub-document
rooted ate.

Definition 3.1 (Sub-query match):A match of a sub-
queryQu in a sub-documentDeu

is a mappingφ from
the nodes ofQu to elements inDeu

satisfying the
following: (1) root match: φ(u) = eu, (2) labels match:
w andφ(w) have the same label, for everyw ∈ Qu, and
(3) structural match: the structural relationship between
φ(w) andφ(parent(w)) matches the axis ofw, for every
w ∈ Q, w 6= u.

A matchof a queryQ in a documentD is a match of
Qroot(Q) in Droot(D). Given a queryQ and a document
D, the filtering of D usingQ, denotedFILTERQ(D), is
a bit indicating whetherQ has at least one match in
D. The pattern matchingof Q in D, denotedPMQ(D),
is the collection of all matches ofQ in D. The full-
fledged evaluationof Q on D, denotedFFEQ(D), is the
collection of elementsφ(t), for all matchesφ of Q in
D (t is the output node ofQ).

IV. Ω(OUTPUTSIZE) LOWER BOUND

In this section we present theΩ(outputSize) space
lower bound for full-fledged evaluation of tree queries
that contain the (//)(/) pattern. We define theoutput size
of the evaluation of a queryQ on a documentD to be
|FFEQ(D)|, that is, the number of document nodes to
which the query’s output node can be matched. Strictly
speaking, the lower bound does not apply to all queries
that contain (//)(/), but rather only to a subset of them,
depending on the location of the output node in the
query.

Theorem 4.1 (Output size lower bound):Let Q be
any basic twig query that contains the path segment //z/b.
Furthermore, assume the following: (1) the output node
is a descendant of the node labeledz but not of the
node labeledb (this is where we requireQ to be a tree
and not a path); (2) the output node’s label andz, b are
distinct and do not appear elsewhere inQ. Then, for
every algorithm forFFEQ and for everyS ≥ 1, there
exists a documentD, for which |FFEQ(D)| ≤ S and on
which the algorithm uses at leastΩ(S) bits of space.

The proof of the theorem appears in the full draft of
the paper. Here, we prove the theorem for the special
caseQ = //z[b]/a. This proof captures the main technical
challenges of the general case. Formally, the theorem
is proven by a reduction from the problem ofdelayed
intersectionin the multiple data streamsmodel.

The MDS model. In the multiple data streams (MDS)
model, the input datax is divided into several read-



only streams, and the required output,f(x), is written
to a write-only output stream. Each of the input streams
is associated with a cursor that can move only in the
forward direction. The cursor specifies which part of the
stream has already been read. An algorithm can read
from a cursor position many times, until it decides to
advance it. When the entire input has been read, the
output stream containsf(x). This model generalizes our
evaluation model for basic twig queries.

Delayed intersection. Given three binary vectors
s, t, u ∈ {0, 1}n and a bit v ∈ {0, 1}, the delayed
intersectionfunction, DINTn(s,t,u,v), is defined as(s ∩
vn) ◦ (t ∩ u), where∩ denotes bitwise-and,vn is the
n-dimensional vector obtained by takingn copies ofv,
and ◦ denotes concatenation of vectors. For example,
DINTn(101,011,101,1) is 101001. When computed in the
MDS model,s ◦ t is given on one stream andu ◦ v on
another stream.

Theorem 4.2:For anyn ≥ 7, the space complexity of
DINTn in the MDS model is at leastn− log(n + 1)− 4.

The proof appears in Section V.

The reduction. We prove Theorem 4.1 for the case
Q = //z[b]/a by reducingDINTn to FFEQ. Let n = S/2.
We prove that given an algorithm that solvesFFEQ on
documents for which|FFEQ(D)| is at mostS (i.e., 2n)
using k bits of space, we can design an algorithm that
solvesDINTn with k + O(log n) bits of space. Theorem
4.1 would then immediately follow from Theorem 4.2.

In the reduction we use the inputs, t, u, v to construct
the index streams of an XML documentG(s, t, u, v) (see
Figure 2). The document structure is the same for all
inputs, except for the labeling of elements. Whensi = 1
or ti = 1, the corresponding elementsi or ti is labeled
’a’, and otherwise it is labeled ’c’. When ui = 1 or
v = 1 , the corresponding elementui or v0 is labeled
’b’, and otherwise it is labeled ’d’.

�� �� �� � � ���
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Fig. 2. The documentG(s, t, u, v).

We now describe an algorithmA for DINTn based on
a given algorithmB for FFEQ. Given the input vectors
s, t, u, v, A simulatesB on the documentG(s, t, u, v).
To this end,A creates the two index streamsTa and

Tb on the fly. The streamTz is fixed and does not
depend on the input. WheneverB needs to read a tuple
from Ta (resp., Tb), A advances the cursor ofs ◦ t
(resp.,u ◦ v) until its next set bit, and “feeds”B with
the corresponding tuple, which can be easily computed
based on the position of that bit. WheneverB outputs an
a-element, i.e., an(si) or (ti) element,A outputs “1” in
the same position(s∩vn)i or (t∩u)i, respectively. It is
easy to check that the index streams constructed are well-
formed. Note also that the size ofFFEQ(G(s, t, u, v)) is
at most2n = S, as required byB.

A uses onlyk + O(log n) bits: k bits for simulating
B and O(log n) bits for keeping the positions of the
two cursors. We next prove that this algorithm computes
DINTn correctly.

Proposition 4.3:Let 1 ≤ k ≤ 2n. The k-th bit
in DINTn(s,t,u,v) is set iff (i) if k ≤ n, sk ∈
FFEQ(G(s, t, u, v)), and (ii) if k > n, tk−n ∈
FFEQ(G(s, t, u, v)).

Proof: If k ≤ n, then thek-th bit is in (s ∩ vn),
and it is set iff bothsk and v are set. This means that
the labels of elementssk andv0 in the documentG are
’a’ and ’b’, respectively. The latter happens if and only
if the mappingφ = (a 7→ sk, b 7→ v0) is a match ofQ
in G. If φ is a match, thensk ∈ FFEQ(G(s, t, u, v)). We
only have to prove now that ifsk ∈ FFEQ(G(s, t, u, v)),
thenφ is a match, i.e., prove that the labels of elements
sk and v0 are ’a’ and ’b’, respectively. Sincesk was
output, then there is a match that mapsa 7→ sk. As the
only element inG that is a child ofsk ’s parent and may
have a ’b’ label is v0, the only possible match isφ.

The second case is whenk > n. Now the correspond-
ing bit is the(k − n)-th bit in (t ∩ u), which is set iff
both tk−n and uk−n are set. The proof here is similar
to the previous case, but with elementstk−n anduk−n

instead ofsk andv0.

V. THE TMC MODEL

In this section we present a new model of commu-
nication, the token-based mesh communication model
(TMC), which can be used to prove space lower bounds
in theMDS model. After investigating basic properties of
protocols in the model, we use them to prove the lower
bound for the delayed intersection problem (Theorem
4.2). We note that the same properties are used in
proving the other space lower bounds included in the full
draft of the paper. These lower bounds could have been
proved directly through theMDS model, without using
the newTMC model. However, we believe that theTMC

model presents in an explicit way the various possible
computations of a multiple data stream algorithm, i.e.,
the various cursor configurations, and enables cleaner
and more modular proofs.



The TMC model. In the token-based mesh commu-
nication (TMC) model, there aren players, who wish
to jointly compute a functionf on a shared inputx ∈
{0, 1}m. The players are placed on nodes of a network,
whose underlying topology is ad-dimensional mesh.
Specifically, the set of nodes isV = [m1] × [m2] ×
· · · × [md], where [mi] = {0, 1, . . . , mi}. Every node
(i1, i2, . . . , id) has an outgoing edge to(i1, i2, . . . , id)+
ej , for all j for which ij < mj . Here, ej is the d-
dimensionalj-th standard unit vector.

The inputx ∈ {0, 1}m is viewed as a concatenation
of d stringsx1, x2, . . . , xd, wherexi ∈ {0, 1}mi. Node
(i1, i2, . . . , id) receives (b1,i1 , b2,i2 , . . . , bd,id

), where
bj,k is the k-th bit in xj , for 1 ≤ k ≤ mj , and is0,
for k = 0.

The communication in the network is not in broadcast,
as is in the more standard models, but istoken-based.
At each round of the protocol, a single player holds
a “token”, indicating she is the only one who can
send messages in the round. She sends a single private
message to one of her outgoing neighbors. The neighbor
who receives the message holds the token at the next
round. The communication always starts at the node
s = 0d (the “start player”) and ends at the nodet =
(m1, m2, . . . , md) (the “end player”). All players share
a write-only output stream, to which only a player who
holds the token can write. The stream should contain the
valuef(x) by the end of the protocol.

The max communication costof a protocolP in this
model is the length of the longest message sent during
execution ofP on the worst-case choice of inputx.

The following shows a reduction from theTMC model
to the MDS model:

Lemma 5.1 (Reduction lemma):Let f : {0, 1}m1 ×
{0, 1}m2 × · · · × {0, 1}md → B. If there exists an algo-
rithm that computesf in the MDS model withS bits of
space, then there exists a protocol that computesf in the
d-dimensionalTMC model whose max communication
cost is at mostS bits.

Proof: Let A be an algorithm that computesf in
the MDS model withS bits of space. The input ofA is
d streams{x1, . . . ,xd} of sizes{m1, . . . , md}, respec-
tively. In theTMC model we have ad-dimensional mesh,
where every dimension corresponds to one stream. Each
setting of thed cursors in theMDS model corresponds to
one player in thed-dimensional mesh. We now describe
a protocolP that computesf in the TMC model. At the
beginning, players (i.e., 0d) holds the token, and it has
received no input (by definition). It starts to execute the
algorithmA. WheneverA moves a cursor, say the cursor
of streamxi, the player who currently holds the token,
denoted as(i1, i2, . . . , id), sends the token together with
the current content of the memory ofA (S bits) to player
(i1, i2, . . . , id) + ei. The player who receives the token

and the memory-content continues the execution ofA at
the same way. WheneverA writes to the output stream,
the simulating player does the same. Playert is the last
to executeA, and it finishes the simulation. Note that
P correctly computesf (becauseA does) and its max
communication isS.
Properties of the TMC model. We now investigate
some basic properties of theTMC model, which are
crucial to our lower bound proofs. For simplicity of
exposition, we focus on2-dimensional meshes, yet the
definitions and results can be easily extended tod-
dimensional meshes as well.

Let P be a protocol that computesf(x, y) in the 2-
dimensionalTMC model.

Definition 5.2 (Communication path):The communi-
cation path of protocol P on input (x, y), denoted
PATH(x, y), is the sequence of players{(i, j)} through
whom the token passes during the execution ofP on
(x, y).

The following fact states that all communication paths
must pass through the diagonalsi + j = C:

Proposition 5.3:∀1 ≤ C ≤ min(m1, m2) and∀x, y,
∃ 0 ≤ i ≤ C, such that(i, C − i) ∈ PATH(x, y).

Proof: The diagonali+ j = C is an(s, t)-cut, and
thus any path froms to t crosses this cut.

Definition 5.4 (Passing set):Thepassing-input-setof
protocolP w.r.t. player(i, j), denotedPASS(i, j), is the
set of all inputs(x, y) s.t. (i, j) ∈ PATH(x, y).
Let PREFi(x) denote the firsti bits ofx, and letSUFFi(x)
denote the lasti bits of x, for 0 ≤ i ≤ m1. For i =
m1 +1, SUFFm1+1(x) is 0 ◦x. (The same goes form2.)
Let player(i, j) ∈ PATH(x, y). MSGi,j(x, y) denotes the
message sent by player(i, j) during the execution ofP
on input (x, y). SUCCi,j(x, y) denotes the successor of
(i, j) in PATH(x, y).

Definition 5.5 (Packet):Let player (i, j) ∈
PATH(x, y). The packet sent by (i, j), denoted
PACKETi,j(x, y), is defined as the combination of
MSGi,j(x, y) and SUCCi,j(x, y).

The following lemma shows that the packet sent by
a player depends only on the prefix of the input seen
by players along the communication path leading to this
player (the proof, which is quite technical, appears at the
full draft):

Lemma 5.6 (Suffix independence):Let
(x, y), (x′, y′) ∈ PASS(i, j). If PREFi(x) = PREFi(x

′)
and PREFj(y) = PREFj(y

′), then PACKETi,j(x, y) =
PACKETi,j(x

′, y′)

Definition 5.7 (Prefix set):The passing-prefix-setof
protocolP w.r.t. player(i, j), denotedPREF(i, j), is the
set:{(PREFi(x), PREFj(y)) | (x, y) ∈ PASS(i, j)}

The following is proved by induction, similarly to the
proof of Lemma 5.6:



Proposition 5.8 (Rectangle property):∀(α, β) ∈
PREF(i, j), and ∀γ ∈ {0, 1}m1−i, δ ∈ {0, 1}m2−j,
(α ◦ γ, β ◦ δ) ∈ PASS(i, j).

The following bound on the size of the passing set
derives from Proposition 5.8:

Corollary 5.9: |PASS(i, j)| = |PREF(i, j)| ·
2(m1−i)+(m2−j)

The following is proved by induction, similarly to the
proof of Lemma 5.6:

Proposition 5.10:Let (x, y), (x′, y′) ∈ PASS(i, j).
If PACKETi,j(x, y) = PACKETi,j(x

′, y′),
SUFFm1−i+1(x) = SUFFm1−i+1(x

′), and
SUFFm2−j+1(y) = SUFFm2−j+1(y

′), then the output
written from the time player(i, j) sent his packet and
until the end is the same on both inputs.

Delayed intersection. We now use theTMC model to
prove the space lower bound for delayed intersection in
the MDS model.

Theorem 4.2 (restated) For any n ≥ 7, the space
complexity ofDINTn in the MDS model is at leastn −
log(n + 1) − 4.

Proof: We will prove that any2-dimensionalTMC

protocol computing the delayed intersection problem has
a max communication cost of at leastm = n− log(n +
1)−4 bits. Using Lemma 5.1, this would imply the same
lower bound in theMDS model.

To reach a contradiction, we assume there exists a
protocolP that solvesDINTn with max communication
of m bits, wherem < n− log(n+1)−4. We will prove
that there must be an input on whichP errs.

According to Proposition 5.3, all communication paths
go through the diagonali + j = n. There are23n+1

different inputs(s, t, u, v), which means there are23n+1

communication paths, while there aren+1 players in this
diagonal, i.e., players of the form(i, n − i). Therefore,
by the pigeonhole principle, there exists0 ≤ i ≤ n, s.t.
|PASS(i, n − i)| ≥ 23n+1

n+1 . We call the player(i, n − i)
the congested player.

By Corollary 5.9,|PREF(i, n − i)| = |PASS(i,n−i)|
22n+1 ≥

2n

n+1 (note that herem1 = 2n, m2 = n + 1). Now
consider thei-th bit of s and the(n−i)-th bit of u in any
input in PREF(i, n− i). There are four possible settings
for these bits, inducing a partition ofPREF(i, n− i) into
four sets. We exclude fromPREF(i, n−i) the four inputs,
in which all bits are zero, except maybe forsi andun−i.
By the pigeonhole principle, one of these sets is of size
at least 2n−3

n+1 . Call this setA. Since the message sent
by the congested player(i, n − i) has at mostm bits,
wherem < n− log(n+1)−4, and since this player has
only two neighbors, the number of possible packets it
can send is less than2·2

n−4

n+1 . There are2n−3

n+1 different
prefixes in A, therefore by the pigeonhole principle,
there exist two pairs of prefixes(s′, u′), (s”, u”) ∈ A

s.t. PACKETi,n−i(s
′, u′) = PACKETi,n−i(s”, u”), and

s′i = s”i, andu′
n−i = u”n−i.

Recall that we excluded zero prefixes, which means
that the output depends ont andv, which have not been
read yet. Therefore we know that no bit has been written
to the output stream yet. We now define two different
inputs for P , on one of whichP must err. The above
prefixes(s′, u′) and (s”, u”) differ in at least one bit.
First assume this is thek-th bit in s′ and s”, where
k < i.

Consider any stringsα ∈ {0, 1}n−i, β ∈ {0, 1}i,
and t ∈ {0, 1}n. We next show thatP must output the
same answer on the two inputs:(s′ ◦ α, t, u′ ◦ β, 1) and
(s” ◦ α, t, u” ◦ β, 1). Recall thatPACKETi,n−i(s

′, u′) =
PACKETi,n−i(s”, u”), and that the suffixess′i ◦ α ◦ t
and u′

n−i ◦ β ◦ 1 are the same for the two executions.
Therefore, by Proposition 5.10,P outputs the same
value.

On the other hand, we now show thatDINTn(s′ ◦
α, t, u′ ◦ β, 1) 6= DINTn(s” ◦ α, t, u” ◦ β, 1). This would
imply that P errs on at least one of the inputs. Recall
that DINTn(s,t,u,v) is defined to be:(s ∩ vn) ◦ (t ∩ u).
Since in both inputsv = 1, but they differ in thek-th
bit in s, then their corresponding outputs also differ in
the k-th bit in (s ∩ vn).

The proof for the other case, where the two prefixes
(s′, u′) and (s”, u”) differ in the k-th bit in u′ andu”,
is very similar. We choose a suffix for the two prefixes,
such that thek-th bit in t is set. This way the value of
the(n+k)-th bit in DINTn of the two inputs is different,
but the protocol outputs the same value.

VI. T HE TWIG JOIN ALGORITHM

We now present our new constant space twig join
algorithm for full-fledged evaluation of queries that do
not contain the (//)(/) pattern. The main procedure of
the algorithm, depicted in Figure 3, is Eval(Q, t, D),
which gets as input a queryQ, its output nodet,
and a documentD, and works by iteratively looking
for a match of Q in D. For each match found, it:
(i) outputs the document elementet to which t is
mapped by this match, and (ii) advances thet’s cursor
beyondet. The basic procedure used in the algorithm is
NextMatchUnderSelf(u, eu), which gets as input a query
node u and the elementeu, on which thecursor Tu

corresponding tou is currently positioned7, and returns
true if and only if the sub-queryQu has a match in the
sub-documentDeu

. Moreover, if such a match exists, the
procedure advances the stream cursors to the positions
that indicate the match.

7As mentioned in Section III, we useTu to denote the cursor on the
stream corresponding tou. This way, if two query nodesu, v share
the same label, thenTu and Tv denote two separate cursors on the
same stream.



NextMatchUnderSelf relies on the special structure
of Q and works by recursively searching for matches
of the sub-queries rooted at the children ofu. To this
end, it calls the procedure NextMatchUnderParent(v,
eu). The latter gets as input a query nodev and the
elementeu, on which the cursorTu (u = parent(v))
is currently positioned, and returns true if and only if
Qv has a match inDev

, whereev is a descendant ofeu

whose relationship witheu matches the axis ofv. This
procedure works by repeatedly advancing the cursorTv,
until finding the desired elementev. If a match is found,
the cursors of the corresponding nodes are advanced to
positions that indicate the match.

1:Function Eval(Q, t, D)
2: while ( NextMatchUnderSelf(root(Q), root(D)) ) then
3: outputTt.ReadElement()
4: Tt.Advance()

1:Function NextMatchUnderSelf(u, eu)
2: for every childv of u
3: if ( !NextMatchUnderParent(v, eu) )
4: return false
5: return true

1:Function NextMatchUnderParent(v, eu)
2: ev := Tv .ReadElement()
3: while ((ev != Tv .End) and (ev.Begin < eu.End))
4: if ( (relationship betweenev andeu matches

axis(v)) and NextMatchUnderSelf(v, ev) )
5: return true
6: Tv .Advance()
7: ev := Tv .ReadElement()
8: return false

Fig. 3. FFE algorithm (no (//)(/))

The recursion depth of the algorithm equals the query
depth. Each level requires space for storingO(1) docu-
ment elements. Therefore, the space complexity isÕ(1).
The running time of the algorithm is linear in the
document size.

Example run. Consider the document and the query
depicted in Figure 4. Suppose thata is the output node.
Initially, the three cursors point to(a1, b1, c1). The first
iteration of Eval calls NextMatchUnderSelf($,$), which
looks for an a node that hasb and c descendants.
The first a element to be checked isa1. The call
to NextMatchUnderSelf(a, a1) advances the cursorsTb

and Tc separately, until they point tob and c ele-
ments that are descendants ofa1, or begin aftera1

ends. Sinceb1 is not nested withina1, Tb is advanced
to b2, which matches the required axis. However,c1

begins aftera1 ends, and thereforea1 is rejected as
a possible match toa, and Ta is advanced toa2.
Now the three cursors point to(a2, b2, c1). Again, we
look for b and c descendants ofa2. b2 is not nested
within a2, and Tb is advanced tob3, which matches
the required axis.c1 is a already a descendant of

a2. Therefore, both NextMatchUnderParent(b,a2) and
NextMatchUnderParent(c,a2) return true, which means
that NextMatchUnderParent(a,$) and NextMatchUnder-
Self($, $) return true. Eval outputsa2, advancesTa to
a3 and calls NextMatchUnderSelf again when the three
cursors point to(a3, b3, c1). Now NextMatchUnderSelf
returns false, as there is no additional match, and Eval
ends. ����� �� ���� �� ��

��� �
Fig. 4. An example XML document (right) and query (left). The
query is//a[.//b and .//c].

We now present a correctness analysis of the al-
gorithm. We omitted several technical proofs, but the
complete analysis appears in the full draft of this paper.

Cursor configurations. A notion that will play a
crucial role in our analysis iscursor configurations.
Let u be a query node. AQu-cursor configuration(or
Qu-configuration, in short) is a setting of the cursors
{Tv}v∈Qu

. For a Qu-configurationC and for a node
v ∈ Qu, C[v] denotes the position of the cursorTv as
specified byC. We sometimes abuse notation and think
of C[v] as the document element pointed by this cursor.

A Qu-configuration can be viewed as a mapping from
Qu to elements ofD that preserves label matches. If
this mapping is a match, we say that the configuration
induces a match.

Let C1, C2 be two Qu-configurations.C1 is said to
dominateC2, denotedC1 � C2, if for every v ∈ Qu,
C1[v] ≥ C2[v]. As stream cursors move only in the
forward direction, configurations encountered during an
execution of an algorithm always dominate one another.

The Qu-configuration at the time a functionf is
called is thestarting Qu-configuration off . The Qu-
configuration whenf returns is called theendingQu-
configuration off . By the above, the ending configura-
tion always dominates the starting configuration.

Analysis of NextMatchUnderSelf. We start by analyz-
ing the main subroutine, NextMatchUnderSelf. It is easy
to verify that whenever NextMatchUnderSelf(u, eu) is
called, theneu is the element on which the cursorTu

is currently positioned. In the following we prove that
NextMatchUnderSelf is bothsound(returns true, only if
a match exists) andcomplete(if a match exists, returns
true). We denote byQ andD any basic twig query and
any document, respectively.



Lemma 6.1 (Soundness):If NextMatchUnderSelf(u,
eu) returns true, then its endingQu-configuration in-
duces a match ofQu in Deu

.
Lemma 6.2 (Completeness):Suppose Q does not

contain the (//)(/) pattern and letC be the startingQu-
configuration of NextMatchUnderSelf(u, eu). If there
exists aQu-configurationC′ � C that induces a match
of Qu in Deu

, then NextMatchUnderSelf(u, eu) returns
true.

The proof of the soundness lemma is relatively easy
and is done by induction on the height ofu (see the
full draft of the paper). We next prove the completeness
lemma. We assume from now on thatQ does not contain
the (//)(/) pattern. The following propositions are a key
to proving the lemma:

Proposition 6.3:Let φ be a match ofQ in D. Then,
for every child-axis nodeu, depth(φ(u)) = depth(u).

Proposition 6.4: If NextMatchUnderSelf(u, eu) is
called with a child-axis nodeu, then depth(eu) =
depth(u).

The two proofs, which we omitted, are done by
induction ondepth(u).

Proof: [Proof of Lemma 6.2] We prove the lemma
by induction onk = height(u). For k = 0, u is a leaf.
In this case the function always returns true.

Suppose that the lemma holds for all nodes of
height at mostk. Consider a nodeu of height k + 1.
NextMatchUnderSelf(u, eu) returns true only if the calls
to NextMatchUnderParent(v, eu), for each childv of u,
return true. Consider such a childv, then.

Let Cv be the restriction of C to Qv. Note
that Cv is the starting Qv-configuration of
NextMatchUnderParent(v, eu), even if v is not the
first child to be processed. This is because a call to
NextMatchUnderParent(v′, eu), for any other childv′

of u, cannot change cursors corresponding to nodes in
Qv.

Let C′
v be the restriction ofC′ to Qv. C′

v induces
a match ofQv in De′

v
, wheree′v = C′[v]. Note that

e′v ∈ Deu
and its structural relationship witheu matches

axis(v).
SinceC′ dominatesC, then alsoC′

v dominatesCv. It
follows thatCv[v] precedes (or equals)e′v in the stream
Tv. When calling NextMatchUnderParent(v, eu), the
function enumerates the elementsev on the streamTv,
starting withCv[v]. We next show that the enumeration
has to stop either ate′v or before in success.

If the enumeration stops at someev that precedes
e′v, then NextMatchUnderParent(v, eu) returns true. So
suppose the enumeration has not stopped at any of these
nodes. We would like to show it must stop ate′v.

Claim 6.5: Let C′′
v be the Qv-configuration when

the algorithm starts processinge′v, i.e., when
NextMatchUnderParent(v, eu) reaches line 3 and

the cursorTv points toe′v. Then,C′′
v � C′

v.
Before we prove this claim, let us use it to con-

clude the proof of Lemma 6.2. SinceC′′
v [v] = e′v

and C′′
v is dominated byC′

v, which induces a match
of Qv, then by the induction hypothesis, the function
NextMatchUnderSelf(v, e′v) returns true, and so does its
calling function NextMatchUnderParent(v, eu). We con-
clude that NextMatchUnderParent(v, eu) returns true for
all childrenv of u, and thus also NextMatchUnderSelf(u,
eu) returns true.

Proof: [Proof of Claim 6.5] Suppose, to reach a
contradiction, thatC′′

v is not dominated byC′
v. This

implies that there exists a nodeb ∈ Qv s.t. C′′
v [b] >

C′
v[b]. If there is more than one such node, we choose

b to be the node, for whichTb is the first to be
advanced beyondC′

v[b]. Let a be the parent ofb in Q.
Tb must be advanced beyondC′

v[b] during the execution
of NextMatchUnderParent(b, e′′a), wheree′′a is some node
in the streamTa. Note that at the timeTb is advanced
beyondC′

v[b], the cursorTa points toe′′a. By the choice
of b, the position ofe′′a in the streamTa is at mostC′

v[a],
i.e., e′′a.Begin≤ C′

v[a].Begin.
There are two possible positions fore′′a in the docu-

ment: (1)e′′a.End< C′
v[a].Begin, or (2)e′′a is an ancestor

of (or equals)C′
v[a]. We prove that both lead to a

contradiction.
Consider the first option, i.e.,e′′a.End< C′

v[a].Begin.
C′

v[b] is nested withinC′
v[a] sinceC′ induces a match.

Therefore,e′′a.End< C′
v[b].Begin, which means that the

condition of the while loop in NextMatchUnderParent(b,
e′′a) is not satisfied, and the function could not advance
Tb beyondC′

v[b], in contradiction to our assumption.
Consider then the second option, i.e.,e′′a is an ancestor

of (or equals)C′
v[a]. There are two sub-cases here. (i)

a is a child-axis node ande′′a 6= C′
v[a], (ii) a is a

descendant-axis node, or (iii)e′′a = C′
v[a]. In case (i),

e′′a is an ancestor ofC′
v[a] and thereforedepth(e′′a) <

depth(C′
v[a]). SinceC′ induces a match, then according

to Proposition 6.3,depth(C′
v[a]) = depth(a), and thus

depth(e′′a) < depth(a). Therefore, based on Proposition
6.4, there is no call to NextMatchUnderSelf(a,e′′a), which
means there is no call to NextMatchUnderParent(b,e′′a),
in contradiction to the assumption.

To deal with cases (ii) and (iii), we first show that
in both of them the relationship betweenC′

v[b] and
e′′a matchesaxis(b). In case (ii), a is a descendant-
axis node. Hence, alsob must be a descendant-axis
node (Q does not have the (//)(/) pattern), and sinceC′

induces a match, thenC′
v[a] is an ancestor ofC′

v[b]. In
addition, recall thate′′a is an ancestor of (or equals)C′

v[a].
Therefore,C′

v[b] is a descendant ofe′′a, and thus the
relationship betweenC′

v[b] and e′′a matchesaxis(b). In
case (iii),e′′a = C′

v[a], and thus the relationship between
C′

v[b] and e′′a matchesaxis(b), becauseC′ induces a



match.
Now consider the Qb-configuration when

NextMatchUnderParent(b, e′′a) starts processing
C′

v[b], i.e., when it reaches line 3 and the cursor
Tb points to C′

v[b]. The relationship condition in
line 4 is satisfied, therefore the function calls
NextMatchUnderSelf(b,C′

v[b]). Since we assumedb
is the node inQv whose cursor is the first to move
beyond C′

v[b], then the currentQb-configuration is
dominated byC′

b (the restriction ofC′ to Qb). By
the induction hypothesis, NextMatchUnderSelf(b,C′

v[b])
returns true. NextMatchUnderParent(b,e′′a) would also
return true, without advancingTb, in contradiction to
our assumption.

Analysis of Eval. In order to prove Eval is correct, we
need to show it issound(every element it outputs indeed
matchest) and complete(every element that matchest
node is output). We sketch below the proofs. The full
details appear in the full draft of the paper.

To prove soundness, letet be an element that Eval
outputs. et must have been the element pointed by
the cursorTt after the function NextMatchUnderSelf
returned true. By Lemma 6.1, the ending configuration of
NextMatchUnderSelf (if it returns true) induces a match
φ of Q in D. Therefore,et = φ(t) indeed matchest.

Showing completeness is more intricate. Let
et1 , ..., etk

be the elements that matcht, in document
order. We prove that Eval outputs them in this
order. To this end, we show that thei-th call to
NextMatchUnderSelf in line 2 of Eval advances the
cursor configuration to the “minimum” matchφ, for
which φ(t).Begin ≥ eti

.Begin. Here, the “minimum”
is w.r.t. the partial order induced by the domination
relation, and the existence of the minimum is guaranteed
by the factQ does not have the (//)(/) pattern. Due to
the completeness property of NextMatchUnderSelf, we
always move to the minimum match, and hence we are
guaranteed not to miss a match oft with one of the
eti

’s.

VII. C ONCLUSIONS

In this paper we initiated a systematic study of
memory lower bounds for evaluating twig queries over
indexed documents. We provide an analytical explana-
tion for the difficulty in handling queries with child-
axis nodes, and also point out the overhead incurred
by algorithms that work in the pattern matching mode.
We present a new twig join algorithm that avoids this
overhead, and achieves dramatic improvements in space
for certain types of queries.

In the lower bound proofs, we make two assumptions
about the model of query evaluation: (1) that every query
node is associated with only a single cursor; and (2) that
streams corresponding to labels that do not occur in the

query are not accessed. In the full draft of this paper,
we show how to eliminate the latter restriction when
the label alphabet is sufficiently large. Overcoming the
former restriction is more challenging and would require
extension of our lower bound techniques or resorting to
arguments similar to the ones used by Groheet al. [19].

We focused on the dependence of the space complex-
ity on parameters of the document, such as its depth and
the output size. Query size may be an interesting factor
to investigate in future work. Finally, empirical analysis
of our algorithm could provide insights for its usefulness
on real data.
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