A chapter for
MARKOV DECISION PROCESSES
Models, Methods, Directions, and Open Problems
written by

Eugene A. Feinberg
Department of Applied Mathematics and Statistics
SUNY at Stony Brook
Stony Brook, 11794-3600, NY, USA

May 28, 2000



Chapter 1

Total reward criteria



Abstract

This chapter deals with total reward criteria. Omne-step rewards can be
as positive as negative. We describe results on the existence of optimal
and nearly optimal strategies and the results on the convergence of value
iteration algorithms under the so-called General Convergence Condition.
This condition requires that, for any initial state and for any policy, the
sum of positive parts of reward converges to a finite number.



1.1 Introduction

This chapter deals with the total reward criterion. This criterion is natu-
ral for finite horizon problems and for infinite horizon problems in which
the number of steps is not fixed but it is finite along most trajectories.
The examples include discounted criteria, which can be interpreted as prob-
lems with geometrically distributed horizon, as well as other problems such
as sequential statistical procedures, stopping, search, and optimal selection
problems.

The analysis of finite horizon models is usually based on the analysis of
optimality equations and optimality operators. The value function satisfies
the optimality equation and a Markov policy at which these equations are
achieved at each step is optimal. If optimality cannot be achieved, a Markov
policy, which is (¢/N)-close to the optimal value, is e-optimal for the N-
horizon problem.

For infinite horizon problems, we can distinguish two distinct approaches.
The first approach deals with the analysis of optimality (also called, dynamic
programming) equations and operators. The second approach studies prob-
ability distributions on the sets of trajectories. In fact, the most interesting
results have been achieved by combining these two approaches.

As was observed in sixties, certain properties of optimality operators,
namely contracting and motonicity properties, imply the existence of opti-
mal or nearly optimal strategies within natural classes of strategies. These
properties also imply the convergence of algorithms. In general, dynamic
programming operators may not possess these properties. However, if the
one-step reward function is uniformly bounded and the nonnegative discount
factor is less then one, then the contracting property holds. If rewards are
nonnegative (nonpositive) then the value iteration algorithm, applied to the
zero terminal value, forms a monotone and therefore convergent sequence.
The mentioned three models are called discounted, positive, and negative
respectively.

The fir s%omprehj%eséxlfe results vgg&}e obtained for these three models.

(Bla%&%ll enardo [I7]; Strauc studied discounted models, (Black- __ .
well [8], Ornstein h%ffi], and Strauch studied positive models, and Strauch %BT
studied negative models. The results differ significantly from one model to
another. To illustrate these differences, let us consider the situation when
the state space is countable and there are no additional assumptions such
as compactness of action sets. For discounted and positive models, for each
initial state the supremum of the expected total rewards over the class of
all strategies is equal to the corresponding supremum over the class of all



165, b167
stationary polici Si6 lackwell [7, 8. However, it is not true for negative
models; Strauch . For discounted models, for any positive constant ¢,

there exist stationary e-opti &l policies. Such policies may not exist for
positive models; Blackwell %‘ However, for positive models there exist
stationary eV -optimal policies also called multiplicatively e-optimal; Orn-
stein [46]. There are other significant differences between positive, negative,
and discounted programming. The differences are so significant than for
a long period of time it was even was not clear how to formulate unified
results. As the result, all textbooks on dynamic programming and Markov
decision processes, that deal with infinite-horizon models with total rewards,
consider only positive, ne, gg've, and discount%d models and deal with them
separately; see e.g. Ross El'g]éand Puterman %[8]

In addition to positive, negative, and discounted models, problems with
arbitrary reward functions and without discounting have been considered
in the literature for a long period of time. It turned out that the most
comprehensive results can be proved when so-called General Convergence
Condition holds. This condition means that the positive part of the reward
function satisfies the positive programming assumptions. Positive, negative,
and discounted models are particular cases of models satisfying the General

Convergence dition. 6

Blackwell %ﬁnd Krylov Hproved the existence of stationary opti u%l
policies for ]\@%Ps with finite state and action sets. Dubins and Savage %’9?
and Hordijk [39] introduced sufficient (and almost necessary) conditions for
optimali ésgo—called conse \g&g and equalizing conditions. Derman and
Strauch , and Strauch proved that, for a given initial state, any
policy an. be substituted with an equiv: lgs t79randomized Markov policy.
Krylov and Gikhman and Skorohod showed that nonrandomized
strategies are as good as randomized strategies. Dynkin and Yushkevich é&ﬁ
proved that if someone randomizes betwee éiggfer 1, astrategies, the objec-
tive function cannot be improved. Feinbergjf?l,_ﬁgﬁ)ved that, for a given
initial state, (n Llrandomized) Markov policies are as good as general ones;
earlier van Hee %62] showed that the supremum of the expected total rewards
over the class of Markov policies is equal to the supremum over the class of
all policies.

Seminal papers by Blackwell %71,25873—11311 Strauch S dealt with models
with Borel state and action spaces. Some of the following papers dealt just
with countable state spaces. For some results, their extension from count-
able to uncountable models is a straightforward exercise. For other results,
such extensions are either difficult or impossible. In addition, Blackwell
and Strauch considered Borel-measurable strategies and discovered that e-




optimal strategies may not exist but for any initial measure they exist almost
everywhere. In order to establish the existence of everywhere e-optimal poli-
cies, one should expand the set of policies to universally measurable or an-
alytically measurable p kigies. Such extension was introduced by Blackwell,
Freedman, and Orkin and it was done in a s s‘g%%atic and compre-
hensive way in the book by Bersekas and Shreve %_Tn particular, this
book expanded in a natural way almost all results on positive, negative
and discounted programming in a way that e-optimality was established
instead of almost sure e-optimality. The major exception was Ornstein’s
theorem ﬁﬁ t was proved by Ornstein f | for a countable state space; see
also Hordijk . It’s extension to Borel models in the sense most sure
multiplicative n l)y optimality was formulated by Blackwell As an open
question. Frid %ﬂTsolved this problem (Schél and Sudderth found a
correctable gap in Frid’s proof). The natural conjecture is that under more
general measurability assumptions, in the spirit of Bertsekas and Shreve
almost sure nearly-optimality can be replaced with nearly o {irmality every-
where in Ornstein’s theorem. Blackwell and Ramachandran %chonstructed
a counter-example to this conjecture.

For the General Convergence Condition, significantly deeper results are
available for countable state models than for Borel state problems. First,
three important particular results were discovered by van der Wal: (i) the
supremum of the expected total rewards over all policies is ed%giml to the
supremum over stationary policies if the acti(glg sets are finite; [58, Theorem
2.22] (this result was generalized by Schal to Borel state models with
compact action sets); ext sion of Ornstein’s theorem to the case when
some action sets are compact E;[()T)T(this results was generalized by van Dawen
Ral?g?gcal lR!57_56‘ﬁ—(‘111) existence of uniformly n %rl —é)zptlmal Markov policies;

. The survey by van der Wal and Wessels 61 éescrlbes these and many
preceding results.

Feinberg and Sonin %ﬁ%eneralized Ornstein’s %] theorem to models
satisfying the General Convergence Condition. For the long period of time, it
had not been clear even how to formulate such results. The first clue is that
in the more general formulation the value function of the class of stationary
strategies should be considered instead of the value function of the class
of all strategies. The second clue is that in the definition of multiplicative
g-optimal policies function V should be replaced with an excessive majorant
of a value r mction of the class of stationary policies. T e ;%I‘B(%Ofs in Feinberg
and Sonin %ﬂ@e non-trivial and differ from Ornstein’s 232 proofs. Feinberg
and Sonin extended these results to non-stationary policies and to more
general classes of functions that approximate optimal values.

sh78




e87, fe87a
Feinbeg :221, 55] described the structure of uniformly nearly-optimal poli-

cies in countable state models satisfying the General Convergence Condition.
As mentioned above, stationary policies can be significantly g}}étperformed
by nonstationary policies in negative problems; see Example lB_b' It turned
out that this example demonstrates the only pathological situation when the
value of the class of stationary policies is less than the value of the class of
all policies. Considers the set of states for which the value functions equal to
zero and there are no conserving actions (an action at which the optimality
operator applied to the value function achieves the maximum). Then there
are Policies x.)vhich are uniformly 1p:ear{a]]}f %)pn‘luégllal and which are stationary
outside of this set; see Theorems 19 and 20. feso85, £e87, fesla

Another important feature of the papers by Feinberg and Sonin [3Z,
24, 25| is that they consider general classes of nonstationary policies and
general methods how to deals with nonstationary policies. In particular, the
information about the past plays an important role. It is possible to identify
two properties of this information: (i) non-repeating and (ii) transitivity
conditions. Non-repeating condition implies that randomized policies are
as good as non-randomized ones and there exist uniformly nearly optimal
policies within any class of policies that satisfies this condition. Transitivity
condition implies that the model can be transformed into a new model in
a way that the class of strategies satisfying this condition in the old model
becomes the class of stationary strategies in the new one.

This paper is a survey of results and methods for models satisfying the
General Convergence Condition. We present the theory for countable mod-
els and discuss open questions, most of which deal with uncountable state
spaces. In order to illustrate major concepts and counter-examples, we start
our presentation with classical discounted, positive, and negative problems.

1.2 Definitions of discounted, positive, negative,
and general convergent models

s:MC-model

We say that an MDP is discounted if function r is bounded if there is a
constant 3 € [0, 1], called the discount factor, such that

o

w(z,7) =E Zﬁtr(:vt, ag). (1.1) |Dpis

t=0

An MDP is called unbounded discounted if (E}f) holds and the function r
is bounded above, 7(z,a) < C < oo for all z € X, a € A(x) and for some C.



Discounted and unbounded discounted MDPs can be reduced to an MDP
with a discount factor equal to 1. In order to do it, we add an additional
state to the state space X. This state has only one action under which
it is absorbent and all rewards are equal to zero in this state. This state
sometimes is called a grave. The one-step transition probabilities between
states in X become equal to (pgy(a) and the transition probability from
any state in X to the new absorbent states become (1 — 3). The expected
total rewards for all initial distributions on X in the new MDP are equal to
the expected total discounted rewards for the same initial distribution in the
original system. In the new MDP, the original constant 3 can be interpreted
as the probability that the system remains alive at the next step if it is alive
on the current step. Thi fgglstruction is well-known and it is described in
details in Altman’s book [2; Section 10.1]. Thus we can consider discounted
MDPs as a special case of total reward MDPs with the discount factor equal
to 1.

An MDP is called positive if r(z,a) > 0 for all z € X and a € A(x) and
w(z,m) < oo for all z € X and for all 7 € IIR. An MDP is called negative if
r(z,a) <0 for all x € X and for all a € A(x).

We we indicate by D, UD, P, and N when we assume that the MDP is
respectively discounted, unbounded discounted, positive, and negative. For
an arbitrary MDP we define
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Let

Vi(z) = sup wy(z,¢) V_(z)= sup w_(z,¢)
pel” pel?

It is well-known that Vi (x) = supgens w+ (7, ¢); see Blackwell %gThe
following condition holds for D, UD, P, and N MDPs.

General Convergence Condition. V, (z) < oo for all z € X.

The General Convergence Condition is equivalent to the condition h&fg .
wy(x,m) < oo for all z € X and for all 7 € TI%; see van der Wal [58,
Theorem 2.3]. If the General Convergence Condition holds, w(z,n) =
wi(z,m) + w_(z,m) for all initial states and for all policies. In this pa-
per we always assume the General Convergence Condition. The value of



w(z, ) does not change if we re-group summands 7(x¢,a¢) or change the
order of summation. We say that an MDP is General Convergent (GC) if
the General Convergence Condition holds.

Let

s(z) = sup w(z,¢)
¢ells

be the value of the class of stationary policies.

1.3 Properties of strategic measures and objective
functions

s:SMOF
t66, dest, ho 1 9 . o
t:MC-Markov| Theorem 1 ([53; I8, et , 7%, ... be an arbitrary sequence of policies

and A1, A2, ... a sequence of nonnegative numbers summing to 1. Consider
a randomized Markov policy w defined by

def TXNPE (20 = y,a, € C)

"1y W o 620 yeX (14) [sogranat]
s APy (=)

: dM
whenever the denominator in A%%t equal to 0. Then, for allt >0, y €
X and Measurable subsets C of A(y),

o0
Py (zr=y,a€C) =) NP} (s =y, €C). (1.5)
=1

. . B [t :MC-Markov

Note that the randomized Markov policy defined in Theorem E‘E(P?PE]S
t: —Markov

is tha

on the initial state. QOur first observation related to Theorem

setting Ay = 1 and \; = 0, ¢ > 1, we have that for any given policy and
initial state, we can find a randomized Markov policy that produces the
same one-dimensional distributions for the pair (z;,a;). Consequently, for
any criterion depending only on such distributions Markov policies suffice.
In particular, we have the following result.

Corollary 2 Given an initial state x, for g%d@[gliﬁ/vo consider a random-
ized Markov policy m defined in Theorem T for =g and A1 = 1. Then

v(z, ) =v(z,0).

Our second observation is that we can expand the notion of a policy by
allowing the decision maker to select policies randomly at epoch 0. For exam-
ple, we can say that a sequence v = {(\;, 7")}32,, where \; are nonnegative



numbers with the sum equal to 1 and 7* are policies is a mixed strategy.
Then any couple (v, u), where v is a mixed strategy and p is the initial
probabili?f: ﬁ]é%gﬁg&bn on X, define a strategic measure P}, = Yo A le .
Theorem [T shows that mixed policies do not outperform randomized Markov
policies. Giyen a mixed policy v, formula (6) in Section 1.3 in Dynkin and
Yushkevich defines a usual randomized policy ¢ such that P = PJ.
This is even a stronger argument that there is no need to deal with mixed

policies. e : MC-MarkovP

Thus, Theorem 3.5 implies that
V(z) = sup wv(z,n), zeX (1.6)
welIRM

Our next step is to show that nonrandomized Markov policies are as good
randomized Markov ones. It follows from the fact that, for a given ini-
tial state or distribution, any strategic measure for a randomized Markov
policies can be presented as a convex combination of strategic measures for
nonrandomized Markov policies.

We recall that a Markov policy ¢ selects action ¢, (x) when the system
is at state z on epoch n. Sometimes it is more convenient to write ¢(z,n)
instead ¢p(z). We shall use both these notations. We observe that the set
of all Markov policies TTM is the set of all functions from X x N to A such
that ¢(z,n) € A(z) for all z and n. For B € A we denote by A(B) the
o-field on B which elements belong to A.

Now we introduce a measurable structure on IT™. For each couple (z,n)
and for each C' € A(A(x)) we consider the cylinder Y E(C) = {¢ € IVE .
¢(z,n) € C}. Then we consider a o-field of all cylinders with the base
(z,n), Fop = {IFE(C) : C € A(A(x))}. For aset E C X x N we define the
o-fiels of cylindrical subsets Fg with the base at E, Fg = N n)epF(zn)-
We denote F = FxxN-

We observe that ¢ — P¢(C) is a measurable function on (TIM, F) for any
C € Hy and for any given initial state . The main idea of the proof is that
we interpret the problem in the following way. The decision-maker selects a
Markov policy first and then uses this policy. The initial state is always x.
So, we add the point ¢ before each trajectory. A trajectory x,ag,x1,a1 ...
transforms into ¢, z, ag, €1, a1 - . .. The set of trajectories H, transforms the
set Hy, into the set IIM x H,,. Transition probabilities from a,, to z, 1, given
the history ¢, zo, ag, - .- , T, a, are defined by p(dzp11|zn,an), n =0,1,... .
Transition probabilities from z, to a,, given the history ¢, zg,ag,... ,Zp
are defined by I{¢(an,n) = an}, n = 0,1,... . Since the measurability
conditions from the Ionesco Tulcea [47, Proposition V.1.1] theorem hold,



we have that the mapping ¢ — P%(C) is measurable on (IIM, F) for any
C € Hy- The arguments in this paragraph also imply that, for any fixed
z € X and C € H,, the functio e]gg(C) is Fxx{0,1,...,n—1}-measurable; see
Lemmas 3.1 and 3.2 in Feinberg for details.

Consider a randomized Markov policy 7. We also will use sometimes the
notation 7(-|z,n) instead of m,(-|z). Consider the measure m” on (IIM, F)
defined as the product of measures 7(-|z,n). This means that for any set of
B(z,n) € A(A(z)), where z € X and n € N}, we have

m™{¢ € M| ¢(x,n) € B(z,n), (z,n) € XxA} = H m™(B(z,n)|z,n).
(z,n)eX XN

The measure m” exists and unique for each Markov policy n. This follows
from the general construction of product measures on products of measur-
able spaces; see e.g. Proposition V.1.2 in Neveu [47]. The following theorem
is a special case of Theorem 3.1 in Feinberg [47].

Theorem 3 For any randomized Markov policy m and for any © € X

PT(C) = / PCYM(dg), O € Hoo (1.7)

M

e:intre
Proof. If (lB?E fiolds for all C € Hy,, n € N, it holds for all C € H
because measures PJ c%nt?g continued from U2 yH,, to Hy. Therefore, it

is sufficient to prove (3.7) tor C' € Hy, n € N. We shall do it by induction.

We have that Pg{eg)i:ny = I{z = y} for any y € X and for any policy
o. This implies that (gf% HoEds for all C' € Hy.

Let (3.7) holds for all C € H,, for somen = 0,1... . We take an arbitrary
C € H,, and an arbitrary B € A.

We observe that the function P2 (C") is Fx x{0,1,...,n—1}-measurable for all
C' € Hy. The mapping ¢(y, n) is Fx  {n}-measurable. Since (Xx{0,1,... ,n—
1}) N (X x {n}) = 0, the o-fields Fxy{o,1,..,n—1} and Fxy{n} are indepen-
dent with respect to measure m™. This implies that for any D = {zg,ap €
By, r1,--- y,Tp—1,0n-1 € Bp_1, LEn}

[ otann) € Banrt(dg) [ PHDIm" a0) =
™ ™ (1.8)
/ (2, 1) € Bn} PL(D)m (do)

M



c:MC-nonran

c:nonrMv

foralln=0,1,... and forall z; € X, By € A, t=0,... ,n.
We have that

P"{C x B} :/71- Blxp,n) P (dhy,) =
/ / L{6(z, ) € B} (do) / P¢(dhn)rm (de) = (L9)

/ / P [ Be(c x Bym(ao)

C 1M C

:indst2
where the first and the last equalities in (E.le Tolfow from the definition of

measures P7, the second equality follows from the definition of the nea- . o
(E 9)

sure m™ and Tom th? induction assumption, and the third equality in
follows from (
le:indstl le:intre
We have from (Id 8) that (3.7) holds for any C € H, x A. Consider
arbitrary C' € H,, x X and y € X. We have

PT{C x {y)} = / (v n) BE o) = [ oyt an) [ P2 dha) (d5) =

c

/ m(dg) / P(y]n, an) PE(dhy) = / PH(C x {y}}m™ (d),
oM C M
(1.10)

le:indstep2
where the first and the last equalities in (lB 10 follow fr(Ee m, the definition of

measures Py, the second one follows from the validity of ( orC e Hpx A
established in ( , and the third one follows from Fubini’s theorem. n

[t : MC-
The General Convergence Condition and Theorem b ylenélonfrliaeI;1 following
result.

Corollary 4 For any randomized Markov policy m and for any initial state
zeX

v(z,m) = /v(x,¢)m”(d¢).

M

|c:randMv|c : MC-nonr
Corollaries B.T and 3.2 imply Fthe following statement.

Corollary 5 Given an initial state x, for any policy o there exists a Markov
policy ¢ such that

v(z,d) > v(zx,0).



c:semi-Mar

t:0E

The latter corollary yields the following result.
Corollary 6 v(x) = sup{v(z,¢| ¢ € 1M} for all z € X.

A nonrandomized policy ¢ is called semi-Markov if ¢(hy,) = ¢(xo, zp)
for all h, T, L0005+ 5 Tpy T = 1,2,... . Since the state space X is discrete,
Corollary lB.ZI implies the following statement.

Corollary 7 For any positive function e(x) on X there ezists a semi-Markov
policy ¢ such that v(z,¢) > V(z) —e(z) for all z € X.

Theorem 8 (Optimality Equation) V(z) =TV (x) for all x € X.

Proof. For a Markov policy ¢ = {¢o,¢1,...} we define a shifted policy
' = {¢1,02,...}. Then v(z,d) = T?@y(x, ¢'). We fix an arbitrary = € X.
The proof consists of two simple steps.

Step 1 (V(z) < c; Zutaf)) Consider an arbitrary constant & > 0. Ac-
cording to Corollary 3. ere exists a Markov policy ¢ for which v(z, ¢) >
V(xz) —e. We use obvious monotonicity properties of optimality operators
and get V(z) — e < v(z,¢) = T*@v(z,¢') < Tu(z,¢') < TV(x). Since
€ > 0 is arbitrary, step 1 is proved.

Step 2 (V(z) 2 TV (x)). Again, we consider an arbitrary positive con-
stant e. Corollaryms that for any € > 0 there exists an e-optimal
semi-Markov policy ¢. For any a € A(z) we consider a nonrandomized policy
ola, ¢] such that

a, if n =0 and xy = x;
U[a,¢]($0,a0,$1,... 7wn) = ¢0($1), ifn= 1,
¢n_1(x1,:vn), ifn>1.

This policy uses action a at epoch 0 in the initial state z and than it switches
to the semi-Markov policy ¢ with the initial state xz; and starting epoch
t = 1. We have that

V(z) 2 V(z,0a,¢]) = T"0(z,¢) 2 T*(V —¢)(z) =TV (z) —e.
and V(z) > T*V(z) — ¢ for all a € A(z) and for all € > 0. Step 2 is proved.

We recall that an action a € A(z) is called conserving in state z if
V(z) = TV (x). A policy that uses only conserving actions in all states is
called conserving. Obviously, a stationary optimal policy is conserving. The
following simple example shows that a conserving stationary policy may not
be optimal.

10



ex:cons

Example 9 Let X = A = {0,1}, A(0) = A, and A(1) = {0}. State 1 is
absorbing with one-step reward equal to 0. If action 0 is selected in state
0, the process remains in state 0 and the reward is not collected. Action
1 moves the process to state 1 and brings the one-step reward equal to
1. The formal definitions are p(z|z,0) = p(1]0,1) = 1, r(z,0) = 0, and
r(0,1) = 1 where x € X. In this example there are two stationary policies
¢q, a = 0,1. Policy ¢, selects action a in state 0. Both ¢y and ¢, are
conserving. However, V(0,¢o) = 0 and V(0,¢1) = 1. n

A policy 7 is called equalizing at state z if limsup,,_, Ef V(z,) < 0. A
policy is called equalizing if it is equalizing all all states z. It is easy to see
that if a policy is conserving and equalizing then it is optimal. An optimal
policy 7 is conserving and the limit of ET V(x,,) exists and equal to 0 for all
states z in which V(z) > —oo.

A natural question is when conserving policies exist. The Optimality
Equation implies that a stationary conserving policy exists if and only if
TV(x) is achieved for each z € X at some action a € A(z).

Consider the following conditions that are essential for the existence of
conserving policies.

e (i) A is a metric space and A is its Borel o-field;
e (ii) A(z) is compact for some z € X;

e (iii) p(y|z, a) are continuous in a and r(x, a) are upper semi-continuous
in a.

Lemma 10 If conditions (i-iii) hold for a given x € X and f is a bounded
above function on X then T%f(x) = T f(z) for some a € A(z).

... [fesh96 .
See Lemma 4.2(i) in :29 for the proof. In order to guarantee the existence
of conserving strategies, we consider the following assumption.

Compactness Assumption Condition (i) holds and Conditions (ii) and

(iii) hold fOE all zeX.

Lemma B.T and the Optimality Equation imply the following statement.

Corollary 11 If the value function V (z) bounded above then the Compact-
ness Assumption implies the existence of stationary conserving strategies.

In some applications, action sets are not compacts but can be approx-
imated by compacts in a way that it is expensive to select actions outside

11
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ex2

of compact subsets. For example, in some inventory models, the size of
the order may not be limited but large orders are expensive. To cover this
situation, we consider the following condition.

e (iv) For any positive number N there exist a compact subset By ()
of A(x) such that r(z,a) < —N for a € A(z) \ By (x).

Lemma 12 If conditions (i — iv) hold for a given x € X and f is a bounded
above function on X then T*f(x) = T f(z) for some a € A(x).

Proof. If Tf(z) = —oo then T“f( ) = T'f(z) for all @ € A(z). Let
T% f(z) > —oo for some a* € A(x) Let C > f(z) for all z € X. We
set N = C —T% f(z) + 1. Lemma %prhed to Bn(z) implies that
T f(z) = sup{T*f(x) : a € By(z)} for some o' € By(z). For any
a € A(z) \ By(z) we have that T%f(z) < C — N =T% f(z) — 1 < Tf(z).
Thus T% f(z) = Tf(z). .

Pre-Compactness Assumption Condition (i) holds and Conditions (iv)
and (iii) hold for all z € X.
c:conv
The following statements strengthens Corollary 55

Corollary 13 If the value function V(x) bounded from above then the Pre-
Compactness Assumption implies the existence of stationary conserving strate-
gies. In particular, the Pre-Compactness Assumption implies the ezistence
of stationary conserving policies for D, GD, and N MDPs.

Example 14 There are no conserving policies in positive MDPs satisfying
the Compactness Assumption.

Let X={0,1,... }U{g}, A= A(0) ={1/2,1/3,... ,0}, and A(z) = {0}
for x € X\{0}. We set p(g|z,0) =0 for z € X, r(g,0) = 0, and r(z,0) = z—1
for z =1,2,... . We also set 7(0,a) = 0 for all a € A(z) and p(z|0,1/z) =
1/z, p(g|0,1/x) = (x—1)/x. We have that V(g) =0, V(z) =z—1forz > 1,
and T'/*V(0) = 1 — 1/z. Since T°V(0) = 0, there is no conserving action
at state 0. n

c :nonrMv
In view of Corollary bTB,Wconsider the question if for any randomized
Markov policy 7 there exists a Markov policy ¢ such that v(z,¢) > v(z,w
for all z € X. This natural question was asked in Dynkin and Yushkevich B{%
Section 4.7]. The following example illustrates that the answer to this ques-
tion is negative even when 7 is randomized stationary.
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Example 15 (Feinberg and Sonin Efﬁ]g)s_lLet X = {(0,0)} U{(:,5)}, i =
1,2,..., j=—i+1,...,0}, A= {c, s}, where c stands for continue and s
stands for stop. We also have that A(7,j) = {c} when j < 0, A(0,0) = {s},
and A(4,0) = {c,s} when i > 0. The state (0,0) is a “grave.” This means
that p((0,0)](0,0),s) = 1 and 7((0,0),s) = 0. The system always moves
with zero reward from a state (i,j) to (i,j + 1) when j < 0. In other
words, p((3,j + 1)|(¢,7),¢) = 1 and r((¢,7),¢) = 0 when j < 0. For ¢ > 0
we set p((i + 1,0)|(4,0),¢) = p((0,0)|(,0),s) = 1 and r((i,0),c) = 2-0H+D,
r((i,0),s) = 1 —2-(+1),

We consider a randomized stationary policy 7 that selects actions ¢ and
¢ with equal probabilities, 7 (s|(¢,0),c) = 7(s|(¢,0),s) = 0.5 for ¢ > 0. Ex-
pected one-step rewards in states (i,0) are equal to 0.5 when 7 > 0. If the
initial state is (¢,0) with positive i, the income stream forms a geometric
progression with the first term and ratio equal to 0.5. The sum of this pro-
gression is 1. From each state (i,j) with j < 0, the system moves to state
(4,7 + 1) with zero one-step rewards until it reaches state (i,0). Therefore,
v(z,7) =1 for all z € X\ {(0,0)}.

Consider a Markov policy ¢. If ¢((¢,0),i —1) = ¢ for all ¢ > 1 then
v((1,0),7) = 0.5 < v((1,0), ¢). Therefore, if v(z,¢) > v(z, ) for all z € X
then ¢((4,0),i—1) = s for some 7 > 1. However, in this case v((i, —i+1), ¢) =
1—270+8) < o((i, —i + 1), ¢). .

1.4 Non-homogeneous and finite-horizon models

Sometimes it is natural to consider models in which all parameters of the
change over time. In this section, we consider models in which action sets,
transition probabilities, and rewards depend also on time. For such models,
called non-homogeneous, it is natural to expand the state space and consider
the standard homogeneous model with the state space X = X x N. By doing
this, we can expand all previous notations and results to non-homogeneous
models. The major distinction is that in the new model the states are
couples (z,n) instead of z. For example, values functions are V (z,n).

A particular important example of non-homogeneous models is a finite-
horizon model. For an n-horizon model, the state and action sets, reward
and transition functions remain unchanged at epochst =0,1,... ,n— 1. At
epoch n, the one-step reward is Vp(z), where 1} is a so-called final reward,
and the system stops. The final reward is also known under several other
names such as terminal reward or salvage value.

For each n-horizon model, it is natural to construct a non-homogeneous
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model, in which the model remains unchanged at steps 0,1,... ,n — 1. At
step n the reward function is Vy and the system goes to a “grave” which is
a state x with one available action under which this state is absorbent, i.e.
p(x|x,a) = 1, and one-step rewards are equal to zero, r(x,a) = 0.

If the original MDP contains nonnegative rewards, Vj is a nonnegative
function, and the expected total rewards are finite for any policy and any
initial state then the corresponding homogeneous model is positive. If the
original model is negative and 1} is a nonpositive function then the appro-
priate homogeneous model for an n-horizon model is negative. If the original
model satisfies the General Convergence Condition with 1} considered as a
reward at n-th epoch then the appropriate homogeneous model for an n-
horizon model satisfies the General Convergent Condition. In particular, if
the original model satisfies the General Convergent Condition and V5 = 0
then the homogeneous model, that corresponds to an n-horizon model, sat-
isfies the General Convergent Condition too.

For n-horizon models, it is natural to use notations Vj(z, Vo) instead of
V(z,n—1),i=0,...,n. Then Theorem bﬁplies that

Vot1(z, Vo) = TV, (x, Vo), z e X. (1.11)

Since any policy is equalizing, we obtain a dyn gléc programming algorithm
for N-horizon problems: first solve iteratively ?ETI‘F) forn=0,1,... ,N—1
with Vp(z,Vy) = Vo(z). Then for € > 0 we define a Markov policy ¢ =
(¢n,phiN—1,... ,$1) by Opt1(z) =a wheren=N—-1,N—-2,... .0z € X,
and a is an element of A(z) such that

TVy(z, Vo) > TV (2, Vy) — e/N.

Any policy is equalizing in the new homogeneous model. It is easy to see
that Markov policy ¢ is e-optimal. In addition, if this policy can be defined
as a conserving policy (¢ = 0) then it is optimal. For example, if functions
Vb and r are bounded above and the Pre-Compactne S, cA()Is“sr111mp’cion holds
then a conserving policy can be defined; see Corollary E3 (.

For the important case Vp identical to 0, we write V,(z) instead of
Vi(z, Vo). An important question is whether the sequence V,,(z,Vp) con-
verges. We denote Vo (z, V) = lim, 00 Vi (2, V) and Vio(z) = Vo(z,0)
when these limits, possibly infinite, exist. Sequential computation of V,
is called value iteration or successive approximation. When the limit V
exists, another important question is whether it equals V.
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1.5 Particular models

1.5.1 Discounted MDPs

We write the optimality operator 1" in the explicit form
T f(x) = sup{r(z,a) + BP*f(z) : a € Az)}.

This operator is a contracting mapping of the set of bounded uéyctions en-
. - A e

dowed with the norm || f|| = sup, f(z) into itself; see Denardo or Black-

well [7].” This implies that the optimality equation has a unique bounded

solution and the limit tQ%Er, Vo) exists and is equal to this solution for any

bounded Vp. Theorem 3 implies that this solution is V.

Theorem 16 Blackwell %?Denardo Hlf%?) Consider a D MDP.

(i) For any € > 0 there ezists a e-stationary optimal policy.

(#) If a stationary policy is conserving, it is optimal.

(iii) If the Pre-Compactness Assumption holds then there ezists a sta-
tionary optimal policy.

(iv) The limit Vi exists and equals V.

We remark that (i) and (ii) follow from the equalizing property applied
either to a stationary policy ¢ with T¢@V(z) > V(z) — (1 — B)e for all
z € X or to a stationary conserving policy; (iii) follows from Corollary W
boundness of V(x), and (iv); and (iv) follows from the fixed point theorem
for contracting mappings. We also remark that, as the following simple
example shows, the Optimality Equation may have additional unbounded
solutions.

Example 17 X = {0,1,... } and A(z) = {a}. All rewards are equal to 0.
If the system is in state 4, it moves to state i + 1; p(i + 1|i,a) = 1. We have
that V(z) = 0 for all z. However, any function u(i) = C/3* satisfies the
Optimality Equation v = Tu. "

1.5.2 Generalized Discounted MDPs

Theorem 18 Consider a GD MDP.

(i) For any € > 0 there exists a stationary e-optimal policy.

(i) If a stationary policy is conserving, it is optimal.

(#5i) If the Compactness Assumption holds then there exists a stationary
optimal policy.

(iv) The limit Voo () ezists and Voo (x) > V(z) for all z € X.
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Proof. The proof of statements (iii), coincides with the proof of the cor-
responding statements in Theorem A. (1v) Let 7(z,a) < C for all z and a.
If we subtract C from r then V(z,7) will be reduced by C/(1 — ) for all
x and 7. Therefore, Wgzﬁgcg%ved an equivalent N MDP and the inequality
follows from Theorem B(iv) . .

Example 19 (Vi (z) > V(z)) Let X = {(0,0)} U{1,2,...} x {0,1,...},
A = A(0,0) = {a®a',...}, and A(z) = {a°} when z € X\ {(0,0)}. From
any state (i,7) with ¢ > 0, the system moves to (i + 1, 7). This means that
p((i+1,4)|(i,4),a) = 1 when i > 0. If action o’ is selected at state (0, 0), the
system moves to (1,7). In other words, p((1,5)|(0,0),a?)=1. The rewards
are

o [ BT ifi=
r((i;g),a%) = { 0, otherwise.
We have that V;,(0,0) = 0 for n > 0 and therefore Vy(0,0) = 0. We also
have that V' (0,0) = —1. .

1.5.3 Negative MDPs

t6

Theorem 20 (Strauch fSS}%Consider an N MDP.

(i) For any & > 0 there exists a Markov e-optimal policy.

(#) If a stationary policy is conserving, it is optimal.

(iii) If the Pre-Compactness Assumption holds then there ezxists a sta-
tionary optimal policy.

(iv) The sequence Vy(x) is nonincreasing, the limit V(z) exists, and
Veo(z) > V() for all z € X.

(v) The value function V is the mazimum nonpositive solution of the
Optimality Equation.

(vi) If either X is finite or all sets A(x) are finite then Voo (z) = V()
for all z € X.

In order to verify (i), one should consider a Markov policy ¢ = {¢1, p2, . ..
such that T%®)y(z) > v(z) — ¢, for all z € X and for all n € N, where
€0+ &1+ ... < e Then the inequality v(z) < 0 implies e-optimality of
¢. (ii) follows from the same reasons where ¢ is a stationary policy such
that actions ¢(x) are conserving at z. ince VV(a:) < 0, the value func-
tion V is bounded above and Corollary B.7 implies (iii). (iv) is correct
because v(z,7) < v(z,m,n+ 1) < v(z,m,n) for any policy = and therefore
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V(z) < Vpgi(z) < Vu(x). Statements (i), (ii), and (iii) hold for general
convergent MDPs with V(z) < 0 for all z € X. The proof of these gen-
eralizations is the same as for N MDPs. It follows from the f: (%‘%Gthat any
policy is equaliz;%. Statement (vi) was proved by Strauch . When
g =1, E‘%%?ple .5 demonstrates the possibility of Voo (z) > V(z); see also
Strauch }

The following example demonstrates that stationary e-optimal policies
may not exist.

Example 21 X = {1,2}, A = A(1) = [0,1), and A(2) = {0}. State 2 is
absorbent with zero one-step rewards, p(2|2,0) = 1 and 7(2,0) = 0. If action
a is selected in state 1, p(1|1,a) = a, p(2|1,a) =1 —a, and r(1,a) = (a —1).
Then w(l,¢) = —1 and V(1) = 0. .

1.5.4 Positive MDPs

The notion of an e-optimal policies has been defined for a constant . It is
easy to extend it when a function f(z) is considered instead of constant e.
We say that a policy 7 is f-optimal for a given function f on X if w(z,7) >
v(z) — f(z) for all z € X.

Theorem 22 Co der o P MDP.

(i) (Blackwell s(z) = V(z) for all z € X.

(7) (Ornstein %52) For any € > 0 there ezists a stationary €V -optimal
policy.

(11i) The sequence Vy(x) is nondecreasing and the limit Vo (x) exists and
Voo (z) = V() for all z € X.

(iv) The wvalue function V is the minimum nonnegative solution of the
Optimality Equation.

The first result was established by Blackwell %fg Its proof consists of the
following steps. First, we introduce a discount factor § € [0,1]. Then
v(z,m,3) is non-decreasing in § and v(z, 7, 3) — v(z,7) as f — 1. We fix
an arbitrary e > 0. If ¢ is a stationary policy such that T*@y(z, 8) > v(z)—
(1—p)e for all z € X then v(z, 7, §) > v(x)—e for all z € X. This implies that
for any positive 8 < 1 and for any policy 7 there exist a stationary policy ¢
such that v(z, ¢, 8) > v(x,m, ) for all x € X. Consider an e-optimal policy
m. We fix z € X and consider 3 such that v(z,n, 3) > v(z,7) —e. We have
that

s(z) > v(z, 9, 0) > v(z,7,0) —e > v(x,m) — 2 > V(x) — 3e.
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Since € > 0 is arbitrary, s(x) > V(z). However, s(z) < V(x). Thus, s(z) =
V(z) for all z € X.

The proof of (ii) is non-trivial and it was explained in Ei?ater details
in Hordijk [39]. Statements (ii) and (iii) are easy. Example B.7 shows that
conserving strategies may not be optimal. In addition it shows that the
Compactness Assumption does not imply the existence of a stationary op-
timal policy even when the state space is finite.

cfemo
Example 23 (Cavazos-Cadena, Feinberg, Montes-de-Oca W Consider
an MDP with state and action spaces given by X = {0,1} and A = [0, 1],
respectively. The sets of admissible actions are defined by A(1) = A =
[0,1], and A(0) = {0}, whereas the transition law and the reward func-
tion are determined by

p(0|0a0) =1, p(0|1aa) =a=1 —p(1|1,(1), ac [Oa 1]a

and
r(0,0) =0, and r(1,a) =a(l—a), a€0,1].

From these definitions, it is clear that 0 is an absorbing state under every
policy and that V(0) = 0. Also, stationary policies are naturally indexed by
the action they prescribe at state 1: ¢, € F is given by

¢a(1) =a, (ba(O) =0, ac [07 1]
The following statements are true for this example:

(a) the expected total-reward at state 1 under policy ¢, is given by v(1, ¢g) =
1—aifae€(0,1], and v(1,¢,) =0 if a = 0;
(b) the optimal expected total-reward at state 1is V(1) = 1;
(c) an optimal policy does not exist. )
t:negatl

Indeed, (i) implies that s(1) = 1. Theorem [7(1) and (a) imply (c). From
(a) and (b) we have that there is no stationary optimal policy. However, if
an optimal policy exists in positive dynamic programming then a stationary
optimal policy exists (Puterman 1994 , p. 324). Therefore, (a) and (b) yield
(c).

Now we verify (a). Let a € (0,1] be fixed. Starting at state Xo = 1,
under policy ¢, the system will arrive to state 0 at a random time 7" which is
geometrically distributed with parameter a, that is, for each positive integer
n, ]P’(f“{T =n} =a(l—a)" ! and a reward r(1,a) = a(l — a) will be earned
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at each integer time ¢ € {0,1,... ,7 — 1}. Since r(0,0) = 0 and state 0 is
absorbing, we have

V(15¢u E¢a = T(l,a) Efa [T]

T—1
Z T Xta At
t=0

:a(l—a)xE‘f“[T]:a(l—a)xé:(l—a).

Consider now a = 0. In this case, state 1 is absorbing under ¢, = ¢g, and a
reward r(1,0) = 0 is earned forever, so that V(1,¢g) = 0. .

Blackwell 67constructed an example when there is no stationary e-
optimal policy for a positive countable MDP with a finite state %} saa%t'ons.
The following example, which is Example 2 in Feinberg and Sonin shows
that randomized Markov K-optimal policies ay ot exist for any K > 0;
see also relevant Example 2.26 in van der Wal r58

Example 24 Let X = {(0,0)}U{(¢,7): 1 =1,2,... ,j=—i+1,...,0,1},
and A = {c¢,s}. In states (0,0) and (i,7), where i = 1,2,..., and j < 0,
the actio X%ets transition probabilities, and rewards are the same as in
Example B:3. We set A(i,1) = {¢} and p((0,0)|(1,1),¢) = 1, p((4,1)|(i +
1,1),¢) = 1, and r((4,1),c) = 1,7 = 1,2,... . We also set A(i,O) = A,

p((O,O)KiaO)aC) = p((i-l—l,O)l(i,O),C) = 0.5, p((2i—’i2—|—i—1, 1)|(i,0),5) =1,

and r((i,0),a) = 0,7 =1,2,... ,a € A.
We denote g(i) = i — i + 1. The sequence g(i) is used in this example

g(gji) — 0 as i — oo, (b) g(i) > 0 when

because of its three properties: (a)
i >1, and (c) Z;)olg() < 0.

Let i be a positive integer. If action s is selected in state (4, 0), the total
future reward is 2° — g(i). If action c is selected in this state, the system
moves with fifty-fifty chances to the “grave” (0,0) or to the state (i + 1,0).
Let ¢ be a Markov policy and m = min{n > 0| ¢,(i+n) =s, i =0,1,... }.
If m < oo, we have that v((4,0), ¢) = 27"(2t" — g(i + n)). If m = co then
v((4,0), ¢) = 0. Therefore, v(i,0) = 2°. The optimality equation implies that
v(i,7) = 2° when j < 0.

Let ¢ be a randomized Markov K-optimal policy for some constant K >
0. Since v((i, j),%) > V(i,j)— K = 2°— K, j < 0, we have that 7;(s|(i,0)) <
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t=0
(sl (5, 0) (2 = 9(0)) + 3 malsli + m, 0) ()"
TI = mi(sl(s + 5, 0@ — g(n +1)) <
=0

o o
=i =i

when i is large enough. The last inequality holds since

Z;’ol o) — 0 as j — o0o. Thus 9 is not K-optimal and for any K > 0
there is no randomized Markov K-optimal policy. n

Puterman HS] describes a generalization of positive models called pos-
itive bounded models. For these models the assumption that the reward
function r is nonnegative is replaced with a weaker assumption that for
each z € X there is at least one a € A(x) for which r(z,a) > 0. As explained
in Puterman [48], these more general models inherits many properties of
positive models. Our remark is that, though S = V for positive bounded
models, stationary eV-optimal may not exist for them. The following ex-
ample shows that randomized Markov €V -optimal policies may not exist in
positive bounded MDPs.

Example 25 Counsider Example Eltgr Let ¥ and V denote functions v and V
in that example. If ¢ is a randomized Markov policy such that 9((, j), ) >
V(i,j) — 1 for all i > 1 and j < 0 then ©((3,0),%) < V(,0) — 1 for large
1. Using the same arguments as in the previous example but with slightly
more complicated calculations, it is possible to show that o((i,—1),%) <
V(i,—1) — K for some i. We recall th e‘g{y(i,j) =20

Now we slightly modify Example B8 by setting A(i, —1) = {c, s} with

p((3,0)|(i,—1),¢) = 1, r((i,—1),¢) = 1 — 2 and p((0,0)|(i,—1),s) =1,

r((¢,—1),s) = 0. In other words, the decision maker can either pay 2' — 1
and move to the state (i,0) or collect zero return and stop the process. Since
v(3,0) = 2%, the optimality equation implies that V(i,57) = 1 when j < 0.
Fix ¢ > 0. Let ¢ be a randomized Markov policy and v((¢,7),¢) > 1 —¢
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when 7 < 0. Consider the model from the Example E}T{g. For that model
consider a randomized Markov policy 9 which coincides with ¢ g}‘gsall states
except (i,—1), 4 =1,2,... . Since in the MDP from Example l3_8 we have
that A(i,—1) = {c}, policy ¢ always selects action c at states (i, —1). We
observe that v((i,5),¢) < 9((i,7),%) + 2° — 1. Therefore, if v((i,7),¢) >
V(i,j) — eV (i,7) for all states (i,7) with j < 0 then ¥((,j),v) > 2¢ — ¢
for all states with j < 0. As explained in the previous paragraph, this is
impossible. .

1.6 The first main theorem: uniformly nearly-optimal

stationary policies
s:SP

Comparison of positive and negative MDPs creates a strong impression thlat
these models are totally different; see the table on page 324 in Puterman [48].
For example, for P MDPs s = V but it is not true for N MDPs. In addition,
it is even not obvious how to define a unified notion of e-optimality. The
notion of eV-optimality, which is natural for P MDPs, is not applicable
to N MDPs because policies cannot better than optimal. The notion of
e-optimality, gs}z{]gich is natural for N MDPs, is not applicable to P models;
see Example B.8.

As the result, almost all 1t{ooks treat these models sep raltlely. The ma-
jor e e gions are Hinderer [38], Dynkin and Yushkevich , and van der
Wal . The first two books wer 1vvrit‘cen when very little was known
about GC MDPs. Van der Wal introduced several new results includ-
ing several counterexamples, the proof that s =V when all actions A(x) are
finite, and interesting results on value iteration. The following result has
been known for a long period of time.

62 6.
Thegrem 26 (Blackwell %TKrylov A1 , Dynkin and Yushkevich 'ﬂci , Kallen-

berg fi ) If X and A are finite then there ezists a stationary optimal policy.

ex6 lex8

As Examples IS_G and l3_8 demonstrate, if either X or one of the sets A(z)
is infinite then optimal policies may not exist. Van der Wal R’%Bg#owed that
if all states A(z) are finite then s(z) = V(z) for all z. Schél extended
this result to Borel state problems with compact action sets.

For a long period time, there were no results available on the existence
of stationary uniformly nearly—op% L policies in GC MDPs. Probably
the first result was van der Wal’s heorem that states that stationary
eV -optimal policies exist if for each z € X< = {z € X| V(z) < 0} there

21



existste?ncog,%(frving action. This result generalizes Ornsten’s theorem (The-
orem [7(i1)). The weak point of this statement is that the use of function V,
in the definition of e-optimality does not look natural when reward functions
can be negative. For example, if V(z) is always nonpositive and there is a
conserving action in each state, such actions form a stationagno ;c%mal pol-
icy; this fact follows from the same arguments as Theorem B(i1)- oweyer,
it is possible that Vi (z) is unbounded from above and van der Wal’s %’60]&
result implies the existenc % s;cglionary policies which are far from optimal.
Van der Wal and Wessels [61] asked whether V. could be substituted with
a better function. 5083

Now we describe the result from Feinberg and Sonin %ﬂﬁl the existence
of uniformly nearly-optimal policies within the class of stationary policies for
GC MDPs. This result implies Ornstein’s theorem and many other specific
results. First, we define the sets

Xs ={z € X| v(z,¢) = s(x) for some ¢ € S};

X ={z € X| v(z,n) = V(z) for some 7 € IT}.

For any x from Xp there is a policy m which is optimal for this state.
Similarly, for any = from Xg there is a stationary policy which is the best
stationary policy for this state.

Let @ be the class of numerical functions on X such that Pf* < oco. We
observe that functions V, S, V belong to ®. Constants also belong to ®.
For Z C X and for any function f € ®, we denote by L(f,Z) the set of
nonnegative functions ¢ on X such that ¢(x) > 0 and ¢(x) > max{f, P{}
when z € X\ Z. We also define L(f) = L(f,0).

We remark that L(f, Z) is the set of nonnegative functions which are
positive excessive (or super-harmonic) majorants of f on X\ Z. The sets
L(f,Z) possess the following two properties: (i) if f(z) > g(z) for all x €
X\ Z then L(g,Z) O L(f,Z), and (ii) if Z C Y then L(f,Z) 2 L(f,Y).
We also observe that if £ € L(f, Z) then £y € L(f, Z) where lp(x) = I(x) for
z €X\ Z and [p(z) =0 for x € Z.

We observe that Vi + 1 € L(V). Therefore, the set L(V,Z) # 0 for
any Z. We also observe that V € L(V, Xg) in P MDPs and V, € L(V, Xg)
if for each x € X< there exists a conserving action. Indeed, consider the
set X* = {z € X|V,(z) = 0}. If an initial state belongs to X* the system
will never leave X*. Therefore, we get a negative MDP if we restrict X to
X*. Since there are conserving actions in all sets A(z) when z € X< and
X* C X, there is a stationary optimal policy in the negative MDP with
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the state space X*. therefore, there is an optimal stationary policy for any
initial point z € X*. Thus, X* C Xg. And we have that V; € L(V,, X*) C
L(V, Xs).

Theorem 27 (First main theorem: he existence of uniformly optimal sta-
tionary policies; Feinberg and Sonin , Theorem 2.1.) For any e > 0 and
for any € € L(s,Xg) there ezists a stationary policy ¢ such that v(z,p) >
s(x) — el for all x € X.

The proof of Theorem t'?sa lrrl%t trivial and we do not consider it here.
This theorem provides a unified way to prove the existence of uniformly
el-optimal policies: it is sufficient to prove th b :%gw;t:l V(x) for any given x
and that £ € L(s, Xs.) As we saw in Theorem [7, the proof that s(z) = V(x)
is significantly easier that the direct proof that there are uniformly nearly-
optimal policies. For example, for P MDPs, we haye, s(z) = V(z) (Theorem

1)) and V € L(V, Xg). Therefore, Theorem bﬁpﬁes Ornstein’s theorem.
If there is a conserving action for any z € X< then s(z) = V(z); this and
more general r%s%ilit‘isn follow from our ain statement, Theorem 20. ere-
fore, Theorem 9 implies van der Wal’s rﬁl) described before its formulation.
We also observe that if V' is bounded above by a constant K then K € L(V).
Therefore, if S =V and V is bounded P:E)nggntihen there exist stationary e-
optimal policies. For example, Theorem 9 implies the existence oé stationary
g-optimal policy for positive bounded models from Puterman &8] Indeed,
it is easy to see that in this model V(z) > 0 for all z and if V(z) = 0 then
there is a conserving action at z. Thus, s(z) = V(z) for all z in positive
bounded models. + maind

An important corollary from Theorem th‘Hat the value function s is
the solution of the optimality equation.

83
Theorem 28 (Feinberg and Sonin Ef'ls,iﬂeorem 2.2)) s(x) =Ts(z) for all
zeX.

We remark that we do not know how to prove s = T's in GC MDPs without
t:mainl

using Theorem 5% easy to show that T's(z) > s(x) for all x € X. In
order to prove s(z) > T's(z) we need to use the existence of a stationary
policy ¢ such that v(z, ¢) > s(z) —&(z) for all z € X and for some function
¢(z). In the proof of 1 > TV, we used Corollary m similar result.
After Theorem U is established, the ers%%g of s = T's is similar to the proof
of V.= TV; see Feinberg and Sonin }g'l']—f?)r details.

An important question is how to expand the class of functions L(s, Xg).
One possible approach is to replace s in L(s, Xg) with a function d < S. Our
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particular interest is to consider d defined in a way that it is possible tAlS t s is
not bo r%g d above but d is bounded a;tg(l)lve. Van Dawen and Schal , van
Dawenjf%"% and Schéal and Sudderth %ZTconsidered functions d of this type
for particular models. These functions were related to the limiting behavior
of s(xy). For countable MDPs, the bro desf, known class of such functions
was introduced in Feinberg and Sonin }FSQ](}._Let Q° = U {7 < n} be the
set of all uniformly bounded stopping times. Let

ds(z) = sup inf ES s(x,).
¢S TEQL

The following theorem generalizes Theorem 9 in the sense that it describes
a larger class of functions £ with respect to which e-optimal policies exist.

85
Theorem 29 (Feinberg and Sonin 239250, Theorem 1.) For any ¢ > 0 and
for any € € L(d, Xg) there ezists a stationary policy ¢ such that v(z,d) >
s(x) — el for all x € X.

We say that an MDP is deterministic if al trapsition probabilities p(y|z,a)
are equal to 0 or 1. Bertsekas and Shreve proved the existence of sta-
tionary e-optimal policies in P MDPs.

eso83
Theorem 30 (Feinberg and Sonin %‘l,_%ction 5]) Consider a deterministic
MDP. Consider an arbitrary nonnegative function £ on X such that () >
U(y) for z,y € X\ X when there is an action a € A(x) such that p(y|z,a) =
1. Then for any € > 0 there ezists a stationary policy ¢ such that v(z,¢) >
s(z) — el(zx) for all z € X. In particular, in a P MDP for any € > 0 there
ezrists an e min 1, V -optimal stationary policy.

We see that stationary ef-optimal policies exist in deterministic models
for a broader class of functions Ei-, ﬁaqg}%ral direction of research is to expand
the class L(d, X;) in Theorem IT.” An open question is ) et results that
unify deterministic and stochastic models; see Feinberg for additional
details. Function d 'lslsrelated to value functions i a%%g%bhng problems; see
Dubins and Savage %'Dfand Maitra and Sudderth . However, the mean-
ing of this relationship currently is not clear. -+ meriadnim

In conclusion, we illustrate how Theorems )Q‘Nme used to prove the
existence of uniformly nearly-optimal policies in particular models.

Theorem 31 (cp. Cavazos-Cadena and Montes-de-Oca Fi ) Consider a
negative MDP, all rewards v are nonpositive. Assume that if V(z) > —oo
for some x € X then

. . ¢ o
nlgrolo qlﬁIelg E? v(zp, ¢) = 0. (1.12)
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If this assumption holds then for any € > 0 there exists a stationary e-optimal
policy.
[t :maini

Proof. In view of Theorem U, it is sufficient to prove that s(z) = V(x) for
all x € X. Since s(z) < V(z) we have that s(z) = V(z) when V(z) = —oc.
We observe that it is sufficiently to prove the theorem for the situation
when V(z) > —oo for all x € X. Indeed, let Y = {z € X]| V(z) = —o0}.
If Y = X then the problem is trivial. So, we consider the case, Y # X. In
this case, we exclude the subset Y from X and remove all actions a such
that p(Y|z,a) > 0 from sets A(x) when z € X\ Y. We remark that A(z),
X € X\'Y are still nonempty sets after this procedure because otherwise
we would have V(z) = —oo. So, we have received a new model in which
condition (E‘fﬁ) holds for all z € X. )

So, it is sufficient to show that s(x) = V() for any z € X if (lg_lc'ﬁ) holds
for all x € X. In order to do it, we fix an arbitrary € > 0 and an arbitrary
x € X. Then we select n > 1 such that

dl)IelgEﬁ v(zp, P) > —¢. (1.13)
We also select a stationary policy ¢ such that T¢(®)V (z) > V(z) — e/n for
all z € X. We have that

(T*)"V (z) > V(z) — e. (1.14)
We also have
s(z) 2 v(z, ¢) = T?u(z,¢) = (T?)"v(z, ) = (T?)"(v(z,¢)~V (2)+V (z)) =
(T)"V (z) +ES v(zn, ) — EZ V(za) > V(2) — 2¢.

The last inequality follows from (|3e.:cl I%,E?.ec l ZIOtinnd V(z) < 0. Since € > 0 is
arbitrary, s(z) > V(x). Thus, s(z) = V(z). .

We remark that s = V if s_ = V_ where the minus means that the
Etl:lﬁgggn is related to the model in which r is replaced with r~; see Theorem
. 9o, if tt:hc% model, in which r is replaced with r~ satisfies conditions of
Theorem ﬁB_fhen for any ¢ € L(ds, X) and for any € > 0 there exists a
stationary ef-optimal policy. We also observe that X = X if V = s.

e8
Theorem 32 (Corollary 2 in Feinberg :23 ) If for any z € {z € X| V(z) >
—oo} and for any m € IM

limsup ET s(zp,) > 0

n—o0
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then for any £ € L(ds,Xm) and for any € > 0 there exists a stationary
el-optimal policy.

In conclusion, we remark that s(z) = sr(z) for all z € X where sg(z) =

Supyenrs v(z, m) forallz € X. [higresult was proved for the countab > ghate
MDPs by Feinberg and Sonin and for Borel MDPs by Feinberg :

1.7  (f,I)-generated policies

dw83
Van der Wal [59 proved that for apy € >0 r,:ca};]t%]i?n exists a Markov ef-optimal
policy with £ = V, + 1. Theorems g and E [ 1mply similar results for broader

sets of functions ¢. Indeed, let us replace the state space X with the state
space of couples (z,n) where z € X and n = 0,1,... . The process moves
from states (z,n) to (y,n + 1) with transition probabilities p(y|z,a). There
is one-to-one correspondence between stationary policies in the new model
and Markov policies in the original one. We also observe that if there exists

a policy 7 such that v(z,7) = V(z) for some z € 3% then there is a Markov

policy ¢ such Ith%g iggm,w) = V(x); see Corollary B.3. ese observations
and Theorems U 1mply the following result.

es085
Theorem 33 (Feinberg and Sonin :32 ) For any € > 0 and for any ¢ €
L(V, X11) there exists a Markov el-optimal policy.

. t:mainim t:maini |
We remark that if one uses Theorem [IT instead Theorem en a slightly

more general class of function ¢ can be considered. We shall formulate it as
a part of a more general statement. The natural question is which classes
of strategies contain uniformly mearly-optimal policies. In order to answer
this question, we consider the following construction.

Let I ={0,1,...}and f : H — I. A policy 7 is called randomized (f, I)-
generated if 7, (-|h,) = o(-|zp, f(hy)) for some conditional distribution o.
We also consider nonrandomized (f, I')-generated policies. In the latter case,
Tn(hn) = 0(Zp, f(hy)) where o is a mapping from X x I to A. If we say that
a policy is (f,I)-generated we mean that it is nonrandomized and (f,I)-
generated.

Markov policies are an example of (f,I)-generated policies. In this case
f(hy) = n. Stationary policies form another examp%;%n this case, f(h,) =0
for all h,. Tracking strategies introduced by Hill is the third example.
For tracking policies, decision depends on the current state and the num-
ber of visits to it, i.e. f(hn) = D1 oI{z; = z,}. So, I is the information
available about the past and f is a memory function which indicates what
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information about the past is remembered. We consider the following con-
dition.

Transitivity Condition (Feinberg and Sonin &Eﬁ_lf f(hy) = f(RL,)
and =, = z),, where h, = zpapx1...z, and h, = :coaoxl ... 'm, then
f(hpaz) = f(hl,az) for all a € A(z,) and for all z € X.

In other words, the current state z,,, the current information i,, = f(hy,),
the next action a, and the next state z completely define i, 11 = f(hpaz). We
observe that stationary and Markov policies satisfy the Transitivity Condi-
tion and tracking policies do not satisfy this condition. We denote by I the
set of (f, I)-generated policies. We also denote by RI f the set of randomized
(f, I)-generated policies. We define

V! =sup{v(z,7) : well}, V}J{ = sup{v(z,n) : me RI'}.
Let
d’(z) = sup inf B2V (z,).
pe1f TEQY
Let also

X/ = {z € X|v(z, ¢) = VI (x) for some ¢ € I'}.

es085
Theorem 34 (Feinberg and Sonin :32 ) Let function f satisfies the tran-
sitivity condition. Then V/(z) = VI{(:E) for all z € X and for any ¢ €

L(d',X/) and for any € > 0 there exists an (f,I)-generated policy ¢ such
that V(x,¢) > VI (x) — eb(x) for all z € X.

t:trans

The proof of Theorem }TGFlTased on the following observation. Consider
the MDP with the state space X x N. If the transitivity condition holds then
there is a one-to-one correspondence between (f, I)-policies and stationary
policies in, the new model where states are in fact couples (gn, [{hz)). Then
Theorem [16 Tollows from s(xz) = sr(x) and from Theorem

Markov and stationary policies are two examples of classes of policies
satisfying the transitivity conditions. %(é%er important example is so-
called Y-policies introduced in Feinberg . For Y-policies, defined by a
subset Y of X, decisions depend on the following factors: (i) the current
state, (ii) the number of visits to Y, and (iii) the time passed after the last
visit to Y. For any history h, € H,, n =0,1,... , we define the number of
visits to Y

m(hp,Y) = ZI{agz €Y}
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We also agree by that definition z_; € Y and let £(hy,Y") is the epoch when
the system visited Y for the last time,

&(hy,Y) =max{i = -1,0,1,... ,n| z, €Y}

and 0(hy,Y) =n —&(hy,Y) be the time passed after the last visit.

For Y-embedded policies we define I = {0, 1,... }x{0,1,... } and f(h,) =
(m(hp,Y),0(hy,Y)). We observe that if f(h,) = (m,i) then f(hy,a,z) =
(m,i+ 1)I{z ¢ Y} + (m + 1,0)I{z € Y} where I is an indicator function.
Therefore, the Transitivity Condition holds and Theorem mbe applied
to Y-embedded policies. We also remark than in two extreme cases, ¥ =X
and Y = (), the set of Y-embedded policies coincides with the set of Markov
policies.

Let 7! be the first epoch when the system hits Y, 71(h) = min{n >
0| z, € Y} and let 7™ be the (m + 1)-hitting epoch for Y : 7™ = min{n >
" zn € Y}. We observe that {7 (h) = n} = {(m(hn,Y) = m, 0(hn, X )=
0. The following theorem is a direct generalization of T%ezi%rem W
embedded policies. It was proved by induction in Feinberg when A\; =1
and A\; = 0 for ¢ > 1. However, in the case of arbitrary )\;, the proof remains
the same.

A e87 1 9 .
Theorem 35 (Theorem 4.1 in :221 ) Let m,7%,... be an arbitrary sequence
of policies and A1, Ao, ... a sequence of nonnegative numbers summing to 1.

For an arbitrary Y C X consider a randomized Y -embedded policy © defined
by

© NPT (zymag =y, T S T 4k arm g € C
7O yom k) TENTE ek = it €C)

SR NPT (7 + k =y, L > pmo k)
(19
e : eqrandE
whenever the denominator in A??j%??not equal to 0, where C € A, y € X,
m=1,2,...,and k=0,1,... . Then, for all m,k =0,1,..., y € X and
measurable subsets C of A(y),

P7 (:ch+k =y, 7 > M Lk amy € C) =

o
SONEE (s = 57 5 g€ ), (V16)
=1

and therefore

v(z,7) = Z)\iv(:n,wi). (1.17)
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Theorem t'elf)t;%%ides an important result in the following direction. Let
A be some class of randomized policies. Then there is an explicit formula
such that indicates a policy # € A for a given initial state z and for an
arbitrary policy 7 such that v(z, o) = v(z, 7).

Th %"ggul@ 8j7n this direction were provided for stationary policies b(}/é
Krylovj{%ﬂ,_fﬁﬁ—ﬁ‘ discounted controlled diffusion processes and by Borkar
for discounted MDPs. Altman proved the same result for MDPs with
uniformly bounded life times. Discounted MDPs are a particular case of
such models. In this case, the occupation measure for the original policy
is equal to the occupation measure for the corresponding randomized sta-
tionary policy. For a more gener%sﬁase when the expected number to each
state is bounded above, Altman [I] proved a weaker result that the occupa-
tion measure for the corresponding randomized station Y icy majorizes
the original occupation measure. Feinberg and Sonina%[?ﬂ*constructed an
example when the strong inequalit, 1; :tez%n]%%% place.

We remark that our Theorem as no limitatiogclz I?&Mtalll‘ﬁolrife time of
the syste t:.e&bne &s a direct generalization of Theorem T which follows from
The tr%%%W%n Y = X aor Y = (). Unfortunately, its relationship of Theo-
rem [I'7 with the results on the existence of equivalent randomized stationary
policies is unknown; see Borkar’s paper in this volume.

In addition to the Transitivity Condition, the so-called Non-Repeating
Condition for (f,I)-policies plays an impor%%role.

Non-Repeating Condition (Feinberg If history h,, = xoag . .. T
is a continuation of history h, = xgag...Zn, i.e. hym = hpay ... Ty, then
(@n, f(hn)) # (@m, f(hm)).-

In other words, if the Non-Repeating Condition means that if m > n,
hm = hpapTp41 - - - T, and x, = xp, then f(hy,) # f(hy). Markov, track-
ing, and Y-embedded policies are examples of (f, I)-generated policies that
satisfy the Non-Repeating Condition. Stationary policies do not satisfy this
condition.

Any randomized (f, I)-generated policy = is defined by transition prob-
abilities 7(-|z,7). Any nonrandomized (f,I)-generated policy o is defined
by a function o(x,i). Let I/ be the set of all functions ¢ on X x I with
values on A and such ¢(z,i) € A(x) for all z € X. Any randomized (f,I)-
generated policy 7 defines a measure m™ on the set I/ defined as the product
of the countable set of independent measures m(-[z,7) over the set X x I;
see Neveu , Proposition VI.2] for the existence and uniqueness of such
products.
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c:nonrep

87
Theorem 36 (Feinberg éel, Theorem 3.1) If the function f satisfies the
Non-Repeating Condition then for any C' € Fy and for any randomized
(f,I)-generated policy 7

PT(C) = / PS(C)m (d) (118)
If

and therefore v(z,m) = [ v(z,d)m(dp).
1f

Corollary 37 If w is a randomized (f,I)-generated policy, f satisfies the
Non-Repeating Condition, and x is any fized element of X then v(z,¢) >
v(z, ) for some (f,I)-generated policy ¢.

Thus, we have three groups of results that can help us to prove the
existence of uniformly EE_OP$E$8! Btolicies in some class of nonrandomized
policies. First, Theorems

releva t gres ltssrfor st t1 pary polici S6
related to occupation m surgees see Krylov %2 Zlg Bor fF[Z Altman ; )

and Feinberg and Sonin provide the methods to prove that for any ini-

tial state and policy tlhere is an equlltvaclearlllts randomized policy in a gwﬁgs%léabss £692

of pohmes Theorem 18, Theorem 16, or equality s(x) = sr(z) (see

e:nonrep

mainl

t
at a policy can be selected in a nonrandomized form. Theorems b
ﬁP n1m| E

Ill and Ilb 1mply the existence uniformly e/-optimal policies within certain
classes of policies.

1.8 The second main theorem: uniformly nearly
optimal locally stationary policies

formly nearly optimal policies in P MDPs. Example e'mplies that such
policies do not exist in N MDPs. Demko and Hil proved that if
r(z,a) = r(z) < 0 all z € X then for any ¢ > 0 there exists a station-
ary e-optimal policy. This result can be interpreted in the following way: if
rewards are negative in a strong sense then there exist stationary uniformly
nearly optimal policies.

Since stationary nearly optimal policies may not exist, it is natural to
consider subsets of the state space on which such policies exist. We say that
a nonrandomized policy ¢ is stationary on the set Y C X if ¢, (zgag ... z,) =
é(zy,) for some function ¢ when z,, € Y. We denote by II%Y the set of policies

t:negatl
Ornstein’s theorem (Theorem [7{i1)] implies the existelEe%% of stationary uni-
1
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stationary on Y. We remark that II¢ = II*. We also denote

sy(z) = sup w(z,@).
¢EHS’Y

We consider the sets

Xt={zeX| V() >0}, X ={zecX| V(z)<0}
X¢={z e X| A%z) #0}, X*=XTUX UX*

Thus, X is the subset of states where the value function is positive, X~ is the
subset where the value function is positive, and X¢ is the set of states where
exist conserving actions. We have that the set X* contains all elements of X
except those where t e Xalue function is equal to 0 and there is no conserving
actions. Chitashvili [64] showed that if X is finite then sx-(z) = V(z) for

all x € X. Feinberg proved the existence of uniformly nearly optimal
policies in TISX" for the countable state space.
Let

d(z) = sup inf B2V (x,). (1.19)

pells,X* TEQP
. . . . . &517»63 a
The following theorem is a particular case of Theorem 6.2 in Feinberg .

Theorem 38 Consider a set (f,I)-generating policies I1 with the function
f satisfying the Non-Repeating Condition. Then for any € > 0 and for any
¢ € L(d,Xn) there exists a policy ¢ with the following properties: (i) ¢ is
stationary on X*, (ii) ¢ € I7, and (iii) is uniformly e(-optimal, i.e.

v(z, @) > V(z) — el(x), z € X.

We observe that if Y C Z then sy (z) > sz(z) for all z € X. In view of
Theorem 191t 18 natural to find the biggest set Y for which sy (z) = V(z) for
all z € X. Unfortunately, even when X is finite, it is possible that there are
several maximum sets with this property (a subset Y is called a maximum
subset with a given property if there is no set Z other than Y such that Z
satisfies this property and co t?'ns Y). The following example is similar to
one provided by Chitashvili %"5 It shows that it is possible that sy = V
and sz =V but sxuy(z) < V(z) for some z.

Example 39 Let X = {0,1,¢9} and A = {0} U {b,8%,...} U {c!,?,...}.
The state g is absorbing, A(g) = {0}, r(g9,0) = 0, and p(g|g,0) = 1. We
also have that A(z) = {b',6%,...3 U {c!,c? ...} for z = 1,2. We also
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have p(g|$,bi) = 1/% p($|$,bz) =1- 1/% p(1|0a Ci) = p(0|1aci) = 1, and
r(z,b) = r(x,c!) = —1/i for i = 1,2,... and z = 0, 1. It is easy to see that
V(g) =s(g) =0, V(0) =V(1) =0, and s(0) = s(1) = —1. Let Y = {0, g}
and Z = {1, ¢}. Then X = YUZ. It is easy to see that sy (z) = sz(z) = V (z).

e87a

According to Example 6.1 in Feinberg %Zﬂfthe following situation is
possible. There are finite sets Z,, n = 1,2,... such that Z, C Z,,,
X=U 12y, sz, =V but s # V. Since s = sx, this example shows that if X
is countable, maximal subsets, for which there exist good policies stationary
on them, may not exist. %hge%afollowing natural way to expand the set X*
was described in Feinberg .

Let r(z,a) = r!(x,a) + r?(z,a) where 7! and 7? are measurable in a.
We assume that r? is a nonnegative function and consider two MDPs with
the same state space, the same action spaces, and the same transition prob-
abilities as the original MDP but with the reward function r! and 72 re-
spectively. Let V! and V? are the value functions for these MDPs. We
assume that V2(z) < oo for all x € X. We also set Z = {z € X| V1(z) < 0}.
Of course, the set Z depends on the selection of r? which defines r! and
V1. For example, we can select r2(z,a) = 0 for all x and a. In this case,
r=7r+0and Z = X~. We can select 7%(z,a) = r*(z,a). Then r! = r~ and
Z =A{z € X] V_(z) < 0.} It is obvious that this set contains X~. We also
can select r? = krT where k is a constant or nonnegative bounded function
of z and a.

We also remark that if a function r“ is replaced with a function, that
is greater or equal to 7%(z,a) for all z € X and for all @ € A(z), then the
corresponding set Z expands. However, the function ro cannot be arbitrary
large because of the condition V?(z) < oo for all z € X.

2

e87a
Theorem 40 (The second main theorem; Feinberg EZSTT Consider a set
(f,I)-generating policies IT with the function f satisfying the Non-Repeating
Condition. Let Z be a subset of X defined above by some nonnegative func-
tion 2 with V2(x) < oo for all x € X. Then for any € > 0 and for any
¢ € L(d,Xn) there ezists a policy ¢ with the following properties: (i) ¢ is
stationary on X* U Z, (ii) ¢ € I7, and (iii) is uniformly el-optimal, i.e.

v(z, @) > V(z) —el(x), z € X.

t:main2 |
We remark that Theorem i‘Z(i implies almost all known results on the
existence of uniformly nearly optimal policies. For example, for P MDPs,
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[t :main2
X =X* and Theor%%%(lﬁplies Ornstein’s theorem. For I1 = I it im-
plies van der Wal’s heorem on the existence of uniformly nearly optimal
t;% I%gl{gy policies. If I7 is selected to be the set of tracking policies, Theorem
gives éﬁglf positive answer to the question asked by van der Wal and Wes-
sels on, lEgllienfxistence of uniformly nearly optimal policies. If X% C X*

Theorem BUWplies the existence of stationary ef-optimal policies 51% Zfhis
result strengthens van der Wal’s tlélgé)fem on stationary strategies [} see
also Theorem 2.22 in van der Wal . In addition, if X and A are finite, this
result implies the existence of stationary optimal policies because the set of
stationary policies if finite and the st éclgarllﬁnrly el-optimal policy is optimal
for small € > 0.. In addition, Theorem L’l contains the statement that if there
exists an optimal policy then there exists a stationary optimal P:?nlic?{i

There are two important open questions related to Theorem 9: (1) how to
provide the broadest natural description of the set where stationary policies
are sufficient; (ii) how to decrease the function d? With respect to the
second question, it would be nice to select d in a form that it equals to
0 for deterministic MDPs. Some results and disc e%lbon flé%]?ated to these
two important questions eaglgabe found in Feinberg 53, 25]. In particular,
Theorem 6.2 in Feinberg (2 S)ntains function d which is less than or equal
to function d defined in (379597

1.9 Uncountable MDPs

Most of the described E%\F]e results hold for Borel MDPs. In particular,
Dynkin and Yushkevich studied the sets of strategic measures ’j;. They
showed that this is a convex Borel space. Furthermore, this set is convex in
a strong sense when strategic measures are integrated with respect to any
probability measure; see [20, Section 3.5]. The observation that this set is
convex is important. Imagine that we expand the notion of a strategy in
the following way: the decision-maker selects randomly a policy at epoch
0 and then follows it. This initial randomization procedure is defined by
a probability measure on the set of strategic measures with a given initial
distribution or state. We call such strategies mixed. The convexity of the set
of strategic measures implies that for each mixed policy there is an equivalent
randomized policy. Therefore, in-fact mixed policies 9%1-?12 &)ggand the set
of policies. In view of t %% act, policy 7 in Theorem h_wlﬁms originally
established by Strauch for Borel MDPs and Ay = 1, can be constructed
in two steps for a fixed initial state z: for any sequence of nonnegative
numbers \; with the sum equal to 1 and for any sequence of policies 7,

33



xr I

o0 .
i = 1,2,..., there exists a policy o with PZ = S"P?',; and (ii) for any
i=1

i=
policy o there exists a Markov policy « such that Pi{z, € Y,a, € B} =
PZ{x, € Y,a, € B} for any Borel subsets Y C X and B C A. In both cases
(i) and (ii) there are simple formulae for o and 7.

Another general result for strategic measures is that strategic measures
for randomized Markov strategies can be presented as convex integral com-
binatj ns of strategic measures for nonrandomized Markov policies; Fein-
berg . This fact implies that for any policy and for any given initial
distributi &éche eegggcist a arkov ;%j]é;gy with equal or ’Qu% er performance;
Feinberg ;l, Yo7 Schil , Balder [3], and Yushkevich studied topolog-
ical properties of the sets on strategic measures and used them to establish
sufficient conditions for the existence of optimal policies. 6

The optimaliié&e]guation holds for Borel MDPs; s&%§trauch F531§, Dynkin
and Yushkevich , and Bertsekas and Shreve }%a._The major technical
difficulty when a Borel state space is considered instead of a countable SFL:‘(S%MO
space is related to so-called selection 1%1:elzlorealgis. All results from Section B.5,
except Ornstein’s theorem (Theorem [7{i1)] were originally proved for classi-
cal Borel moﬂ%gland the existence of (p,e)-optimal policies was proved.

Blackwell [8] Trecognized that the validity of Ornstein’s theorem for Borel
posit'\é MDPs was a difficult question and posted it as an open problem.
Frid proved that Ornstein’s theorem is valid for Borel MDPs if (p, chL—
optimality is considered instead of eV -optimality. Schél and Sudderth
found a correctable mistake in Frid’s proof: one of the sets where Frid
switched policies was universally measurable but not Borel measurable.

Here I would like to mention the name of gifted mathematician Efim
Frid who died at a young age as a result of an accident: he was hit by
a vehicle when he was crossing a street in Odessa. Efim was a student
of Nicolai Krylov. In addition to the proof of Blackwell’s conject <, Frid
also wrote one of the first papers on MDPs with multiple cri‘ceria#ﬁﬁﬂg and
several interesting papers on stochastic games, in particular, on the sequence
of nonzero sum two-person games. Though during many years we both have
been living in Moscow at the same time, unfortunately I have never met
Efim Frid. <h78

Bertsekas and Shreve H%ﬁmdied MDPs with universally measurable poli-
cies. Except Ornstein’s theorem they prov Sdstplmt for all results on the ex-
istence of e-optimal policies from Section EZ.5, there are similar e-optimal
policies for Borel M 1llfs with universally nearly optimal policies. Blackwell
and Ramakrishnan constructed an example of a P Borel MDP with a
bounded function V for which there is no stationary universally measurable
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policy which is uniformly e-optimal. This example 1mphlg:s rfpg]::ﬁgft Qﬁgﬁgﬁé’f S
‘%hgggn as well as more general statements, Theorems 9, IIT, 16, 119, and
bl) cannot be expanded to Borel MDPs with universally measur ]E)_lgago—

lices. The questions whether any of these statements or Theorem old
for Borel MDPs when the notion of p-a.s. &f p(t)l_iciers1 1is considered are com-

mal

pletely open.- The key issue here is Theorem )9._I'tsfproof in Feinberg and
Sonin us (117(8Xplicitly that the state space is not bf% er than countable.
Except Frid and Blackwell and Ramakrishnan , the only research
that studied possibilities to expand Ornstein’s theorem to uncountable state
spaces and o‘checrS relevant issues, I am familiar with, is the paper by Schal
and Sudderth %‘Zf o9

As was observed in Feinberg EZE]% it is not clear Whethgym‘)cl}llree Non-
Repeating Condition implies the result similar to Theorem h'S_foT%orel
MDPs. It was shown there that a so-called Strong Non-Repeating Condi-
tion, which holds for Markov policie e' plies such result.

We also %%étion that Feinberg proved that sg(xz) = s(z) for all
z € X. Schal proved that E:(é@iﬁ V(z), z € X, for models with compact
action sets. Since Theorem bﬁm open question for Borel MDPs when
(p, ef)-optimality is considered, we do not know if s = T's for GC Borel
MDPS. The non-trivial part is to prove that s(z) > T's(z) for all z X
The measurability properties of furlllction s were esta‘%;%'i%led in ]5’einberg€yFZB]6
by using the results by Sudderth %4] and Blackwell 9]
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