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Chapter 1

Invariant Gambling
Problems and Markov
Decision Processes



Abstract

Markov decision problems can be viewed as gambling problems that are in-
variant under the action of a group or semi-group. It is shown that invariant
stationary plans are almost surely adequate for a leavable, measurable, in-
variant gambling problem with a nonnegative utility function and a finite
optimal reward function. This generalizes results about stationary plans for
positive Markov decision models as well as measurable gambling problems.



1.1 Introduction

This paper introduces the notion of a gambling problem that is invariant,
in a sense to be specified below, under the action of a group or a semigroup
of transformations.

Our primary stimulus has been to understand more fully the relationship
of Markov decision processes to gambling theory. It has long been known
that these two theories are closely related (cf. Chapter 12 of Dubins and
Savage (1965)) and perhaps each contains the other. However, it has not
been possible to translate theorems about stationary plans, for example, di-
rectly from one theory to the other. It will be explained below how Markov
decision processes may be viewed as invariant gambling problems. Subse-
quent sections will show how stationarity results in gambling theory (Dubins
and Sudderth (1979)) are extended to invariant gambling problems and , in
particular, to Markov decision problems. Our main interest here is in the
reward structures. A comparative study of the measurable structures of the
two theories was made by Blackwell (1976).

A secondary stimulus to us is the fact that there are a number of gam-
bling problems which possess a natural group theoretic structure. Group
invariance techniques have found many applications in statistical decision
theory (cf. Eaton (1989) and the references therein) and could prove useful
in Markov decision theory as well.

We will begin with a review of measurable gambling theory, and then
introduce invariance.

1.2 Measurable Gambling Problems

Let F be a Borel set, that is, a Borel subset of a complete separable metric
space. Let P(F) be the set of probability measures on the Borel sigma-field
of subsets of F. Then P(F'), equipped with its customary weak topology,
is again a Borel set. A gambling house on F' is a subset I' of F' x P(F)
such that each section I'(z) of ' at x € F is nonempty. A strategy o is
a sequence 0g,01,... such that op € P(F), and , for each n > 1, o, is a
universally measurable function from X" into P(F'). A strategy is available
in T at x if o9 € T'(x) and oy, (x1, 22, ... ,2,) € T'(z,) for every n > 1 and
T1,%2,...,Ty € X.

Each strategy ¢ determines a unique probability measure, also denoted
by o, on the Borel subsets of the history space H = FY_ where N is the
set of positive integers and H is given the product topology. Let X1, Xo, ...



be the coordinate process on H; then, under the probability measure o,
X; has distribution oy and , for n > 1, X,, 11 has conditional distribution
on(x1, T2, ... ,xy) given X7 = x1, Xo = xo,... , X;, = xp.

A measurable gambling problem is a triple (F,T",u), where F, the fortune
space, is a nonempty Borel set, I' is a gambling house on F' which is an
analytic subset of F' x P(F'), and wu, the utility function, is upper analytic
which means that {z : u(x) > a} is an analytic subset of F' for every real a.
Such structures with I" and u both Borel were introduced by Strauch (1967);
the extension to analytic I' and upper analytic u is due to Meyer and Traki
(1973).

In the theory of gambling (Dubins and Savage (1965)) there are two nat-
ural approaches to a gambling problem. In leavable problems, the gambler
is allowed to stop playing at any time, whereas in nonleavable problems, the
gambler is compelled to continue playing forever.

Consider first a leavable problem and define a stop rule ¢ to be a uni-
versally measurable function from H into {0,1,...} such that whenever
t(h) = k and h and I/ agree in their first k& coordinates, then t(h') = k. A
gambler with initial fortune x selects a strategy o available at x and a stop
rule ¢. The pair m = (o,t) is a policy available at z. The expected reward
to a gambler who selects the policy 7 is

u(m) = [ u(x)do,

where Xg = x. We will usually assume in this paper that u is nonnegative
and we will always assume u() is well-defined and finite for all available .
The optimal reward function for this leavable problem is

U(z) = supu(r),

where the supremum is taken over all policies 7 available at x.

It is also of interest to consider how well the gambler can do when playing
time is restricted to at most n days, and we define Uy, (z) = supu(w) over
all policies 7 = (o,t) available at = such that t < n for positive integers n
and set Uy = u. The functions U,, can be calculated by backward induction
as we will now explain. First define the operator S by

(56)(@) =sup{ [ 9y : 7 € Dla) (1)

for universally measurable functions ¢ on X such that [ ¢ dy is well-defined
for all available «. Then

Un—|—1:(SUn)vua ’I’LZO,l,... ) (12)



where a V b is the maximum of a and b. For ¢ upper analytic, S¢ is also
(Meyer and Traki (1973); see also Dubins and Sudderth (1979)). Thus every
U, is upper analytic. Furthermore,

U = lim U,. (1.3)

(See Section 2.15 of Dubins and Savage (1965) and also Maitra, Purves, and
Sudderth (1990).) Hence, U is upper analytic as well.

If the gambling problem is nonleavable, then a gambler with initial for-
tune x selects a strategy o available at  and receives the reward

u(o) = limsup/u(Xt) do ,
t

where the lim sup is over the directed set of stop rules t. In many cases,
for example when wu is bounded or when the sequence u(X,) is monotone
increasing or decreasing,

u(o) = /{limnsup u(Xp)}do. (1.4)

(cf. Theorems 4.2.2 and 4.2.7 in Maitra and Sudderth (1996).) The optimal
reward function for the nonleavable problem is
V(x) = sup{u(o) : oavailable at z}.

The function V' can be calculated by a transfinite recursive scheme based
on the operator 1" defined for lower bounded upper analytic functions u by

(Tu)(x) = sup{/u(Xt) do : oavailable at z,t > 1}.

It turns out that Tu = SU, where U is the optimal reward function for
the leavable problem defined above (Maitra and Sudderth(1996, Theorem
4.8.12). Now let Vy = T'u and , for each countable ordinal a > 0, let

{T(u AVu_1), ifais a successor,
Vo =

infg<q Vg, ifais a limit ordinal.
(Here a A b is the minimum of @ and b.) Then
V =infV, ,
a

where the infimum is over all countable ordinals «, and V is also upper
analytic (Dubins, Maitra, Purves,and Sudderth (1989), see also Maitra and
Sudderth (1996)).

A gambling house T is said to be leavable if the point-mass §(x) € I'(z)
for every z € X. If T is leavable, then U and V are the same (Corollary
3.2.2, Dubins and Savage (1965)).



1.3 Invariant Gambling Problems

Let (F,T',u) be a measurable gambling problem and suppose that G is a
topological group or semigroup with identity that acts on the fortune space
F. This means that there is a Borel mapping a : G x F — F', which we
write a(g,z) = gz, such that ex = z for e the identity element of G and
91(927) = (g192)x. For a group the mapping x — gz is necessarily one-to-
one for every g € G. We assume that these mappings are one-to-one in the
case when G is only a semi-group. We also assume that G is a Polish space;
that is, the topology on G is second countable and completely metrizable.
The gambling problem will be called invariant (under G) if Conditions 1
and 2 below are satisfied.

To formulate the first condition, we associate to each probability measure
v € P(F) and each g € G a measure gy € P(F') defined by

/ 8(x) (g7) (d) = / $(9z) 7(dz)

for bounded measurable functions ¢ on F. For a set A C P(F) and g € G,
let

gA ={gy : v € A}
Condition 1 For allz € F' and g € G, ¢gT'(z) =I'(gx).

To state the second condition, let A be the group of positive, affine
transformations of the real line. That is, A consists of all mappings r —
ar + b for some a > 0 and b € R. Give A the topology it inherits when
considered as a subset of the plane.

Condition 2 There is a Borel measurable mapping w : G — A such that
u(gz) = w(g)(u(x)) for every x € F and g € G.

According to Savage’s theory of utility (see Theorems 5.3.2 and 5.3.3 in
Savage (1954)), if u is a utility function, then 4 is also if and only if @ is
a positive affine transformation of u. Thus Condition 2 says that for every
g € G, the function uy(x) = u(gz) is a utility function.

Lemma 1 If the function u is not constant, then w is a homomorphism

from G into A.



Proof. Forgi,go € Gandz € F,w(g192)(u(z)) = u(g1922) = w(g1)(w(g2)(u(x))).
Now use the fact that if two affine transformations agree on two points, then
they agree everywhere. "

As the case of a constant utility function u is uninteresting, we will
assume from now on that w is a homomorphism.

Two notions of an invariant function will be used below. Let i be a
function with domain F' and suppose that GG acts on the range of 1. Then ¥
will be called simply invariant if ¥(gx) = gy(x) for all g € G,z € F. Thus
Condition 1 says that the house I is invariant. To define the other notion,
let w be the mapping given by Condition 2 and let ¢ be a mapping from F
to the real numbers. Call ¢ w-invariant (under G) if ¢(gx) = w(g)(d(x))
for all z € F and g € G. So Condition 2 says that the utility function u is
w-invariant.

Lemma 2 If ¢ is w-invariant and S¢ is well-defined, then S¢ is w-invariant
also.

Proof. Forz e F and g € G,

(S¢)(g9z) = sup{/¢> : v € I(g2)}
sz/@@NmM®O=VEH@}
:wmjﬁwmvwmzverw»
—wm/ (9)(6())7(da) : 7 € T(2)}

wm/¢  7ET@))
~ u(g)(S

Corollary 3 The functions U,,n > 1, and U are w-invariant, as is the
function V' when wu is bounded below.

Proof. It is easy to check that that suprema, infima, and pointwise limits
of w-invariant functions are again w-invariant. Hence the corollary is a
consequence of the lemma and the recursive schemes for calculating U, U,
and V sketched in the previous section. "



Example 1 Positive Dynamic Programming. Suppose that S is a nonempty
Borel set, R is the set of real numbers, and that F = S X R. Thus a fortune
x 18 a pair (s,c) whose first coordinate s is regarded as the state and whose
second coordinate c as the cash accumulated up to the present time. The
additive group Go of real numbers acts on F' thus

g(s;c)=(s;c+g), g€ Go.
Assume that Condition 1 holds. Then, in particular,
I(s,c) = cI'(s,0), ceR.

Thus, if v € T'(s,0) and the random pair (s1,71) has distribution 7, then ¢y €
I'(s,c) and (s1,m1+c¢) has distribution cy. Let the utility function be u(s,c) =
c. Condition 1 is immediate and, for each g, the affine transformation w(g)
is translation by g.

Suppose that a gambler has initial fortune x = (s,0). The gambler’s suc-
cessive fortunes can be written as x1 = (s1,71),%2 = (S2,71 +72),... ,Tp =
(Spsm1+ro+ - 4714),..., and u(zy) =r1+ 12+ -+« +1,,. The utility of a

strategy o s
t

u(o) = lim Sup/(z r;) do.
t i—1
Positive dynamic programming corresponds to the special case where,
for every s € S and v € T'(s,0), v{(s1,71) : 11 > 0} = 1. In this case, the
gambler’s fortune is almost sure to increase in utility at every stage and the

utility of o becomes
o0

u(o) = /(Z ri) do.
i=1
It is natural in the case of positive dynamic programming to restrict the for-
tune space to be S x [0,00) and to take G to be the semigroup of nonnegative
real numbers under addition.

Negative dynamic programming can be formulated by analogy with Ex-
ample 1. However, the situation is more complicated in the case of dis-
counted dynamic programming and we are indebted to David Heath for the
crucial idea in the formulation below.

Example 2 Discounted Dynamic Programming. Let 0 < 3 < 1 be the
discount factor and let F = SxRxN, where S is a nonempty Borel set, R the



set of real numbers, and N the set of nonnegative integers. A fortune x is now
a triple (s,c,n), where the new coordinate n represents the number of days
of play. A gamble v € T'(x) determines the distribution of the next fortune
71 = (81,8 te+r,n+1) where s1 is the new state and r is the reward earned
at the current stage of play. The utility function is u(x) = u(s,c,n) = f"c.

To get the idea, consider an initial fortune x = (s,¢,0). The successive
fortunes of a gambler can be written as r1 = (51,8 lc+r,1),... ,2, =
($n, B3 "c+ =" Vry + -+ rp,n),.... The utility of xn is u(zn) = ¢+
pri+ -+ [f"ry.

Suppose that the daily reward is bounded by a constant b in the sense
that, for every s € S and v € I'(s,0,0), v{(s1,71,1) : |r1| < b} = 1. Then
the utility of a strategy o available at (s,0,0) can be written

wo) = [ <§ Firy)do.

The additive group of reals R and the additive semigroup N both act on
F as follows:
g(s,c;n) = (s,c+p"g,n),  g€R

m(s,c,n) = (s,c,n+m), m € N.

Condition 2 holds with w(g)(y) =y + g and w(m)(y) = f™y. Condition 1
is assumed to hold for every g and m, or, equivalently, for the semigroup G
of transformations on F' that they generate.

Here is a simple class of examples on the real line.

Example 3 Proportional Houses. Let F' = [0,00) and let G be the group
of strictly positive real numbers under multiplication. The action of G
on F is just the usual multiplication. Condition 1 now says that a gam-
bler’s opportunities are proportional to the size of his fortune. In particular,
I(z) = zI'(1) for z > 0. (A famous special case is the red-and-black casino
where T'(z) = {wé(z +s) + (1 —w)d(z —s) : 0 < s < z}.) A utility func-
tion that satisfies Condition 2 is u(x) = logz. Now u(gzr) = logg + logz
so that the affine function w(g) is translation by logg. By Corollary 2,
the optimal n-day return is w-invariant and, hence, Up(x) = Up(z - 1) =
w(z)(Un (1)) = Up(1) +1og z. In fact, it is easy to show, by backward induc-
tion, that Uy, (x) = nU1(1) +log x. It therefore follows from (1.3) that either
U(z) =logz or U(z) = oo according to whether U1(1) =0 or U1(1) > 0.



1.4 Invariant Selectors

A T-selector is a function v : F' — P(F) such that v(z) € I'(z) for every
z € F. The von Neumann selection theorem guarantees the existence of a
universally measurable I'-selector . Such a selector determines a stationary
family of strategies 7> which uses the gamble «(z) whenever the current
fortune is z. A selector « is invariant if y(gz) = gy(z) forallz € F, g € G
and, in this case, the corresponding stationary family is also called invariant.
In the next section, we address the question of when invariant stationary
families are adequate. This section is devoted to the preliminary problem
of the construction of measurable, invariant selectors. For brevity, we often
write “u.m.” for “universally measurable” below.

Assume first that G is a group. (We will consider the case of a semigroup
at the end of the section.) Define R to be the equivalence relation

R={(z,y) e FxF : (g€ G)(gz =y)}

The equivalence class of an x € F'is its orbit [z] = Gz. An orbit selector is a
function ¢ : F' — F such that (i) ¢(x) € [z] for every z, and (ii) ¢(x) = ¢(y)
whenever zRy.

For the construction of a measurable, invariant I'-selector, we will need a
measurable orbit selector. The following condition guarantees its existence.

Condition 3 There is a sequence {E,} of Borel subsets of F such that
zRy < (Vn)(x € E, — y € Eyp).

The equivalence relation R is said to be smooth when Condition 3 holds.

Lemma 4 If R is smooth, then R admits a Borel measurable orbit selector.

Proof. By Theorem 5.2.1 in Becker and Kechris (1996), there is a Polish
topology on F' with the same Borel sets as the original topology and such
that the action (g,z) — gz is continuous. So we can assume without loss
of generality that the action is continuous. The existence of a Borel orbit
selector then follows from results of Burgess (1979) or Srivastava (1998). =

It can be shown that if R is Borel and admits even a universally mea-
surable orbit selector, then R is smooth (Harrington et al, 1990). Thus
Condition 3 is necessary as well as sufficient for the existence of a Borel
orbit selector.

One additional condition is needed. For each = € F', the stabilizer sub-
group of z is defined to be Gy = {g € G : gz = z}.



Condition 4 For every x € F, the stabilizer subgroup Gy is either the
singleton {e} or the whole group G.

Notice that this condition is satisfied by the proportional houses of Ex-
ample 3. Indeed, for these houses, Go = G and G, = {1}, for z # 0.

Lemma 5 Under Condition 4, there is a unique Borel function f : R — G
such that, for all z,y € F, (i)f(z,x) = e and (ii)f(z,y)x = y whenever

y € [z].

Proof. If G, = {e} and y € [z], then there is a unique g € G such that
gr =y and we take f(z,y) = g. If G, = G, then [z] is a singleton and we
take f(x,x) = e. Then f is Borel because its graph is

{(z,9,9) E RxG : gz =y, x #ytU{(z,xz,e) E RXG : x € F},
a Borel subset of R x G "

Here is the basic lemma on the construction of invariant I'-selectors.

Lemma 6 Suppose that G is a group and that Conditions 3 and 4 hold. Let
1 be a u.m. IT'-selector, ¢ be a Borel measurable orbit selector, and let f be
the function of Lemma 4. Then the mapping v : F — P(F') defined by

V(@) = f(o(x), 2)n(d(x)), z€F

is a u.m. invariant I'-selector. Conversely, every u.m. invariant I'-selector
satisfies this equality for some u.m. I'-selector n.

Proof. Forz e F,and g € G,

This proves the first assertion.
Now suppose that v is a u.m. invariant I'-selector. Let ¢ be any Borel
orbit selector and let n = ~. Then



Suppose now that G is a semigroup with identity, but not necessarily a
group. Call a subset C of F' closed under G if (i) x € C and g € G imply
that gz € C and (ii) ¢ € G and gz € C imply that z € C. The orbit [z] of
x € F' is defined to be the smallest set closed under G and containing x. It
is easy to check that

R={(z,y) e FxF : ye€ [z]}

is an equivalence relation on F which is the same as the one previously
defined when G is a group. We will not attempt here to develop a general
theory for semigroups, but will instead limit ourselves to a special class of
invariant problems which includes dynamic programming models and for
which invariant selectors are readily available.

The semigroup G is called special if (i) there exists a Borel measurable
orbit selector ¢, (ii) for every x € F and y € [z], there is a g = f(z,y) such
that f(z,y)¢(x) =y, and (iii) the function f : R — G is Borel measurable.
Under Conditions 3 and 4, a group G is a special semigroup.

Lemma 7 If G is special and 7 is a u.m. ['-selector, then

V(@) = f(o(x), )n(d(x)),  z€F

s a u.m. invariant I'-selector.

Proof. The proof is the same as for the first half of Lemma 5. n
For dynamic programming models as in Example 1, the orbit of any
fortune = (s,c) is the set of all fortunes with the same first coordinate
and we can take ¢(x) = (s,0). Then f(¢(z),z) = c and y(z) = en(P(x)).
1.5 Invariant Stationary Families of Strategies

Each u.m. I'-selector v determines a stationary family of strategies o(z) =
¥*(x), x € F, where for each z, 5(z) is the strategy given by

a(z)o=7(x),  d(@a(z1,-..  20) = 7(zn)

for all n > 1 and all z,z1,... ,z, € F. The stationary family v*° is called
invariant if the selector v is invariant.

10



Dubins and Savage (1965) first posed the problem as to the existence of
good stationary families. They obtained a positive result for F' finite and
I leavable which was extended to the countable case by Ornstein (1969).
A number of authors (cf. Barbosa-Dantas (1966), Dellacherie and Meyer
(1983), Dubins and Sudderth (1979), Frid (1976), Schél and Sudderth (1987),
and Sudderth (1969)) used the techniques of Ornstein to get results about
good stationary families in Borel measurable settings. Perhaps all or most
of these results can be extended to give results about good invariant sta-
tionary families for invariant problems. We present two such extensions in
this section and mention some questions that remain open.

Assume that the gambling problem (F,I',u) is invariant under a special
semi-group G. Assume also that I' is leavable so that, in particular, the two
optimal reward functions U and V are the same.

The assumption that I" is leavable is necessary for the existence of good
stationary families except in the case when F' is finite and every set of gam-
bles I'(z), = € F, is finite (Dubins and Savage (1965), see also Maitra and
Sudderth (1996)). This assumption can be made without loss of generality
for positive dynamic programming problems because, with positive daily re-
wards, a player gains nothing by terminating the game. This is not the case
for negative dynamic programming problems where, as is well-known, good
stationary plans need not exist even when the state space is finite (Strauch
(1966)).

Recall that to each g € G is associated an affine mapping w(g) which we
can write as

w(g)(r) = agr + by, r € R,

for some a4 > 0,b, € R. We say that the action of G is additive if a; = 1 for
every g € G and we call the action multiplicative if by = 0 for every g € G.

Here is an extension of Theorem 2.3 of Sudderth (1969) to the invariant
case.

Theorem 8 Suppose that the function U —u is bounded and that the action
of G is additive. Then, for each ¢ > 0 and probability measure oo € P(F'),
there is a u.m. invariant I'-selector v such that

a{r e F : u(y®(z)) >U(z) —e} = 1.

Here is a similar extension of Proposition 7.1 of Dubins and Sudderth
(1979).

11



Theorem 9 Assume u > 0 and that the action of G is multiplicative. Then,
given 0 < € < 1, there is a u.m. invariant I'-selector v such that

afr € F : u(y*(z)) > (1 —-€e)U(z)} = 1.

We will explain in the next section how the proof of Dubins and Sudderth
(1979) can be modified for Theorem 9. A similar modification of the proof
in Sudderth (1969) works for Theorem 8.

Theorem 8 implies the corresponding result of Barbosa-Dantas (1966)
for positive dynamic programming problems with bounded optimal reward
function. However, neither Theorem 8 nor Theorem 9 includes the result
of Frid (1976) for positive dynamic programming problems with unbounded
optimal reward function. (Theorem 9 does not apply because the action of
the semi-group G in Example 1 is additive rather than multiplicative.) It
would be interesting to have an extension of Frid’s result to a more general
invariant setting.

Dubins and Savage (1965) showed that an optimal stationary family of
strategies exists for any gambling problem with F' finite and I'(x) finite for
all z. The analogous result holds for dynamic programming problems with
finite state space and finite action sets. A common generalization would be
that there is an optimal invariant stationary family for invariant gambling
problems with a finite set of orbits and finite I'(x) ,z € F. We do not know
whether this is true.

1.6 The Proof of Theorem 9

For a proof of Theorem 9, we will show how to make the necessary changes in
the arguments given for Proposition 7.1 in Dubins and Sudderth (1979). We
will make reference to results in that paper by adding an asterisk. For ex-
ample, Proposition 7.1* will denote Proposition 7.1 of Dubins and Sudderth
(1979).

Throughout this section we fix a Borel measurable orbit selector ¢ as
constructed in Section 4. Also, for v € P(F'), and 1 a y-integrable function,
we will often write y1) for the integral [+ d~.

Lemma 10 (¢f. Lemma 6.4*) For each € > 0, there is a u.m. invariant
T'-selector v such that

y(z)u > (1 — €)Ui(z) for all x (1.5)
and

Y(z) = 0(z) = u(z) = Us(x). (1.6)

12



Proof. By Lemma 6.4*, there is a u.m. I'-selector 1 that satisfies (1.5)
and (1.6), but 7 need not be invariant. So define

V(@) = f($(x), 2)n(¢(z))

as in Lemmas 6 and 7. Then v is u.m. and invariant by those lemmas.
To verify (1.5), let y = ¢(x) and g = f(y, z) so that z = gy. Then

(@) =gy = (gv(u)u = [ u(gz)v(6)(dz) = wig)( [ u(2)2()(d2)
> w(g)(1 - Ui (w)) = (1-uw(g) (U1 () = (1 - Wi(gy) = (1 - U (x).

The second equality is by the invariance of v and the next to last is by the
w-invariance of U; as in Corollary 2.
For (1.6), suppose v(x) = d(x), where z = gy as above. Then

96(y) = d(gy) = v(gy) = 97(y)-

Hence, 6(y) = v(y) because the mapping * — gz is one-to-one by assump-
tion. But y = ¢(x) and y(y) = n(y). Now 7 satisfies condition (1.6). So we
have u(y) = Ui (y) and

u(z) = w(g)(u(y)) = w(g)(U1(y)) = Ur(x)-

Define the set Y = ¢(X). Then Y is Borel because Y = {z € F :
¢(z) = x}. Also Y intersects each orbit [z] in the singleton {¢(x)}.

Corollary 11 (¢f. Corollary 6.1*) For each € > 0 and a € P(F), there is
an invariant Borel T-selector v such that

V(@)u > (1 —€)Ur(2) (1.7)

for a-almost every x.

Proof. Use Lemma 10 to get an invariant u.m. I'-selector 4 such that
(1.5) holds when + is replaced by 4. Define o' to be the probability measure
a¢~! so that, in particular, o/ (V) = a(¢~(Y)) = 1. Because 7 is u.m. and
T is leavable, there is a Borel T-selector 7/ such that o/{y € Y : +/'(y) =
¥(y)} = 1. Define

v(z) = f(o(2),2)7 (¢(2)), =z €F.

13



Then + is Borel measurable because f, ¢, and 7/ are. Also v is an invariant
I-selector by Lemma 6 or Lemma 7. Note that v/ (¢(z)) = J(¢(z)) = v(z) =
~(x) as 7 is invariant. Hence,
a{z € F : v(z) =7(2)}) > a({z € F : 7/(6()) = ¥(¢(2))}
=d({yeY : 7/ (y) =7y}
=1.
Thus (1.7) holds for v a-almost surely since it holds for 7.

The next result is that a gambler can get uniformly close (in the multi-
plicative sense ) to the optimal n-day return U,, using an invariant stationary
family of strategies. The same is not true for the optimal reward function U
even if the gambler uses a stationary family that is not invariant (Blackwell
and Ramakrishnan, 1988).

Lemma 12 (¢f. Proposition 6.1*) For n > 1 and € > 0, there is a u.m.
invariant I'-selector such that

u(y*(z)) = (1 — €)Un(z)
forallz € F.

Proof. Choose 3 so that 0 < < 1 and " > 1 — e. By Lemma 10, we
can find u.m. invariant I'-selectors v,k = 1,... ,n such that

Ww(@)Up_1 > Y2U(z), =z €F.
Let k(x) be the least natural number k < n such that

B*Uk(w) = max FU;(@)-

Since the Uy’s are w-invariant and u.m., it follows that k(x) is u.m. and
invariant. Consequently, v defined by

klx)y=1,...
7(:1;) _ V() ($)a (ZL‘) ) ,
6(), k(z) =0
is a u.m. invariant I-selector. Proposition 5.1* now applies to yield the
desired result. .

To overcome certain measurability difficulties, Dubins and Sudderth
found it useful to replace the original gambling problem in their paper by a
simpler Borel problem. The next two lemmas enable us to do the same.

14



Lemma 13 Given u > 0, u.m., and w-invariant, and o € P(F), there is a
Borel w-invariant function v on F such that 0 < v < u and v = u a-almost
surely.

Proof. As in the proof of Corollary 11, let o/ = a¢~! so that o/ (V) = 1.
Choose a Borel function v' : ¥ — [0,00) such that 0 < v < w on Y and
od{y €Y : v(y) =u(y)}) = 1. Recall from Section 4 that each x € F can
be written as x = f(¢(x), z)¢p(x) for a unique group element f(¢(z),x) and
set

v(z) = w(f(¢(x),2))(v"(6(z)), zEF

Then v is Borel measurable because all of the functions appearing in its
definition are Borel. To check that v is w-invariant, let © € F,g € G and
calculate:

v(gz) = w

|
g

Il
g

|
g
A~ I~~~
NS
~
—
<

Here the invariance of ¢ is used for the second equality and Lemma 1 for
the next to last equality.
Next note that v'(¢(z)) = u(¢(z
Now o/({z € F : V' (¢(z)) = u .
almost surely. Finally, v(z) = w(f(¢(x), 2))(v'(¢(z)) < w(f(d(z), ) (u(¢(z))) =

u(z). .
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A leavable house I is (Borel) countably parametrized if there exist Borel
Markov kernels 71,%2,... such that T'(z) = {v1(z),v(z),...} for every
z € F. The house I is clearly invariant if each of the functions ~; is
invariant.

Lemma 14 (¢f. Lemma 7.1*) For each o € P(F'), there is an invariant,
countably parametrized subhouse T of T' and a nonnegative Borel function
u' on F such that

(i) v <wuonF, and
(i) U' > U a-almost surely,

where U’ is the optimal reward function for (F,T",u').
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Proof. Repeat the proof of Lemma 7.1* using Corollary 11 instead of
Corollary 6.1* so that the I'-selectors v, turn out to be both invariant and
Borel measurable. To get the function v/, use Lemma 13. "

In view of Lemma 14 it now suffices to prove Theorem 9 under the
additional assumptions that I' is countably parametrized and w is Borel.
These assumptions will be in force for the remainder of the proof.

Lemma 15 (¢f. Lemma 7.2*) The functions Uy, Us,... ,U are Borel mea-
surable. For each € > 0 and n > 1, there is an invariant, Borel I'-selector -y
such that u(y*°(-)) is w-invariant, Borel measurable, and

u(y*®(x)) > (1 — €/2)Uy(x) for all x. (1.8)
Hence, for each oo € P(F'), there exists such a Borel I'-selector v for which

u(y*(z)) = (1 - U(z) (1.9)

with a-probability at least 1 — €.

Proof. The first assertion is easy to prove because I is countably parametrized
(see Theorem 4.1 of Sudderth (1969)). Next choose 8 € (0,1) such that
8™ > 1 —¢€/2. Then the I'-selector vy given by Lemma 12 is invariant and
satisfies (1.8). Also, because the functions Uy, U,,... are Borel, it is clear
from the construction in the proof of Lemma 12 that 7 is Borel. The function
u(y*(+)) is the V for the invariant house I'" where I'(z) = {y(z)},z € F.
Thus u(y*°(+)) is w-invariant by Corollary 3. It is not clear that the function
u(y*°(+)) is Borel, but the argument for Lemma 7.2* shows that 7 can be
chosen so that this is true. Since U, T U, the final assertion follows from
(1.8). .

Consider now a leavable, Borel, stop-or-go house Y., which means that,
for some Borel Markov kernel n and all z, X(x) = {n(z),d(x)}. Assume
also that 7 is invariant and let W be the optimal reward function for the
invariant problem (F, X, u).

Lemma 16 The stationary family v*°, where

[ ) < W@
7 {5<x>, u(z) = W(z),

is Borel measurable, invariant, and optimal for (F, X, u).
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Proof. The house X is Borel and countably parametrized. Hence, W is
Borel by Lemma 15 and w-invariant by Corollary 3. It follows that v is
Borel and invariant. The optimality of v*° is a consequence of Proposition
4.1%. "

The idea of the remainder of the proof, based on ideas of Ornstein (1969),
is to find a Borel invariant stop-or-go subhouse of the original " whose
optimal reward function is almost surely as large as (1 — €)U. Theorem 9
will then follow from Lemma 16.

The construction of the stop-or-go house is in a countable number of
steps and each step will use the following operation.

To each stop-or-go house ¥, associate the house I' - ¥ defined by

Y (x), if ¥(x) contains two elements

r'-¥)(z) =
( )(@) {F(:v), otherwise.
Plainly, CCT =X CIl-XCland XCY¥ =T-%CTI.3.

If n is Borel measurable and ¥ (z) = {n(x),d(x)} for all z, then ¥ is Borel
and countably parametrized, as is '-3. So, by Lemma 15, the optimal return
function W for X is Borel measurable, as is the optimal return function R
for T - 3.

Lemma 17 (¢f. Lemma 7.5*) Suppose ¥ is a leavable, invariant, Borel,
stop-or-go subhouse of T, a € P(F), and ¢ > 0. Then there is a leavable,
invariant, Borel, stop-or-go house ¥' such that

(i) SC Y CT,
(i) a]lW' > (1 —€)R] > 1 — ¢, and
(i1i) R' > (1 — €)R,
where W' and R' are the optimal return functions for X! and T - X!, respec-

tively.

Proof. The house I' - ¥ is invariant, and hence, by Lemma 15, there is
an invariant, Borel I"- ¥-selector v such that u(y*°(-)) is Borel, w-invariant,
and a(S) > 1 —¢, where S = {z : u(y®°(z)) > (1 — €2/2)R(z)}. Set
T ={z : u(7*°(z)) > (1 — ¢)R(x)}. Then the set T" is Borel and, because
the functions v and R are w-invariant and the action of G is multiplicative,
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T also has the property that x € T' < gx € T for all x € F,g € G. Now
define the house ¥’ by
{n(z),d(z)}, if z € T and X(z) = {4(2)},
Y (z) = < B(x), if £(x) contains two elements,

{6(x)}, otherwise.

The proof that ¥/ has the desired properties, with the exception of invari-
ance, is exactly the same as in the proof of Lemma 7.5*. The proof that X' is
invariant is straightforward if one uses the property of 7" mentionned above
and our standing assumption that the mappings x — gz are one-to-one. =

The assumption that G acts multiplicatively was used in the proof above
for Lemma 17, but is used nowhere else in the proof of Theorem 9.

Lemma 18 (c¢f. Lemma 7.6*) Let o € P(F') and € > 0. There is a sequence
Yo € X1 C --- of leavable, invariant, Borel stop-or-go subhouses of I' whose
optimal return functions Wy, W1, ... satisfy

a[Wn > (1 - G)U] T L.

Proof. The proof is the same as that of Lemma 7.6* except that Lemma
17 is used instead of Lemma 7.5%. .

Define the house X by setting
Y(z) = UpEp(z), xz € F,

where the 3, are from Lemma 18. Then ¥ is a leavable, invariant, stop-or-go
subhouse of I whose optimal return function W satisfies a[W > (1—¢)U] =
1. Theorem 9 now follows from Lemma 16.
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