Large Deviations 048944

Home assignment 2: 5 February 2008. Due in class of 19 February 2008

- 1. If $a > \mathbb{E} x \ge 0$ and $\mathbb{E} e^{\theta x} < \infty$ for all $|\theta|$ small enough then $e^{-\theta a} \mathbb{E} e^{\theta x} < 1$ for some θ . Hint: compute derivative w.r.t. θ at $\theta = 0$.
- 2. Define the functions $\pi_j^n(\cdot)$ on the integers $1, \ldots, n$ as follows.

$$\pi_j^n(k) = \begin{cases} k+j & \text{if } k+j \le n\\ k+j-n & \text{if } n < k+j \le 2n \end{cases}.$$

- (a) Suppose the given real numbers $\{r_k\}_{k=1}^n$ satisfy $r_1 + \dots + r_n \geq n\beta$ for some number β . Show that there is an integer j^* so that $r_{\pi_{j^*}^n(1)} + \dots + r_{\pi_{j^*}^n(k)} \geq k\beta$ for all $k = 1, \dots, n$. Hint: choose j^* so as to minimize $r_1 + \dots + r_k - k\beta$.
- (b) Now let $x_1, x_2, ...$ be i.i.d. random variables with exponential moments of all orders and let $\beta > \mathbb{E} x_1$. Show that the limit

$$\frac{1}{n}\lim_{n\to\infty}\log\mathbb{P}\left\{x_1+x_2+\cdots+x_n\geq n\beta\right\}$$

exist. What is this limit?

(c) Now show that

$$(0.0.1) \quad \frac{1}{n} \lim_{n \to \infty} \log \mathbb{P} \left\{ x_1 + x_2 + \dots + x_n \ge n\beta \right\}$$

$$= \frac{1}{n} \lim_{n \to \infty} \log \mathbb{P} \left\{ x_1 + x_2 + \dots + x_k \ge k\beta, all \ 1 \le k \le n \right\}.$$

Hints: assume that $\mathbb{P}\{x_1 > \beta\} > 0$, for otherwise this is trivial. Now use the first part of the exercise: $x_1 + x_2 + \cdots + x_n \ge n\beta$ if and only if $x_{\pi_j^n(1)} + x_{\pi_j^n(2)} + \cdots + x_{\pi_j^n(k)} \ge k\beta$ for all $1 \le k \le n$ for some (random) j. Now use a union bound.