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1 Introduction

1.1 Background

Markov decision processes optimize phenomena evolving with time and thus are intrinsically
dynamic optimization problems. Nevertheless, they can be cast as abstract ‘static’ optimiza-
tion problems over a closed convex set of measures. They then become convex programming
(in fact, infinite dimensional linear programming) problems for which the enormous machin-
ery of the latter fields can be invoked and used to advantage. Logically, these are extensions
of the linear programming approach to finite state finite action space problems due to Manne
[23]. (Further references are given in the ‘bibliographical note’ at the end.) The attraction

of this approach lies in the following:

(i) It leads to elegant alternative derivations of known results, sometimes under weaker

hypotheses, from a novel perspective.

(ii) It brings to the fore the possibility of using convex/linear programming techniques for

computing near-optimal strategies.

(iii) It allows one to handle certain unconventional problems (such as control under ad-
ditional constraints on secondary ‘costs’) where traditional dynamic programming

paradigm turns out to be infeasible or awkward.

Our primary focus will be on countable state space and ergodic (or ‘long run average’)
cost, for which the theory is the most elegant. This is done in the next section. Section 3
sketches extensions, first to other cost criteria and then to general state spaces. Section 4
considers multiobjective problems, such as the problem of control under constraints. Section

5 concludes with a brief discussion, followed by a ‘bibliographical note’.

1.2 Notation

We shall consider a controlled Markov chain X,,n > 0, taking values in a state space S.
Initially, we shall consider only countable S, without loss of generality identified with the
set {0,1,2,---}. With each ¢ € S is associated an action space U;, which is a copy of a fixed
compact metric space U. The transition probability P(j/i,u) fori,j € S, u € U; will denote
the probability of going from i to j, when action w is chosen. Thus P(j/i,u) € [0,1] Vi, j,u



with

S P(jfiu) = 1.

j
Note that there is no loss of generality in letting U;’s be replicas of a fixed compact metric
space U. If not, we could always set U = II;U; and replace P(j/i,-) by its composition with
the projection U — U; for each 4,j. Let {Z,} denote the U-valued control process. Thus

{X,} evolves as per

P(Xn+1 :j/Xm,Zmam < n) = P(]/Xn:Zn)an > 0.

We call {Z,} a stationary strategy if Z, = v(X,,) Vn for some measurable v : S — U,
and a stationary randomized strategy if for each n, 7, is conditionally independent of
Xy Zm,m < n, given X, and its regular conditional law given X,, is f(X,) for some mea-
surable f : S — P(U). (Here and elsewhere, P(X) for a Polish space X is the Polish
space of probability measures on X with the Prohorov topology. See, e.g., [12], Chapter
2.) By abuse of terminology, we may identify a stationary (resp., stationary randomized)
strategy with the corresponding map v(-) (resp., f(-)). Denote by Ilg (resp., IIgg) the set
of stationary (resp., stationary randomized) strategies. Note that under either, {X,} is a

time-homogeneous Markov chain.

Let £ : S x U — R be a continuous ‘running cost’ function, which we assume to be

bounded from below. The various ‘classical’ control problems then are:
(i) Finite horizon contol

Minimize E [Eﬁlzo k(X,, Zn)] for some N > 0.
(ii) Infinite horizon discounted cost control

Minimize E [30°, 5"k(Xn, Z,)] for some ‘disscount factor’ 8 € (0, 1).
(iii) Control up to exit time

Minimize E Y7 _o k(Xn, Z,)] for some 7 = min{n > 0 : X,, & O}, O being a prescribed
subset of S. (1 =0 if X, € O Vn.)

(iv) Ergodic or long run average cost control

Minimize ‘almost surely’

1 N-1
limsup — k( Xy, Zp). 1.1
mewp 5 3 k(X Z0) (1.0)



We shall focus primarily on (iv). Note that if f € IIgg is used and Xj is in the support
of an ergodic distribution 7 € P(S) for the corresponding time-homogeneous Markov chain
{X,}, then (1.1) will a.s. equal

> m(i)k(, £(i))

i

where k : S x P(U) — R is defined by
kiu) = [ kG, y)uldy), (i) € S x P(U).

This will be the starting point of our convex analytic formulation of (iv), which we take up

next.

2 Ergodic Control

2.1 Ergodic occupation measures

If the chain controlled by f € Ilgr has an invariant probability measure 7 € P(S), we

associate with the pair (7, f) the ergodic occupation measure 7ty defined by:

/SXUgdfrf =2 (i) /U g(i,y) £ (i, dy),

1€S

for g € Cp(S % U)(é space of bounded continuous maps S x U — R. Analogous notation will
be used throughout.) Let C be a countable subset of C,(S) satisfying : for any f € Cy(5),

there exist {g,} in the linear span of C such that g, — f in a bounded, pointwise fashion.

Lemma 2.1 7 satisfies : Vg € Cy(S5),
> g(@)ar({i},U) = / (ZP j/i,a)g )dﬂ'f
1€S JjES
Conversely, if n € P(S x U) satisfies
> g(in({i}, U) / (ZP j/i,a)g ) (2.1)
1€S JES
for g € C, then n = 7 for some (7, f).

Proof The first claim is simply the invariance of 7 under f. For the second, note that (2.1)
holds for all g € Cy(S) if it does so for g € C. Disintegrate n as n({i}, dy) = w (i) f (i, dy) with



m € P(S) and f : S — P(U) the appropriate regular conditional law defined 7-a.s. uniquely.
Identify f with an element of IIgp, whence (2.1) implies that 7 is invariant under it. The

claim follows. O

Often C = {Ij;;,i € S} is a convenient choice for C. Let G denote the set of all ergodic

occupation measures.
Lemma 2.2 G is closed convex in P(S x U).

Proof (2.1) is preserved under convergence in P(S x U). In view of Lemma 2.1, this implies
that G is closed. Let v; € G, 1 < j < n, with v;({i},dy) = 7;(i) f;(,dy) for f; € Ilgg and
m; € P(S) invariant under respective f;’s. Let a; € (0,1),1 < j < n, with 3;a; = 1. Set
v =73 ;a;v;, ™ = ;a;m;, and define f € Ilgg by:

£ dy) = z[ (zam )]f i, dy),

for i € support (), arbitrary otherwise. Then v({i}, dy) = 7 (i) f(i,dy), i € S. Now write
(2.1) separately for each n = v;, 1 < j < n, multiply it through by a;, and sum over j.

Rearranging terms, one recovers (2.1) for v. Thus v € G. a

We now establish a technical lemma for later use. Let v = 7y € G. Now suppose that

for some j € support (x) (say, j = 1), we have /(j,dy) = F(1, dy) = aga(dy) + (1 - a)pa(dy)
for some a € (0,1) and ¢ # @2 in P(U). Define f', f" € llgg by:

fi) = ') = f(i), i#1
)

Lemma 2.3 Both f’, f” above admit invariant probability measures containing ‘1’ in their

support.

Proof Changing f to f' or f” affects only the probabilities of transitions out of 1. Let
T,T'.T" denote the mean return times to 1 under f, f’, f” resp. Then clearly T = aT" +
(1—a)T". Since T < 00, 1 > a > 0, we have T", T" < oo, implying the claim. a

Let G, C G denote the set of extreme points of G.
Lemma 2.4 Every v € G, is of the form v = 7; for some f € Ilgg and 7 ergodic under f.

Proof Let v € G, with v({i},dy) = n(3)f(i,dy). For i & support (7), set f(i) = some
Dirac measure, without affecting v. Let ¢ € support (7), say, ¢ = 1. Suppose f(1,dy) =



ap1(dy) + (1 — a)pa(dy) for some a € (0,1), 1 # @2 in P(U). Define f', f" as above and
let 71, T3 be ergodic probability measures under f’, f” resp. containing 1 in their supports.
Pick b € (0,1) such that

a=bmr(1)/(br1(1) + (1 — b)ma(1)),

which is possible because 71 (1), m2(1) > 0. Let 7’ = by +(1—b)mq, v/ ({i}, dy) = 7'(3) f (4, dy).
A computation similar to that in Lemma 2.2 shows that v/ satisfies (2.1) and hence ' =

7 € G. Also, support (7') = support (m1)U support (m2) and for 4,5 € S,

| PU/iy)fGidy) = a [ P(i/i,y)f' G, dy)
+(1 = a) [ P(/i,9)1" G, dy). (2:2)

Since 7 (resp., my) is ergodic under f' (resp., f”), any two states in its support communicate
under f’ (resp., f”) and therefore under f in view of (2.2) above. Since 1 is in support (71)N
support (ms), it follows that support (7') is a single communicating class under f. Thus
7' is an ergodic probability measure under f. If 7 is also ergodic, we must have 7 = =’
and v = V. As in the proof of Lemma 2.2, one can then verify that v/ = by + (1 — b)v,
where vy ({i},dy) = m(i)f'(i,dy) and vo({i},dy) = ma(i)f"(i,dy). Since 0 < b < 1 and
vy # vy, v & G., a contradiction. Suppose 7 is not ergodic under f. Then m = er! + (1 —c)7?
for ¢ € (0,1) and 7', 7? € P(S) which are distinct invariant probability measures under
f. Then v = cv! + (1 — ¢)v? where v/({i},dy) = 7 (i) f(i,dy),i = 1,2 are clearly distinct
elements of G. Thus v ¢ G, a contradiction. So, (i) 7 must be ergodic under f, and (ii)

(2.2) is impossible, i.e., f(i,dy) is Dirac for ¢ € support (7). This completes the proof. O

Let S = S U {oco} denote the one point compactification of S and view S C S via the
natural embedding. Likewise, P(S x U) C P(S x U) via the natural embedding. Let G be
the closure of G in P(S x U) and G, the set of its extreme points. The statement of the

next lemma requires familiarity with Choquet’s theorem, which we recall here.

Let F be a Haussdorff locally convex topological vector space and X C FE a convex
compact metrizable subset. Given u € P(X), call z its barycenter if f(x) = [ fdu for all
continuous affine f : X — R.

Theorem 2.1 (Choquet) Each z € X is the barycenter of some p € P(X) supported on the

extreme points of X.

See [14], pp.140-141, for a proof. Metrizability of X ensures that the set of its extreme
points is F,, hence measurable ([14], p.138), whereas compactness of X ensures that it is

nonempty ([14], pp.105).



Lemma 2.5 G, C G, and any v € G is the barycenter of a probability measure on G,.

Proof Any v € G,\G, must be a convex combination of two distinct elements of G at least
one of which must assign strictly positive probability to {oc} x U. But then so will v, a
contradiction. Thus G, C G.. Now, if G is compact, G, # ¢ and G, = G,, whence the
second claim follows from Theorem 2.1. If not, apply the theorem to G. Then G, # ¢
and v is the barycenter of a probability measure ® on G,. If ®(G,\G,) > 0, we must have
v({oo} x U) > 0, a contradiction. Thus ®(G,) = 1. O

Finally, we have:

Lemma 2.6 Each v € G is of the form : For A C S x U Borel,

v(A) =" (AN (S xU))+ (1 =0 (AN ({0} x U)) (2.3)
with § € [0,1],7/ € G and V" € P({o0} x U).
Proof Clearly, (2.3) holds for some v/ € P(S x U). The claim is trivial for § = 0. For

§ =1,V =v € G. Thus let § € (0,1). Let v, € G,n > 1, be such that v, — v in G.
Suppose

Va(iy dy) = mn (1) fu(i dy),n > 1.
Then for j € S,
[ PG/ = v({5} x V), 0> 1.
Since {j} x U is both open and closed in S x U, we have
va({} x U) = v({5} x U) = 6/'({j} x U).
Letting S(N) ={0,1,...,N} C S,

liminf [ P(j/-,-)dv, > lim PG/, -)dv,

n—oo n—oo S(N)XU

= o PG/ )
_ 5/S(N)><U P(j/-,)dv'
= 6/P(j/-, v
as N — oo. Combining the two,
[ Pl dv < v ({5 < O).

Both sides add up to one when summed over j, so equality must hold for all j. Therefore
V' € G by Lemma 2.1. a

These lemmas form the backdrop for the convex programming problem we describe next.

7



2.2 The convex programming problem

Recall that if f € IIgg has an ergodic probability measure 7 and X, € support (7) a.s., then

the ergodic cost a.s. equals [ kd@y. This suggests the convex programming problem:
Minimize [ kdu over u € G.
Equivalently:
Minimize [ kdu over {y € P(S x U): (2.1) holds }.
This displays it as an infinite dimensional linear program.

Let p* € G be such that
a—lnf/kd,u</kdu <a+te

for some € > 0. (Note that such a p* is guarranteed to exist for € > 0.) Such a p* is said to

be e-optimal (or optimal if € = 0).
Lemma 2.7 For € > 0, if there is an e-optimal y* € GG, then there is an e-optimal 77 € G.

Proof By Choquet’s theorem, there exists a ® € P(G,) such that

aé/kdu*—/ (/kd,u) (dp) < a+e.

Thus for some 7 € support (®), a < [kdi < o+ €. a
We next consider two conditions under which an optimal p* exists.
Case 1: The near-monotone case

Call k(-, -) near-monotone if

lim inf min k(i, u) > a. (2.4)

1—00

Lemma 2.8 Under (2.4), an optimal p* € G, exists.

Proof Let u, € G,n > 1, be such that [ kdu, | a. Viewing G C P(S xU) as before, drop to
a subsequence if necessary and suppose that p, — 7 in P(S x U). Write 1z = oy’ + (1 —6) "
as in (2.3). Pick N > 1, € > 0 such that inf, k(i,u) > a+ € for i > N. For n > 1, define

kn(i,u) = k(i u)[{i < N +n}+ (a+€)l{i >N +n}.

8



Then V 7,
a> liggolf/kjdun - 5/kjdu’ (1 8)(ate).
Let j 1 oo on the right to obtain
a25/kd,u’+(1—6)(a+e) > da + (1 — 8)(a +¢).

Thus § =1 and [ kdy' = a. The claim now follows from Lemma 2.7. O
Case 2: The stable case

Here we assume G to be compact. Since u — [ kdy is lower semicontinuous, it attains a

minimum on G, hence, by Lemma 2.7, on G,.

We still need to show that the ‘optimum’ is an optimum with respect to all admissible

strategies. In ‘Case 1’, this is true:

Lemma 2.9 In the near-monotone case, under any admissible strategy,

n—1

hmlnfl Z k(Xm, Zm) > « as. (2.5)

n—oo n

To prove this, we introduce P(S x U)-valued process {v,} of ‘empirical measures’, defined
by

/fdz/n_ z_j F(Xoms Zn)s | € Co(X x U).

Lemma 2.10 v, — G a.s.

Proof Let C = {I;3,7 € S} C Cy(S). Then by the strong law of large number for martingales
([12]), pp. 53-54),

Zg ({1}, U) — / (ZP (4/i,a)g )) dv, —» 0 as. (2.6)

Since C is countable, this holds for all sample points outside a common zero probability
set. Fix one such sample point. Let 7 be a limit point of {v,} in P(S x U) and write
U =206/~ (1—0)V" with § € [0,1] and v/, " € P(S x U) supported on S x U and {oo} x U
resp. By (2.6), v/ satisfies (2.1) whenever § > 0. Identifying v/ with its restriction to S x U
by abuse of notation, we have v/ € G, i.e., 7 € G. O

Proof of Lemma 2.9 Consider a sample point for which Lemma 2.4 holds and let 7 be a

limit point of {v,} as above, say, vnq) — 7. Then for k,’s as in Lemma 2.8 above,

liminf/kdyn(l) > /kjdv > 5/kjd1/' F(1-)(ate), j> 1

l—00

9



Let 7 1T oo on the right to obtain

liminf | kdv,q) > 5/kdu' +(1-6)(a+e) >da+ (1—0)(a+e),

=0

in view of the preceding lemma. The claim follows. O

Case 2 needs more work. For simplicity, we assume that there is a single communicating
class under any f € Ilgg. Let F, = 0(Xp, Zm,m < n),n > 0, for an arbitrary admissible
control sequence {Z,} and the corresponding chain {X,}. Let 7(i) = min{n > 0: X,, =
i},i€S.

Lemma 2.11 For any {F,}-stopping time 7, the regular conditional law of X,,,,n > 0,
on {7 < oo} is a.s. the law of a controlled Markov chain on S with action space U and

transition probabilities P(-/-,-).

Proof This is a straighforward consequence of the easily verified fact
E[(Ix, cnpr=iy = P (i) Xrin, Zoin)) [ F2] =0 s,
on {1 < oo} forie S,n>0. O
Impose the additional condition:
(1) sup E[7(0)*/Xo = 0] < oo,
where the supremum is over all admissible control strategies.

Remark To see that (f) is not implied by stability alone, conside a chain on {(0,0), (0, 1),
(1,1),(0,2),(1,2),(2,2),(0,3),...} with transition probabilities: for j > 1,

P((6,5)/(i+1,5)) = 1,0 <1<,
P((O’O)/(O,j)) =1, 1
P((4,7)/(0,0)) = Cj~*, where C = (Zn_?’) .

n

Then E[7(0)/X, = 0] < oo, but E[7(0)?/X, = 0] = .
Lemma 2.12 Under (1), {v,} are a.s. tight in P(S x U).

Proof Define stopping times 79 = 0, 7,41 = min{m > 7, : X, = 0},n > 0. By (f) and
Lemma 2.11, it follows that

sup E[(Tp1 — 70)?] < 00.

10



By the strong law of large numbers for martingales (valid because of (1)), we then have, for
N>1,

1 n—1 [7Ti+1—1 Tig1—1
nh—gloﬁz Z I{XmZN} - F Z I{XmZN}/j:Ti =0 a.s.

1=0 \ M=T7; m=r;
Thus
1 n—1
limsupv,({N,N+1,...} xU) = limsup— Y_ Itx, >}
n—00 n—00 nmzo -

n—oo T i—0 m—r;

1n71 Ti+1—1
< limsup — Z Z Iix,.>m

n—1

= limsupl S E

n—oc T i—0

T7(0)—1
Z I{XmZN}/XO = O:| )

m=0

Ti+1—1

m=T;

<supF

where the supremum is over all admissible strategies and the last inequality holds by Lemma
2.12. Fix a sample point for which the foregoing holds true for all N > 1. A standard
dynamic programming argument allows us to replace the above supremum by the supremum

over Ilgg, which is turn equals

sup (E[T(O)/Xo = 0] (Z 7rf(i)>> :

fellsr i>N

with 7; = the unique invariant probability under f € IIgg. By (t), this is bounded by a
constant times sup ey, (Ziz NTf (z)) This can be made arbitrarily small by increasing N

in view of the compactness (hence tightness) of G. The claim follows. O
Corollary 2.1 For the stable case, under (t), (2.5) holds.

Proof This follows as in Lemma 2.9 on observing that, outside a zero probability set, any
limit point 7 = 6v' + (1 — §)v" of {v,,} as in Lemma 2.9 must have § = 1 by virtue of the

above lemma. O

3 Extensions

3.1 Other cost criteria

Recall the infinite horizon discounted cost control problem wherein we seek to minimize
E>y o 8™k(Xm, Zm)] for a discount factor § € (0,1). This is equivalent to minimizing

11



[ kdu for the ‘discounted occupation measure’ y € P(S x U) defined by

/hdu (1— [Z B (X, Zom )] he Cy(S xU).

m=0

In particular, if f € Ilgg is being used, one can disintegrate pu as p({i}, du) = = (i) f (3, du).
Note that 7 € P(S) is given by

(3 amp) (1)

where P(f) is the transition matrix corresponding to f and v the law of Xy. (Both 7 and v

are displayed here as row vectors.) From (3.1), it follows that 7 satisfies

=(1-B)v+ BrP(f). (3.2)

The corresponding p then satisfies
S HOA(U) = (L= A R0 + 85 [ HO)PGL b ). (33)

That 7 is the unique solution in P(S) to (3.2) for given v follows by iterating (3.2) to
recover (3.1). Similarly, a u € P(S x U) satisfying (3.3) can be disintegrated as u({i}, dy) =
7(i) f(i,dy) to deduce (3.2) from (3.3), whence it follows that (3.3) characterizes u as the
discounted occupation measure under the corresponding f € Ilgz and initial law v. An

immediate consequence of this is:

Lemma 3.1 For any admissible {Z,}, the corresponding discounted occupation measure is

also the discounted occupation measure for some f € Ilgg for the same initial law.

Proof Let v denote the initial law and 7 the corresponding discounted occupation measure

under {Z,}. Disintegrate 7 as

w({i},du) = v(i)pi(du),i € S,

and identify the map ® : i € S — ¢;(du) € P(U) with an element of IIgg, denoted by @

again. Let {X,} be a chain governed by ® and {Z,} the corresponding control sequence.
Let f € Cy(S x U) and define

9@)=E |3 " f (X, Zn) [ Xn =1i|, i€S.
m=0
Define Yy = g(Xp) and for n > 1,
n—1
Y” = Z Bmf(X’/m Zm) + /Bng(Xn)a
m=0

12



Wn = Ifp41 — Yn
= an(Xna Zn) + ﬂn_Hg(Xn-l—l) - Bng(Xn)

Then
E [zn: Bmf(Xm,Zm)] — E[g(Xo)]

= B[ W - 5" Bl (Xua)

m=0

- B[S BWL/x. 2 < m]] B[ (Xna)]

=FE i Bm [f(Xma Zm) + ﬁZP(J/Xma Zm)g(J) - g(Xm)]] - Bn+1E[g(Xm+1)]-

| m=0

Let n — oo to obtain

B |52 87 Z0) - Ela(Xo)

m=0

=E | > A" [f (X, Zu) + B3 PG/ Xun, Zin)g(3) — g(Xm)”

=E|> B /f(Xm,U)wxm(dU) +ﬂzg(j)/P(j/Xm,U)soxm(dU) —g(Xm)”

(by our construction of @)

because ¢(7) satisfies
9() = [ (i, w)pildn) + BY 9(9) [ Pi/iweidu), i€ S.

J

Therefore, if we choose the law of Xj to be v, we have
B[ S5 07 (X Z0)] = Blo(X0)
m=0
= E[g(Xo)]
=FE lz 5mf(5(m,5(m)] :
m=0

Multiplying both sides by (1 — ), the claim follows in view of our arbitrary choice of
feC(SxU). O

This allows us to restrict our attention to strategies in Ilgg a priori. Fix v € P(S).

Let uy denote the discounted occupation measure corresponding to f € Ilgg, written as
pr({i}, dy) = 7 (3) f(i,dy), and let G = {us : f € Ugr}.

13



Lemma 3.2 G is compact convex in P(S x U).

Proof That it is closed convex follows along the lines of Lemma 2.2. Compactness follows
from tightness, which is a straightforward consequence of the easily verified tightness of the
laws of [Xo, X1,...] in P(S*°) as {Z,} varies over all admissible strategies. (See, e.g., [9],
pp. 26-27). O

Now, let j € support (7;) be such that for some f’ # f” in Ilgg and a € (0, 1), f'(j) #
'), f'G) = f"(1) Vi# j and f(i) = af'(i) + (1 —a)f"(i) Vi. Since the passage from f to
f'or f” changes only the transition probabilities for leaving state j, one still has j € support
(ms) N support (mpr). This is the counterpart of Lemma 2.3, which allows us to establish

the following along the lines of Lemma 2.4.
Lemma 3.3 Extreme points of G' correspond to f € Ilgg.

The equivalent convex programming problem is to minimize [kdy over p € G = {u :

(3.3) holds }. As in the ‘stable case’ above, existence of an optimal f € IIgg is now ensured.

Similar treatments for the finite horizon and exit time problems are possible, with the
latter requiring a suitable additional hypothesis to ensure that the mean exit time is bounded.
There is, however, one important difference with the finite horizon problem: One has to
replace Ilgs by Ilyg £ the set of Markov strategies in Lemma 3.3 and the remark that
follows it, where a Markov strategy is a strategy of the form X,, = v(X,, n) for a measurable
v:Sx{0,1,...,N} = U. See [9], Chapter IV, for details.

An important caveat here is that in the foregoing, it is not obvious that an optimal
f € Ilgs (or II}ss as the case may be) can be found which is optimal regardless of the choice
of v. That it can indeed be falls out naturally from the traditional dynamic programming

approach, but not in the convex analytic formulation above.

There is also an alternative approach to these criteria that treats them as special cases
of the ergodic problem. For the discounted problem, (3.3) turns out to be the counterpart
of (2.1) for the ergodic control of a modified chain that is reset to law v at i.i.d. times {7;}
distributed geometrically with parameter 5. The intricacies of this approach do not seem
warranted in discrete time control problems, where the above treatment is much easier. In
continuous time problems like controlled diffusions, however, such embedding into ergodic
control for discounted, finite horizon and exit time problems have been effectively used in
5), [21].

Finally, note that 8 — 1 in (3.3) leads to (2.1). This leads to the conclusion that any
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limit point in P(S x U) of a sequence {,} of discounted occupation measures corresponding
to {B8(n)} C (0,1) with S(n) — 1, must be of the form §/ + (1 — §)v”, where v/ is an
ergodic occupation measure, v is supported on {oo} x U and § € [0,1]. In both near-
monotone and stable cases, one can then use familiar arguments (from section 2) to conclude
that as f — 1, optimal discounted occupation measures tend to the set of optimal ergodic
occupation measures. (The latter case also needs (}), which ensures that the laws of {X,,}
and therefore the discounted occupation measures, remain in a tight set for a prescribed
initial law, regardless of the choice of {Z,} and as § — 1.) A similar development is possible

for the finite horizon problem in the limit as the horizon becomes infinite.

3.2 General state spaces

In this section, we briefly outline extensions to more general, viz., Polish S, concentrating
on the ergodic control problem. Denote by p(z,u,dy) € P(S) the transition kernel for { X, }
with z € S,u € U. This is assumed to be continuous in (z,u). A ¢ € Ilgg will be given by a
probability kernel z € S — ¢(z,dy) € P(U), with the corresponding transition kernel given
by
pla.q.dy) 2 [ a(e,dwp(e,u, dy)

If n(dz) € P(S) is invariant under ¢, define the corresponding ergodic occupation measure
by

v(dz,du) = n(dz)q(z, du). (3.4)

The set G of ergodic occupation measures in P(S x U) is then characterized by the fact that
their disintegration (3.4) satisfies

/5 /U n(dz)q(x, du)p(z, u, dy) = n(dy). (3.5)

It is easy to deduce from this that G is closed. Also, if v;(dz, du) = n;(dz)q;(z, dy) € G,i =
1,2, then
v(dz,dy) = avi(dz, dy) + (1 — a)ve(dz, dy),a € (0, 1),

satisfies (3.5) with n(dz) = ani(dz) + (1 — a)na(dz) and

for A(z) = aGl(z). Thus G is convex.

Assume as before that £ : S x U — R is continuous and bounded from below. The
definition of ‘stable case’ above extends to general S in the obvious manner. As for near-

monotonicity, the definition can be retained if S is locally compact. If not, one must allow
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k(-,-) to be extended real valued and suppose that the set D, = {z : inf, k(z,a) < r} is
compact for each r > 0. The reason 4+0o must be allowed as a value for k(-,-) is as follows:
By Baire category theorem, S that is not locally compact cannot be o-compact and thus

cannot equal U, D,.

Under either condition, a cost-minimizing sequence in GG can be shown to be relatively
sequentially compact and one can mimick the arguments of section 2 to conclude that the

map p € G — [ kdyp attains its minimum on G, hence on G..

If S is not compact but locally compact, we can embed it homeorphically into its one
point compactification S = S U {oo}. Define empirical measures v, € P(S x U) by

n—1

1
Un(A X B) = - Z Iix,eazmeBy, 121,

m=0
where A, B are Borel in S,U resp. Let G = {u € P(SxU) : p = apy + (1 — a)us for some
a € [0,1], m € G, p2({oc} x A) = 1}.

Lemma 3.4 v, — G a.s.

This is proved as in Lemma 2.10, with C any countable convergence determining class in
Cy(S) (see [12], Chapter 2). For the near-monotone case, Lemma 2.2 now follows as before.
The stable case is harder. Assume S to be locally compact as before and let By, By be

concentric closed balls of radii 7y < ro resp. in S. Define

oy = min{m > 0: X,, € B§},
T = mln{m > 01 Xm € Bl},
Opy1 = min{m > 7, : X,, € B§},

Tpe1 = min{m > o, : X;;, € By},

for n > 1. Assume that for any open B C S, P(U,>1{X,, € B}) = 1 regardless of the initial
condition or control strategy. (This is a ‘recurrence’ condition.) Then 7,,0, < co a.s. V n.

The counterpart of () now is

sup sup E[r7 /X, = 7] < o0, (3.6)
rxeB; 11

where the first supremum is over II £ the set of all control strategies.

Let Dy, N > 1, be a concentric family of closed balls in S with radii N > 1 respectively.

Now mimick the proof of Lemma 2.12 to conclude that

T1
limsup v,(Dy) < sup sup E Z Iix,.¢pny/Xo = x| as.

n—oo z€B; 11 m=0
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= sup supE | Y Iix,.epx}/Xo=1 (3.7)

z€B1 llggr m=0

where the equality follows by a standard dynamic programming argument. Now let f,, —
foo In g, Ty — Zoo in By and let X", n > 1, denote the chain governed by f,, with
X" = Zpm,m = 1,2,---,00. Standard arguments along the lines of [9], pp. 26-28, show
that {X*} — {X:°} in law. By Skorohod’s theorem ([12], pp.23-24), we may view these
processes as being defined on a common probability space and the convergence as being a.s.

Define stopping times {77,,n > 1}, m > 1, correspondingly.

Then N -
1 1
liminf }  Iixpgpyy > D Ixpeny)
£=0 £=0
a.s. and therefore
" T
limnl)ic,%fE ZI{XéngDN} > F ZI{XEOQDN}] .
£=0 £=0

Thus the map
(z, f) — Ej lz Iixpgnyy/Xo = 90] ;
m=0
with E¢[-] denoting the expectation under f € Ilgg, is lower semicontinuous. As N 1 oo,
the r.h.s. | 0. By Dini’s theorem, this convergence is uniform in (z, f) € By x IIgg. Thus
the r.h.s. of (3.7) can be made arbitrarily small by choosing N sufficiently large. We have

proved:
Lemma 3.5 Under (3.6), {v,} remains tight a.s. under arbitrary control strategies.
Corollary 3.1 The conclusion of Lemma 2.10 holds in the present set-up.

This follows exactly as for countable S in view of the foregoing. Given that the optimum,
when it exists, is attained on G, = the set of extreme points of (G, we shall characterize G,
next, albeit for a special case. We assume in addition to local compactness the following
condition: There exists a o-finite nonnegative measure A on S such that p(z,u,dy) <<
A(dy) ¥ z,u and furthermore, if ¢(x, u, y) denote the corresponding density (i.e., p(z, u, dy) =
o(z,u,y)\(dy)), then (-, -, -) is continuous, and {p(z,u,-) : x € S, u € U} bounded
equicontinuous and bounded away from zero from below uniformly an compacts. (These
conditions are satisfied, e.g., for several stochastic systems in R¢ with additive Gaussian

white noise).

This has the following important consequence: If 7 is an invariant probability distribution
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under q € Ilgg, then
n(dy) = [ n(dw)ae, du)e(e,u, y)dy,

implying that n has a density w.r.t. A given by

v() = [ n(dw)a(, du)p(a,u,y) > 0.

Then any two ergodic probability distributions under ¢ are mutually absolutely continuous,
hence identical. That is, if ¢ admits an invariant probability distribution, it is unique and

the corresponding {X,} ergodic. Suppose now that G is compact.

Lemma 3.6 Q £ {n € P(S) : n invariant under some ¢ € IIgg} is compact in the total

variation norm topology.

Proof Let 0, € @ be invariant under ¢, € llgs,n > 1. Then v,(dz, dy) 2 N (dx) g, (z, dy) €
G Vn. Since G is compact, v, — Vs, (say) in P(S x U) along a subsequence, denoted by {v,,}
again by abuse of notation. Then 7, — 7y in P(S). Let 1, = dn,/d\ forn =1,2,...,00
Under our assumptions, {#,(-)} are equicontinuous and bounded. By the Arzela-Ascoli
theorem, we may drop to a subsequence if necessary and suppose that 1, (-) — 9(-) in C(S).
Thus for compactly supported f € C(S),

[ 1))@y — [ Fw)dy)AEy).

But
[ 1 @A @y) = [ fann — [ fdne
Thus 9 = 1)s and ¥, — Vs in C(S). By Scheffe’s theorem ([12], pp.26), 7, — 7o in the

total variation norm. This completes the proof. O

We shall now characterize the set GG, for the stable case, i.e., when all f € Ilgg are stable

and the corresponding G compact. Let ¢; € Ilgg,t = 0,1, 2, be such that

QO(xa dy) - a"h(xa dy) + (1 - a)QQ(‘x: dy)a q1 7é q2,

with a € (0,1). Let n;,v4;,1 = 0,1,2, denote the corresponding invariant distributions and
ergodic occupation measures resp., with ¢; = dn;/d)\, i = 0,1,2. Finally, let Q = {¢): S —
R : ¢ = dn/dX for some n € Q}.

Lemma 3.7 vy ¢ G..

Proof By setting ¢;(x, dy) = qo(x,dy),i = 1,2, for  outside a ball B C S of a sufficiently
large radius R > 0, we may assume without loss of generality that ¢;(z, dy) = ¢2(z, dy) for
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z & Bg. Let § € Igg, with 7j(dz) = ¢(z)A(dz) the corresponding invariant measure and
v(dz,dy) = n(dx)§(z, dy) the corresponding ergodic occupation measure. Define ¢ € Ilgg by

_ b (@)qi (=, dy) + (1 — b)Y(z)d(z, dy)
) ) + (1 D) )

with b € (0,1). In order that this indeed define a § € Ilgg, b must be chosen so that

b ()
b (@) + (L= b))~ TP

(For x & Bg, qo(z) = ¢1(x) and any choice of b will do.) For z € Bg, such a choice of b is

possible provided
inf  {y(z): € Q} >0,

IIsr,x€BRr

This is indeed so by our assumptions: If not, we have ¢, € Q,z, € Bgr,n > 1, with
n(z,) — 0. By dropping to a subsequence if necessary and using the Arzela-Ascoli theorem,
let ¥, () = ¥oo(-) in C(S), 2, — Zoo in Bg. Then 9o € Q, implying 1os(24) > 0, a
contradiction.Thus we can choose a b € (0, 1) as desired. Fix one such b. Then (3.8) defines
a map § — ¢, or equivalently, 77 € Q — 1 € @, 7 being the invariant distribution under 4.
This map is continuous in the total variation norm: If ,(dz) = 1, (dz)\(dx) — Nwo(dx) =
Yoo () A(dx) in total variation, ¢, (-) — Y(-) in C(S) as in the proof of Lemma 3.6. Letting
¥, denote the image of 9,, under the above map for n = 1,2, ..., 0o, it is easily verified from
(3.8) that Vo — 1o pointwise and hence, by Scheffe’s theorem, Qﬁn(a:)/\(dx) — e (z)A(dz) in
total variation. Since () is compact convex, Schauder fixed point theorem guarantees a fixed

point for this map. That is, there exists a ¢* € IIgg with associated invariant distribution
n*(dz) = ¥*(x)\(dz) such that

) ~ b(@)q(z, dy) + (1 = b)y* (z)q" (z, dy)
4 (e, dy) = b (@) + (1= b))

Since qo # q1, o # ¢*. It is easily deduced from this that for v*(dz, dy) = n*(dz)q*(x, dy),

vo =bvy + (1 = b)v*, v # 7,
ie., 1y ¢ G.. O

If G is not compact, we need the following additional condition, called the ‘stability under
local perturbations’ If ¢(x,dy), ¢ (z,dy) € Ilsg agree for x outside a bounded subset of S
and one of them is stable, so is the other. Note that G is closed for the same reasons as
before. Let ¢; € Ilgg,7 = 0, 1,2, be as before with v;,7 = 0, 1, 2, defined correspondingly as

before.
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Theroem 3.1 vy ¢ Ge.

The proof is essentially the same as before : Recall from the proof of Theorem 3.1 that
for any stable ¢ € Ilgg, it suffices to look at the subset of G corresponding to the ergodic
occupation measures for ¢ € Ilgr that agree with ¢ outside a ball Bg of radius R > 0
sufficiently large. By our assumption of ‘stability under local perturbations’, all such ¢ are

stable, so the same proof works.

Corollary 3.2 The conclusion of Lemma 3.3 holds under the conditions of Lemma 3.7, 3.8.

4 Multiobjective problems

4.1 Constrained control: preliminaries

The first mutliobjective problem we consider is that of minimizing one cost with other
secondary costs being required to satisfy prescribed bounds. Again we stick to the ‘ergodic’
set up of section 2 and shall use the notation therein. We start with some convex analytic

preliminaries.

Recall the set G of ergodic occupation measures. View it as a subset of the space of finite
signed measures on S. Let H be its intersection with m > 1 closed half spaces thereof. Then
H is closed convex. Let H, be the set of its extreme points. The following is a special case
of a result of Dubins [17].

Lemma 4.1 Any vy € H, can be expressed as a convex combination of & points in G, for
some k <m + 1.

Proof Suppose G is compact. Suppose the claim is false and 1 is expressible as a convex
combination of £ = m + 2 points in G, but not less. (A similar proof works for higher £.)
Then vy lies in the interior of an (m + 2)-simplex B formed by these points in G,. Let M =
the (m+ 1)-dimensional affine space (i.e., translate of a linear subspace) generated by B, and
C an open ball in M centered at vy and contained in the interior of B. Then C C B C G.
Now consider the intersections with M of the m hyperplanes that form the boundaries of
the half spaces defining H. Since at most m of them can intersect at a time, any intersection
with M of the intersections of these hyperplanes must have a codimension of at most m in
M and thus cannot have a corner in the interior of C. Thus vy ¢ H,., a contradition. For

noncompact G, argue as above with G, in place of G, and observe that if v is a strict convex
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combination of points in G, the latter must be in G, because 1y would otherwise assign a

strictly positive probability to {oo} x U, a contradiction. The rest is as before.

In case vy cannot be expressed as a convex combination of finitely many extreme points
of GG, a simple adaptation of the above proof works. We claim that for any j > 1, we can find
j linearly independent finite line segments in G which have v, at their center. If this were
not so for, say, j = jo + 1, then vy would be in a jo-dimensional face G’ of G and therefore
expressible as a convex combiantion of jo+ 1 extreme points of G’ by Caratheodory’s theorem
([14], p.106), therefore of G. This goes against the hypothesis, proving the claim. Now take
7 > m + 2, consider the polytope generated by the end points of these line segments, and

argue as before. O

Write 1 as
vo({i}, dy) = mo (i) f (1, du), i € S,

corresponding of f € Ilgg. By the above lemma, v is a linear combination of vy, -- -, v, k <
m + 1, in G, with strictly positive weights. Letting d,(du) denote the Dirac measure at z,

we may disintegrate v;’s as
Vj({i}vdu) = Trj(i)éfij (du),z € S: 1<y < k.

By abuse of notation, let &; : © — d¢,; denote the corresponding stationary strategy. Also,
by the ergodic decomposition of the chain, 7o = > ; a;7; where a; € [0,1] with Y a; =1
and {7;} are ergodic invariant probability measure under f. In particular, 7;’s have disjoint

supports. We denote these by {S;} respectively.
Lemma 4.2 For 1 < j <k, support (7;) C S; for some i.

Proof If not, two states in two distinct S;’s would communicate with each other under the

stationary policy &;, hence under f(cf. the proof of Lemma 2.4), a contradiction. O

For i € S with mo() > 0, let N(i) = {u € U : u = §; for some j,1 < j < k, satisfying
m;(i) > 0}. Let n(i) = |[N(7)| — 1. Then for each ¢, n(¢) is the ‘number of randomizations at

1’ for f. To understand this terminology, observe that f; will be of the form
. [N (@)
[l dy) = > | aymy()&i, dy)/ Z an,( (4.1)
=1

where (i, dy) are Dirac (cf. proof of Lemma 2.2) with ergodic distributions 7; and {a}}
satisfy a; > 0, 3, a; = 1. Thus [N(z)| = 2 corresponds to randomizing between two choices,

i.e., a single randomization, and so on. By convention, n(i) = 0 if N (i) = ¢.
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Pick 7 € S (if any) such that mo(z) > 0,n(i) > 0. Let N(3) = {u(1),u(2), -+, u(n(i)+1)}.
Then f (i, dy) is a strict convex combination of the Dirac measures at u(j)’s. Define ¥% € Ilgg

by:

W0, dy) = f(C,dy), £+,
= 0u(j)(dy), £ =1,

Lemma 4.3 v is a strict convex combination of distinct elements ji1, - - -, fin(s)41 of G, where
p; is an ergodic occupation measure under ¢* for each j. Furthermore, py, - - -, Hn(i)+1 form

the corners of an (n(i) 4+ 1) simplex.

Proof If 7 is ergodic, the first claim follows by iterating the argument used in the proof of
Lemma 2.4. If not, pick the 7, for which 7,(i) > 0 and apply the same argument. Suppose
the second claim is false. Then 1 can be expressed as a strict convex combination of elements
from {11, -, ini)41} in at least two distinct ways. But then (4.1) applied to the present
situation allows us to write a finitely supported probability measure f (i, dy) as a strict convex
combination of distinct Dirac measures in two different ways, an impossibility. The claim

follows. =
Call this (n(i) 4+ 1)-simplex the ‘perturbution simplex’ at i, denoted by Q(7).
Lemma 4.4 Let 14 # vs in Q(4), with
vi({l},du) = mj(l)pu(du), 1€S,j=1,2.
Let mj(l) > 0. Then ¢y, = g for I # i and ¢1; # .

Proof The claim for | # i is immediate from (4.1) and our definition of Q(7). That ¢1; # pg
follows from (4.1) and the easily verifiable fact: for n > 1,bq,...,b, > 0, the map

s, ... an) € {[z1,. 2] 1 0<2; <1V 4, 2 =1} —

[a1b1/c, asbo/c, ..., a,b,/c] € (0,1)",
with ¢ = >77' ; a;b;, is one-one. O

Let Y (i) = the n(i)-dimensional affine space, in the space of finite signed measures on

S x U, spanned by Q(7) for i as above.
Lemma 4.5 If j # i satisfies mo(j) > 0, n(j) > 0, then Y (3) N Y (5) = {wo}-
Proof Suppose not. Then there must exist a 7 # vy, 7 € Qi) N Q(j). Let Z be the line
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segment, joining vo, 7. Then Z C Q1) N Q(7). Write a typical v € Z as
W({1}, du) = 7(l)u(du) L € 5.

Note that for v # 7 in Z, support (7) C support (mp). As v moves along Z, Lemma 4.4
and the fact that Z C Q(¢) implies ¢;(-) = f(4,) all along. Interchange the roles of i, j to
conclude ¢;(-) = f(i,-) all along, a contradiction to 7 # vy in view of Lemma 4.4. The claim

follows. O

Lemma 4.6 Let i1, 49, . . ., 4,41 be different states in S with n(i;) > Oforall j and oy, @z, ..., . €
[0,1] with >7_; @; = 1. Then

{01Q(1) + 2Q(2) + - - - + Q(r)} N Qir11) = {wo}-
Proof For r = 1, this reduces to the preceding lemma. The general claim follows by induction
using an argument similar to that above at each state. O
Let L(i) = Y (i) — v when n(i) > 0. (That is, L(7) is Y (i) translated by vy.)
Corollary 4.1 dim(L(i1) + --- + L(i,)) = >y _1 dim(L(iy)).

This is immediate from the preceding lemma. Thus L(i1) + L(i3) + - - - + L(3,) is a direct

sum.
Lemma 4.7 Y, n(i) < m.

Proof If not, for some {i1,...,4} C S, Z§:1 n(i¢) > m + 1. By the foregoing, corners
of Q(i1),...,Q(i;) together form a polytope with >t _, n(i,) > m + 1 dimensional relative

interior that contains 5. Now argue as in the proof of Lemma 4.1 to get a contradiction.

O
This completes the convex analytic preliminaries for the constrained control problem.
4.2 Constrained control : main results
The constrained control problem is
Minimize / kodv (4.2)
subject to
VGG,BiS/kidygai,lgigm, (4.3)
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where k; : S x U — [0,00) are prescribed continuous functions and «;, 8; prescribed non-
negative scalars for 0 < i <m. Let H ={v € G: ; < [kidv < ;, 1 < i < m}, assumed
nonempty. Also assume that

A .
ap = inf [ kodv < oo.
vEH

As before, we consider two cases:
Case 1: Near-monotone case

B;=0Vi, and liminfi%fki(j, u) > 0;,0<i<m

j—o0

Case 2: Stable case
G is compact and H closed, hence compact.

Since the upper inequality in (4.3) is preserved anyway under convergence in P(S x U), the
closedness of H is the requirement that the lower inequality also do so. This is the case, e.g.,

if B;’s are zero or if k;’s are bounded, 1 < i < m.
Lemma 4.8. In either case, the minimization problem above has a solution in H,.

Proof Existence of a minimizer in H follows by its compactness in Case 2 and as in Lemma
2.8 in Case 1: One repeats those arguments for each k; to conclude that if {v,} C H satisfy
[ kodvy, | g, then {v,} is tight and every limit point v thereof satisfies.

/koduzao, /kjdz/gaj, 1<j5<m.

The existence of a minimizer in H, then follows from Choquet’s theorem as in Lemma 2.7.
O

Suppose we revert to our original ‘almost sure’ formulation of the ergodic control problem
and consider the constrained version thereof. That is, we seek to minimize almost surely,

over all admissible {Z,}, the quantity

n—1

1
lim sup — Z ko(Xmy Zm),

n—oo N m=0

subject to: for 1 <i < m,

n—1

1
lim sup — Z ki( X, Zm) < a; a.s.,

n—oo N m=0

1n—1
iminf = S ki(Xm, Zm) > i a.s..
im in an:O ( ) > B as
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As in section 2, this can be reduced to the problem (4.2)-(4.3) without any loss of generality
by using our characterization of limit points of empirical measures in Lemma 2.10, with the
proviso that we add condition (1) of section 2 to ‘Case 2’ above. We refer to this modification

as ‘Case 2".

Theorem 4.1 In both Case 1 and Case 2/, there exists an optimal f € Ilgg that requires at
most m randomizations. Furthermore, if H has a nonempty interior in GG, then these exist
A1,y Aoy > 0 such that for all v € G and ny,- -+, m9, > 0, we have : If vy € H, is the

optimal point, then
[ kodv + S Al — [ k) + S A ( [ kv - ,3,-)
=1 =1
> [ oy + 3" Mo — [ Kidv) + 3 A ([ K )
=1 =1
> /kodl/o + i": i (o — //fz'dl/o) + i”: Nm-+i (/ kidvy — 51') :
=1 =1

Proof The existence of an optimal f € H, is argued above. That it requires at most m
randomizations follows from Lemma 4.7 and the observation that only one of the inequalities
in (4.3) can be active at a time for each i (except in the degenerate case a; = 3;, which is
handled analogously). The last claim follows from standard Lagrange multiplier theory ([22],
pp.216-219). O

A similar treatment is possible for constrained problems with other (e.g., discounted)
cost criteria. An important difference there is the role played by the initial distribution,
usually held fixed, which cannot be wished away. Any claims of optimality will be relative

to a specific initial distribution (or more generally, a convex compact set thereof).

4.3 A general multiobjective problem

The foregoing had one ‘primary’ cost function kg, whose average was to be minimized sub-
ject to constraints on several ‘secondary’ costs ki,---,k,,. In traditional ‘multiobjective’
framework, one wants to treat them on a comparable footing. Since all of them cannot in
general be minimized simultaneously, one seeks a ‘Pareto point’, defined next. We stick to

the ergodic control framework of the preceding section.

Let k(v) = [[ kodv, - - -, [ kmdr] € R™ denote the cost vector corresponding to v € G
and define W = {k(v) : v € G}, which will be a closed convex subset of R™t!. On W, define
a partial order ‘<’ by : = [zo, -+, ZTm] < Y = [Yo,- -, Ym] If 2; < y; for all 4, with a strict

25



inequality for at least one 7. Call x* € W a Pareto point if there is no z € W for which
z < z*, It is easy to see that a minimizer of Y}/ A\;x; over & = [zg,--,z,] € W for any
choice of \; > 0, 0 < i < m, will be a Pareto point. In fact, if W is a polytope (i.e., convex
hull of finitely many extreme points), then all Pareto points can be obtained thus. By our
characterizaton of G, it follows that if S and U are finite, then G and hence W will have
finitely many extreme points and the foregoing remark applies. More generally, a weaker
claim holds, viz., the Pareto points obtained thus are dense in the set of all Pareto points.

All this is a consequence of the celebrated Arrow-Barankin-Blackwell theorem [4].

More generally, Pareto points can be obtained by minimizing a ‘utility function’ U :
W — R, which is any continuous function with the property : U(y) < U(z) wherever y < z.
The function z — >; \;z; with a; > 0 Vi is just a special case of this. Another important
case is as follows : Let k* = [ming [ kodv, - - -, ming [ k,,dv] € R™"! the so called ‘ideal
point’. The nontrivial case is k* ¢ W. Let k € W be the unique point in W such that
||k* — k|| = mingew ||k* — k||, corresponding to U(x) = ||z — k*||. It is easy to see that this

will be a Pareto point. Finding & is an abstract quadratic programming problem.

There is no reason why & should correspond to any element of G,. The following ‘approxi-
mation theorem’, however, justifies a search for good strategies among those that correspond

to a randomization between finitely many points of GG,. Assume that ko, - - -, k,,, are bounded.

Theroem 4.2 For any v € G,n > 1, there exists a ™ € G such that v" is a convex
combination of at most n points of G, and
~ S 1
lkw) = kel =0 ().
Proof Let v be the barycenter of ® € P(G,) and {£(7)} i.i.d. G.-valued random variables

with law ®. Let Y (i) = [[ kod&(0), ..., [ kmd€(i)],4 > 1. Then {Y (i)} are i.i.d. with mean
k(v) and

E

n2

=S¥ - hw)

]:iwwmwm—MMﬂzg

for a constant C > 0. Thus for at least one sample point,

2

C
< —.
n

LY - k)

The claim follows. O

Note, however, that this argument is not a constructive argument.
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5 Concluding Remarks

The foregoing gives a reasonably self-contained account of the key aspects of the convex
analytic approach to Markov decision processes. Nevertheless, it is by no means exhaustive.

We briefly comment upon few important aspects thereof that were not addressed above.
(i) Dual problems

The ‘dual’ linear program to the infinite dimensional linear program over occupation
measures establishes a link with the traditional dynamic programming approach. To see
how this comes by, we first recall the relevant results from the theory of infinite dimensional

linear programming [3].

Two topological vector spaces X,Y are said to form a dual pair if there exists a bilinear
form (-,-) : X XY — R such that the functions x — (z, y) for y € Y separate points of X and
the functions y — (z, y) for x € X separate points of Y. Endow X with the coarsest topology
required to render the former family of maps continuous, and Y with the dual topology. Let
P Dbe the positive cone in X and P* C Y the dual cone: P*={y €Y : (z,y) > 0,z € P}.

Let Z,W be another dual pair topologized in a similar manner and F' : X — Z a
continuous linear map. Define F* : W — X* by (Fz,w) = (z, F*w),z € X,w € W. The
primal LP problem is:

Minimize (z,c) s.t. Fz=0b, z € P,

with b € Z,c € Y prescribed. Let o denote the infimum of (x, ¢) subject to these constraints.

The dual problem is
Max (b,w) s.t. —F'z+ceP*, weW.

Let o/ denote the supremum of (b, w) subject to these constraints. It is known that a > «/.
Let C = {x € P: Fr = b}, D = {(Fz,(x,c)) : © € P}. The following results gives

conditions for the absence of a ‘duality gap’.

Theorem 5.1 ([3], p.53) If C' # ¢, D is closed and z — (z,c) attains its minimum on C,

then a = /.

Applying this to the linear programming formulation of ergodic control in section II, the

dual problem and Theorem 5.1 lead to the following characterization of the optimal cost a:

Corollary 5.1 o = sup {a : min, (k(z,u) + f(3) = X5 P(j/i,u)f(j)) >a,f:S— R}.
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Likewise, dualising the primal problem for discounted cost problem leads, in view of The-

orem 5.1, to the following characterization of the ‘value function’ of dynamic programming,

defined as

V(Z) - admissilgclefcontrolsE mz:oﬁ k(XTW Zm)/XO =1],? € S

Corollary 5.2 V(i) = sup{ f(7) : infy (k(5,u) — f(i) +BXZ; P(j/i,u)f(j)) >0, f:S — R}.

Similar results are possible for the finite horizon and exit time problems, as well as for

general state spaces. See [20] for an extensive account of the latter.
(ii) Computational aspects

An important motivation for linear /convex programming approaches has been the prospect
of using to advantage the computational machinery of these fields. Linear programming has
always been a ‘third’ approach to computation in Markov decision processes, after value
and policy iteration. Despite the proven convergence results and ease of formulation for the
latter, linear programming remains an attractive alternative because it facilitates the use
of commercial LP packages which are primed to exploit any extra structure the problem
may have to offer. For constrained problems, dynamic programming approach proves quite
awkward, while in the linear programming approach the constraints merely translate into ad-
ditional constraints for the linear program. See [24] for an extensive account of the traditional
linear programming algorithms for Markov decision processes and [1] for the corresponding

development for constrained problems.
(iii) Mixed problems

There has been some interest in Markov decision processes with mixed criteria, such as

criteria that combine ergodic and discounted costs. (See, e.g., [18].)
(iv) Game theoretic formulations

An interesting formulation of multiobjective problem under uncertainty treats it as a
game against an antagonist, taking the ‘worst case’ approach, and seeks to drive the vector
ergodic cost to a prescribed set of ‘acceptable values’ [27]. Though similar in spirit to section

4 above, this approach differs significantly in the kind of techniques used.

We conclude with a bibliographical note. Giving an extensive, even representative bib-
liography is a major task I do not wish to undertake. The following therefore is confined

only to a few key antecedents and the immediate resources for the material presented here.
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Further references can be found in [1], [9], [20], [24].

The convex/linear programming approach, as already mentioned, goes back to Manne
[23]. The approach to ergodic control taken in section 2 first appeared in [7] for the irreducible
case. Related results also appear in [2]. The fully general case presented here appears in
[11].

The corresponding results for other cost criteria are from [6], [9]. For the general state
space case, the treatment that appears here is new in principle, but closely mimicks the

corresponding theory for controlled diffusions developed in [10], [13].

The constrained control problem dates back to [15], [16]. The convex analytic approch
presented here is from [11], which improves upon earlier results from [8], [9], [25]. The ‘sam-
ple path’ or ‘a.s.” variant was studied in [26], though our treatment is different. See [18] for
results in the discounted cost framework. The multiobjective problem studied in subsection
4.2 is from [19], except for Theorem 4.2 which is new. Reference [19] also considers compu-
tational issues. Interesting classes of Pareto points have been identified in the discounted

case in [18].
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