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Abstract

In this survey we present a unified treatment of both singular and
regular perturbations in finite Markov chains and decision processes.
The treatment is based on the analysis of series expansions of various
important entities such as the perturbed stationary distribution ma-
trix, the deviation matrix, the mean-passage times matrix and others.

1 Background and Motivation

Finite state Markov Chains (MC’s) are among the most widely used prob-
abilistic models of discrete event stochastic phenomena. Named after A.A.
Markov, a famous Russian mathematician, they capture the essence of the
existentialist “here and now” philosophy in the so-called “Markov property”
which, roughly speaking, states that probability transitions to a subsequent
state depend only on the current state and time. This property is less re-
strictive than might appear at first because there is a great deal of flexibility
in the choice of what constitutes the “current state”. Because of their ubig-
uitous nature Markov Chains are, nowadays, taught in many undergraduate
and graduate courses ranging from mathematics, through engineering to
business administration and finance.
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Whereas a MC often forms a good description of some discrete event
stochastic process, it is not automatically equipped with a capability to
model such a process in the situation where there may be a “controller” or
a “decision-maker” who — by a judicious choice of actions — can influence
the trajectory of the pro SS. This innovati was 1ot introduced until the
seminal works of Howard [44] and Blackwello%lgf—fhat are generally regarded
as the starting point of the modern theory of Markov Decision Processes
(or MDP’s for short). Since then, MDP’s have evolved rapidly to the point
that there is a now a fairly complete existence theory, and a number of
good algorithms for computing optimal policies with respect to criteria such
as maximisation of limiting average expected reward, or the discounted ex-
pected reward.

The bulk of the, now vast, literature on both Markov Chains and Markov
Decision Models deals with the “perfect information” situations where all
the model parameters — in particular probability transitions — are assumed
to be known precisely. However, in most applications this assumption will be
violated. For instance, a typical parameter, p, would normally be replaced
by an estimate

p=p+e(n)

where the error term, €(n), comes from a statistical procedure used to es-
timate p and n is the number of observations used in that estimation. In
most of the valid statistical procedures |e(n)| | 0 as n ] oo, in an appropriate
sense. Thus, from a perturbation analysis point of view, it is reasonable to
suppress the argument n and simply concern ourselves with the effects of
e —0.

Roughly speaking, the subject of perturbation analysis of MC’s and
MDP’s divides naturally into the study of “regular” and “singular” per-
turbations. Intuitively, regular perturbations are “good” in the sense that
the effect of the perturbation dissipates harmlessly as € — 0, whereas sin-
gular pertubations are “bad” in the sense that small changes of ¢ (in a
neighbourhood of 0) can induce “large” effects. Mathematically, it can be
shown that singular perturbations are associated with a change of the rank
of a suitably selected matri his can be easily seen from the now classical
example due to Schweitzerﬁ%ﬁ] where the perturbed probability transition
matrix
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but the stationary distribution matrix

DO
D[

P'(e) = Aro=(g 1)

DO
D[

Indeed, the rank of P*(¢) is 1 for all € > 0 and near 0, but it increases to
2 at € = 0; despite the fact that P(e) — P(0). Thus we see that singular
perturbations can occur in MC’s in a very natural and essential way. The
latter point can be underscored by observing the behaviour of (I — AP)™!
as A — 1, where P is a Markov (probability transition) matrix. It is well-
known (e.g. see%l'é]‘ 8%5 that this inverse can be expanded as a Laurent
series (with a pole of order 1) in the powers £ := 1 — A. Indeed, much of
the theory devoted to the connections between the discounted and limiting
average MDP’s exploits the asymptotic properties of this expansion, as e | 0.
Of course, the rank of (I — AP) changes when A = 1(e = 0).

It is not surprising, therefore, that the literature devoted to singularly
perturbed MC’s and MDP’s has been growing steadily in recent years. In
fact there have li%wuite a few developments since the 1995 survey by
Abbad and Filar

The purpose of this survey paper is to present an up to date outline
of a unified treatment of both singular and regular perturbations in MC’s
and MDP’s that is based on series expansions of various important entities
such as the perturbed stationary distribution matrix, the deviation matrix,
the mean-passage times matrix and the resolvent-like matrix (I — AP)~1
;From this series expansion perspective, the regular perturbations are sim-
ply the cases where Laurent series reduce to power series. Consequently,
the capability to characterise and/or compute the coefficients of these ex-
pansions and the order of the pole (if any, at € = 0) becomes of paramount
importance.

This survey covers only the results on discrete time MC’s and MDP’s.
For a parallel development of the continuous time models refer an inter-
ested reader to the comprehensive book of Yin and Zhang [81].

The logical structure of the survey is as follows: in Section 2, perturba-
tions of (uncontrolled) Markov chains are discussed from the series expan-
sions perspective; in Section 3 the consequences of these results are discussed
in the context of optimisation problems arising naturally in the (controlled)
MDP case; and, finally, in Section 4 applications of perturbed MDP’s to the
Hamiltonian Cycle Problem are outlined. This last section demonstrates
that the theory of perturbed MDP’s has applications outside of its own
domain.



2 Uncontrolled perturbed Markov chains

2.1 Introduction and preliminaries

Let P € R™ ™ be a transition stochastic matrix representing transition
probabilities in a Markov chain. Suppose that the structure of the underlying
Markov chain is aperiodic. Let P* = lim;_,o, P' which is well-known to
exist for aperiodic processes. In the case when the process is also ergodic,
P* has identical rows, each of which is the stationary distribution of P,
denoted by w. Let Y be the dewviation matriz of P which is defined by
Y = (I — P+ P*)~! — P*. Tt is well known (e.g. see @5]) that Y exists
and it is the unique matrix satisfying Y (I — P) = I — P* = (I — P)Y and
P*Y = 0 = Y1 (where 1 here is a matrix full of 1’s) making it the group
inverse of I — P. Finally, Y = limgp_,o XL (P! — P*). Let M;; be the
mean passage time from state-i into state-j. It is also known that when the
corresponding random variable is proper, then M;; is finite. Of course, the
matrix M is well-defined if and only if the Markov chain is ergodic. In this
case, we have M;; = (6;; +Y;; — Yj;)/m; and, in particular, M;; = 1/m;.
The above A entioned results can be found in many sources, for instance,
see Meyer %2]

We consider (linear) perturbations of the matrix P and their impact on
the structure of the process and on various essential matrices such as the sta-
tionary distribution matrix, the deviation matrix and the mean passage time
matrix. Specifically, for a scalar €, 0 < € < emax, and for some zero rowsum
matrix C, we look at the set of perturbed stochastic matrices P(¢) = P+eC
which are assumed to be ergodic for any € in the above mentioned region.
Note that ergodicity is not assumed with regard to P = P(0). Actually, the
case where P(0) contains some unrelated chains (with or without transient
states) is our main focus. Our goal here is to survey the existing literature
on series expansions for 7(e), P*(¢), Y(¢) and M (e), which denote the sta-
tionary distribution, the limit matrix, the deviation matrix and the mean
passage time matrix, repsectively, of P(g), for 0 < &€ < epax and consider
their relationship to the corresponding entities in the unperturbed MC for
P = P(0).

The rest of this section is organized as follows. In the next subsection
we discuss the regular case, namely the case in which the unperturbed sys-
tem is ergodic. Then, in Subsection 2.3, we look at the nearly completely
decomposable (NCD) case, namely the case in which the state space under
the unperturbed process is decomposed into a number of ergodic classes.
This number is assumed here to be at least two and no transient states are



allowed. This assumption is removed in Subsection 2.4, where we allow the
unperturbed system to have two or more ergodic classes plus a number of
transient states. It will be seen that the presence of transient states induces
some interesting phenomena. In Subsections 2.2 through 2.4, we assume
that the perturbed process in ergodic. Subsection 2.5, we comment on some
issues involving the removal of this assumption.

2.2 The regular case

In this subsection we assume that the unperturbed Markov chain is ergodic.
This leads to the case of regular pert g)ations. The following results
appear in a seminal paper by Schweitzer l;%72[]

Theorem 1 Assume that the unperturbed Markov chain is ergodic. Then,

(i) The matriz functions P*(e), Y () and M(g) are analytic in some (un-
deleted) neighborhood of zero. In particular, they all admit Maclaurin
Series expansions:

o0 o0 o
P*(e) = Z emptm™ |y (e) = Z ™Y ™) and M(e) = Z em M
m=0 m=0 m=0

with some coefficient sequences {P*™}°_o (VM1 and {Mm™)}o0_ .

(i) The limit matrices P*(e) and the deviation matriz of the perturbed
Markov chain admit the following updating formulae

P*(e) = P*(0)[T — U] ™!

Y(e) = [I=P Y (0 —eU]™"
= Y(0)[I —eU] !t = P*(0)[I — U] Y (0)[I — U] 1,

where U := CY(0).

(iii) These updating formulae yield the following expressions for the power
series coefficients.

PO = P*(O)’ v = Y(O)a MO = M(O)



Y =y (U™ - P*0) Y UV (O)U™, m=>0
j=1

m) _ 1 o) _ymy_ 1 ) )

M"Y = " =Yy = < 2w M, m= 0

(i T =1

(iv) The validity of any of the above series expansion holds for any €, 0 <
£ < min{emax, p 1(U)} where p(U) is the spectral radius of U.

Example 1. For 0 < e < .25 let

po=roreo= (3 3)ee( 2 7

) . 5 5
P(O):P(O):<.5 .5)

Clearly,

U:CY(O):(_21 _12>

It is easy to see that for m > 1, U™ = 3™ U and hence for m > 1,

(*m): * m: m—1 .5 _5
P P*O)U™ =3 (.5 _.5>
Also, for m > 1,

Y™ = 3™y (0)U — 3™ 2(m — 1) P*(0)UY (0)U — 3™~ P*(0)UY (0)
Camet (15 =15\ e (15 =15\ g5 -5
=9 (—1.5 1.5 ) " (m 1)(1.5 —1.5) 3 <.5 —.5) '
Finally,

Miz(e) =248+ ... and Moi(e) =2+4e+ ...



2.3 The nearly completely decomposable case

Let P(0) € R™ " be a stochastic matrix representing transition probabilities
in a completely decomposable Markov chain. By the latter we mean that
there exists a partition 2 of the state space into p, p > 2, subsets 2 =
{I1,...,Ip} each of which being an ergodic class. We assume that the order
of the rows and of the columns of P is compatible with €2, i.e., for p stochastic
matrices, Pr, ..., P,

P, 0 0
P(O) = . :2 . 0

P

Note that we assume above that none of the states is transient. Let
C € R™™™ be a zero rowsum matrix such that for some e, > 0, the matrix
P + &C is stochastic for £ € (0,emax) representing transition probabilities
in an ergodic Markov chain. For small values of ¢, P(g) is called nearly
completely decomposable (NCD) or sometimes nearly uncoupled. Clearly,
C;j > 0 for any pair of states 7 and j belonging to different subsets.

Probably, the first motivation to st (Aly the singular perturbed Markov
chains was given by Simon and Ando 1%77] They demonstrated that sev-
eral problems in econometrics lead to the mathematical model based on
singularly perturbed Markov chains. The first rigorous theoretical devel-
opments of the singularly pert S?Gd Markov chains have been carried gut
by Pervozvanski and Smirnov#@] and Gaitsgori and Pervozvanskii EBQ]
In particular, they have shown that the limiting probability distribution
70 = lim._, m(e) can be expressed in terms of the invariant probability
distributions of the ergodic classes I,k = 1,...,p and of the stationary dis-
tribution of an aggregated chain S&n r 1deas were also developed in works
of Courtmslfﬁgdﬁhﬁs}fzq alﬁﬁl}%& , 21] and%the work of Haviv and his
co-authors [35, 36, 37, 39, 40, 45]. Schweltzer showed that 7(g) is ana-
Iytic in some deleted neighbourhood of zero. That is, 7(e) = 3.2°_, 7(™e™,
where 70 = lim._, m(e) and where 7™ m > 1, are zerosum vectors.

Note that 7ri(0) > 0 for all i. Moreover, {7(™}%_, is a geometric seri -
that is, for some matrix U € R™*", 7™ = zOU™ 0 < m < co. See (9%7
below for an explicit expression for U. Finally, the series expansion holds
for 0 < & < max{emax, p~H(U)}-

For any subset I € 2, let

ki = Sierml) (1)



and let «r be the subvector of 7 corresponding to subset I rescaled so as
its entry-sum is now one. Then, ;7 is the unique stationary distribution of
Pr. Note that computing s is relatively easy as only the knowledge of P;
is needed.

Next define the matrix (Q € RP*P which is

usually referred to as the aggregate transition matrix. Each row, and
likewise each column in @ corresponds to a subset in 2. Then, for subsets

Tand J, T # J, let
Q=Y ()Y Cy (2)

el jeJ
and let
Qu=1+> (mi» Cij=1-> Qs . (3)
icl jel TAI

Without loss of generality, assume that @7 is non-negative for all subsets
I and hence Q is easily seen to be a stochastic matrix.! Moreover, Q is
irreducible and the vector k € RP (see (FF)) is easily checked to be its unique
stationary distribution. Often it is convenient to express the aggregated
transition matrix @ in matrix terms. Specificaly, let V' € RP*™ be such that
its i-th row is full of zeros except for 7, at the entries corresponding to
subset I;, and where W € R™*P is such that its j-th column is full of zeros
except for 1’s in the entries corresponding to subset I j.2 Then, we can write

Q=1I+VCW.

The aggregate stochastic matrix () represents transition probabilities be-
tween subsets which in this context are sometimes referred to as macro-
states. However, although the original process among states is Markovian,
this is not necessarily the case with the process among macro-states (and
indeed typically it is not).> Yet, as the following indicates, much can be
learned on the original process from the analysis of the aggregate matrix.

!Note that the matrix C can be divided by any constant and & can be multiplied by this
constant leading to the same n x n transtion matrices. Taking this constant small enough
guarantees the stochasticity of @ and hence this is assumed without loss of generality. In
particular, the stationary distribution of @) is invariant with respect to the choice of this
constant. Alternatively, one can define Qr; by —X;+7Qrs and consider () as the generator
of the aggregated process, i.e., the process among subsets (and hence no need to assume
anything further with regard to the size of the entries of the matrix C'.)

*Note that VW € RP*? is the identity matrix. Moreover, V and W correspond to or-
thonormal sets of eigenvectors of P(0) belonging to the eigenvalue 1, V as left eigenvectors
and W as right eigenvectors.

3The process among macro-states is an example of a partially observable Markov pro-
cess.



Theorem 2 Let the perturbed Markov chain be nearly completely decom-
posable. The stationary distribution w(e) admits a Maclaurin series ezx-
pansion in a deleted neighborhood of zero. Specifically, for some wvectors
{mtm)yoo_with w0 being a probability vector positive in all its entries and
satisfying 70 = 7T<O)P(0), and for some zerosum vectors w™), m > 1,
w(e) = Z;’no:oﬁ(m)am. Moreover, for I € Q, 7r§0) = kryr.* Also, the series
{’/T(m) ¥, is geometric, i.e., for some square matriz U, 7m) = 7zOym for
any m > 0. Actually,

U =CY(0)(I+CWDV), (4)

where D is the deviation matriz of the aggregated transition matriz Q. Al-

ternatively,
U=cy® (5)

where YO) is the first reqular term of the Laurent series expansion for Y(e)
(see also the next theorem). Finally, the validity of the series expansion holds
for any €, 0 < € < min{emax, p (U)} where p(U) is the spactral radius of
U.

We note that a sepies expression for 7(e) appeared orginally in %’3’] The
expression for U in (@f_faken from [39] sheds more light on the role of the
aggregate, process played in the original process than its original expression

%5] (see EquTthign 3-1 there). Also we note that U = CY(® is an
elegant generalization [76] of the regular case where U = CY (0).

For €, 0 < € < €max, let Y () be the deviation matrix of P(g). This
matrix is uniquely defined and the case € = 0 is no exception. Yet, as we
see shortly, there is no continuity of Y (¢) at € = 0. In particular, Y (0) has
the same shape as P has, namely

given in

Yll 0 0
0 Y, - 0

vyo= . . . . (6)
0 0o - Y

where Y7, is the deviation matrix of P, 1 < <p.

Theorem 3 In the case of NCD Markov chains, the matriz Y (€) admits a
Laurent series expansion in a deleted neighborhood of zero with the order of

“Recall that s is the stationary distribution o £5 an t k in the stationary distri-
bution of the aggreagted matrix @ as defined in (2) and (3).



the pole being exactly one. Specifically, for some matrices {Y(m) o with
Y £,

1
Yie)= YD 270 4 oy 4 292 4 L
(e) . + +eVW +e + (7) |Yexp
for 0 < € < epax. Moreover,
YyOCY =wbv,

or in a component form,

Y5V =Dut) s i€l jed ®)
2
A series expression for Y (e) was ogg}'nally developed_in %CS] Yet, tEg .

expression for Y(=1) given above in (8] is taken from [39]. We find (
appealing as it explicitly shows the role played by the aggregate matrix (and
hence by the process amon, aqlacro—states) in the original process. This point
was already mentioned in %37] (see Equation 3 there).

We now focus our attention on M(g). Note that as opposed to Y (0),
M (0) is not well-defined as the corresponding mean value (when € = 0 and
states ¢ and j belong to two different subsets) does not exist. Let E € RP*P
be the mean passage time matrix associated with the aggregated process.
Le., for any pair of subsets I and J (I = J included), Er; is the mean
passage time from the macro-state I into the macro- state J when transition
probabilities are governed by the stoc%ﬁgtic matrix Q).

The following theorem appears in [10].

Theorem 4 The matriz M (g) admits a Laurent series expansion in a deleted
neighborhood of zero with the order of the pole being exactly one. Specifically,
for some matrices {M™}2°_ | with M(=1) #£0,

M(e) = éM(—” + MO 4 eM® 4 2M® 4. 9)

for 0 < e < emax. Moreover, fori € I and j € J,

(-1) 0 ifJ=1 —
m+1
m) _ L om) _ 1 (m) L @) 3 (m=1)
M~ = 5 (Y5 = Y5) = ©) Z ™ M;; , m=2-—1
;i T =1

10



c3
The following example is taken from FTG]
Example 2 Let

1 0 0 9 -2 1 1
PO)=| 0 5 .5 and C = = 3 -1 -2
0 .5 .5 4 -3 -1

The number of subset equals 2 with 77, = 1 and 77, = (0.5,0.5). First,
we construct the following matrices.

Lo o 10 0 0 0
V=<O 05 05) w=1[0 1 vo)=[ 0 05 —05
o 01 0 —05 05

The aggregated transition matrix is given by

Q=T+VCOW = ( 3T 4é7>

Hence, k = (7/11,4/11) and #(© = (7/11,2/11,2/11). Next, we calculate

D, the deviation matrix of @,

w1 . 1 [ 28 —28
DZ(I_QJFQ)I_Q‘E(—@ 49)

-1
and hence, using (%ﬁ

) 56 —28 —28
YyE) —wDv = 51 —98 49 49
—98 49 49

The matrix F, which is the mean passage time matrix for the aggregated
process, equals
{11/ 7/4
E= ( 1 11/4 >
and hence, using (Fli%%,

0 7/4 7/4

MY =11 0 0

1 0 0

[UNCD
Finally, from (IZISITve get that

1 0 0 0
U=CY(O)(I+CWDV)=— | -2 12 —10
4 =24 20

11



2.4 The general case

In this section we impose no assumptions on the ergodic structure of the
unperturbed chain. That is, the unperturbed chain may now consist of sev-
eral ergo%:z?%lasses plus a set of transient states. Probably, Delebecque and
Quadrat were the first who studied the model in this general setting.
However, they have analysed only the case of the first order singularity,
namely the case where the Laurent series expansion for the perturbed de-
viation matrix has a simple pole. This analysis is not much different from
the analysis of the \ CD case. Later Delebecque [25], using the reduction
technique of Kato [52], removed the first order singularity assumption and
showed how to compute the asymptotic expansion for m(e) in the general
case. However, the reduction technique of [52] does not provide an efficient
computational scheme. Other related pap ggﬁo‘%elqtt?ﬂﬂm GAse where the
unperturbed chain has a transient set are }? 18,715, b6, 72, 781

The following typical e)&ﬁﬁlp% ofl'ﬂ@ie &eneral situation was considered

extensively in the past (see [39, 34,40, 12]):
Example 3.

0 1
-1 0 O

0

1

S O O

P(e) = P(0) +eC = +e

-1
-1

OO = =

OO OO

el ]

OO~ O
—

0

In this example the unperturbed chain contains two ergodic classes (states 2
and 4) and two transient states (states 1 and 3). They all are coupled to a
single chain when & > 0. Moreover, states 2 and 4 (i.e., the ergodic chains
in the unperturbed process) communicate under the perturbed case only
via states 1 and 3 (i.e., transient states in the unperturbed case). This
phonomenon makes this case more involved than the NCD case. For exam-
ple, the reader is invited to check that the order of magnitude of May(e) is
2.

Theorem 5

(i) The stationary distribution w(e) admits a Maclaurin series expan-
sion in a deleted meighbourhood of zero, that is, for some sequence
{rm)yo_ with 7©) being a probability vector and =™ for m > 1,
being zero sum vectors,



(i)

(iii)

Moreover, 7O P(0) = 70 and for some matriz U,

7™ = 7Ogym (11)

The deviation matriz Y () admits a Laurent series expansion in a
deleted neighborhood of zero with a non-essential pole, that is, for some
nonnegative integer s and for some sequence of matrices {Y (™}%°___
with Y(=%) £ 0,

y(=s)  y(=s+1)

Y(e) + YO py®e g,

es Es—l

Moreover, the reqular part Y E(e) = YO +ev® 4... can be expressed
by the updating formula

YE(e) = [I - P*(e)]YO[I — eU]™! — P*(e) Z Uy-d . (12)

The latter provides a computationally efficient recursive formula for
the coefficients of the reqular part:

m
ym =yOym _ pz Z Uiy O gm—i
j=0
S . .
+POymr =Ny, m>1. (13)
i=1
Furthermore, the quotient matriz U can be expressed as

U=cy® (14)

The mean passage time matriz M (e) admits a Laurent series expan-
sion in a deleted neighborhood of zero with a mon-essential pole, that

is, for some nonnegative integer t and for some sequence of matrices
{Mm)yoo_ , with MY £ 0,

M=) M(=t+1)
&-t Et_l

4o MO Mg

Finally, t > s.

13

up_Y

YOG



We would like to emphasize that once one has found the value of s and
computed the terms Y(9), ... Y(©) and 7O all the rtc?eé terms in the series
expansion for Y(¢) and 7(e) can be computed by aﬁ._We refer below to
a procedure for computing s. The term 7 (which we believe to be the
most important coefficient of the expansion) can be computed either by
a reduction process %5] or via the determination of the null space of an
auxiliary augmented matrix. The latter method will be described in some
detail below. Finally, one can find methods for computing Y (=%, ..., IEO)
(and _hence U) (once s and 79 are in hand) by methods outlined in}K(’IQ]
and [[39].

i Y

Remark 1 Note that the formulae 7 iZ"é“gm 7 h@re the natural general-

'c%tion of the e %]ar case. Formuyla and appeared originally in
. Finally, (%%7 was derived in [[12]

The next theorem shows that the order of poles of Y (¢) and M(e) (de-
noted above by s and t, respectively), can be computed by a combinatorial
algorithm.

Theorem 6 For 1 < 4,5 < n, let u;; be the order of the pole of M;;(e)
at zero. Then, there exists an O(n*) algorithm for computing these orders
whose input is the addresses of the nonzero entries in P(0) and in C. Like-
wise, for 1 < 4,5 < n, let vij be the order of the pole of Yij(e) at zero.
Then,
t > max(uij — ujj) = max vy =s .
i i

The above theorem and a detailed algorithm are given in %

Example 3 (cont.). Running the algorithm developed in [34] for com-
puting wu;;, 1 < 1,7 < 4, results in

(uij) =

NN~ =
NN O~
o= NN
S = DN DN

In particular, s =t = 2.
For m > 0, let B, € RMm+1)xn(m+1) e the matrix such that each of its
n x n block diagonal matrices equals I — P(0) and each of its n x n matrices

14



above the diagonal equals —C. Namely,

I-P0O) -C 0 - 0 0
0 I-P0O) -C - 0 0
0 0  I-PO) - 0 0
Bm: . . . . . .
0 0 0 ... I-P(0) -C
0 0 0 e 0 I— P(0)

where I — P(0) appears m+1 times while —C appears m times. By equating
coefficients of the same order in the identity n(e) = w(e)(I — P(0) — eC),
it is easy to conclude that for any m > 0, (#0, 71 ... 7(m)) is a left
eigenvector of B,, belonging to the eigenvalue zero. Of course, it is not an
unique eigenvector. Also, the dimension of this eigenspace of B, is non-
increasing in m. Let V,,, be the subspace of vectors of length n such that the
first n entires of vectors in the above mentioned eigenspace of By, induce.
Again, the dimension of V,,, is non-increasing in m. Finally, these dimensions
%g always greater than or equal to 1. The following theorem is taken from
]

Theorem 7 (The general case: computing 71'(0)).
t+1=min{m; dimV,, =1} .

The above two theorems suuggest a way to compute 7). Specifically,

e can first find the value of ¢ by the combinatorial algorithm suggested in

4] and then the left eigenspace of B; belonging to the eigenvalue zero can
be explored. For the latter %{ some procedures exist. A few of them are
based on reduction steps. Ini@!ﬂ one reduction step is carried out while [25]
and [I2] suggest performing a number of reduction steps. The latter number
is bounded by t as at the t-th step one gets a non-singular system. Actually,
the procedure was defined in the previous subsection and takes care of NCD
matrices with one (and terminal) reduction step.

We again note that once 7(® and V(@ are calculated, the other coeffi-
cients of the series expansion for 7(¢) can be computed by the recurssive
formula 7(™ = 7(M=DY m > 1, where U = CY(©,

Example 3 (cont.). We have pointed out above that ¢ = 2. Hence,
solving for the left null space of

I-P0O)| —C 0
By = o |1-pP0O| -C
0 0 I—P(0)
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1 -10 00 1 O =10 O O O
o 0 o 0|-11 0 O0j0 0O O0 O
o 01 -1;,0 -1 0 1})0 0 0 O
o o o 0jo 0 -1 170 0 0 O
o 0 0 0j1 -1 0 0|0 1 0 -1
196 o606 o0 o0 O O O|-1 1 0 O
10 0 0O O[O0 O 1 —-1{0 -1 0 1
o 0o 0o 00O 0 O Oj0O0 0 -1 1
o 0o o 0jo o0 O O0Oj1 -1 0 O
o o0 o0 0;0 O O O)jJO O 0 O
o 0o 0o 0o O O Oj0O0 0 1 -1
o o0 o0 0;0 O O O)JO O O O

res%‘gs in (0,0, 0, *,*, %, %, %, %, %, %) for any a.> Hence, 7(9 = (0,.5,0,.5).
In [39] it is shown that the same set of equations which is needed in order
to solve for (@ is also all required in order to com klf]e U ixnd Y (=9, For
this numerical example, using the methods of either %9] or »FI'Z], one obtains

b —5H b5 =5

©_] 0 0 0 0
Y -5 b5 —.b
0 0 0 0
and hence
U—oy© _ | 05 05 05 05

0 0 0 0
0.5 —-05 05 —0.5

The terms of the singular part of the Laurent expansion for the deviation
matrix are:

0 25 0 —.25 25 —5 —25 5
cy_| 0 25 0 -25 cy_| 2 0 -2 0
Y 0 —25 0 .25 and Y 925 5 25 —5

0 —25 0 .25 ~25 0 .25 0
Finally,

YH(E) - Y21 (E) 0.25 0.25 D) 1
My (g) = - Sk ) — (22 410+..)]/10.56—0. =4
21(€) ) [( 6 +0.54...)—( E +0+...)]/[0.5e—0.5e° +...] 8+ ,

5The sign *’ corresponds to values not computed (and not relevant for our current
purposes.)
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1 1 1 2
M3 (e) = po) + z + ., My(e) = po) + z + ..

1 1 0 1 1
MlQ(E) = g’}‘..., M32(€) = 8—2+g+., M42(€) = €—2+g+ .

e like to point out that the expression for Y(*I)Lfor this example given in
] had a numerical error that was corrected in [I2].

2.5 The case of non ergodic perturbed Markov chains

In this section we briefly discuss the singularity phenomena that can appear
if the perturbed Markov chgin itself is not ergodic. The reader can find a
more detailed exposition in %9]

In case where the perturbed Markov chain has several ergodic classes
plus a non- empty set of transient states, then the perturbed transition
matrix can be written in the following canonical form

P1 (5) s 0 0 } Ql
PO D he o | e 1o
Ri(e) -+ Ry(e) S(e) | } Qrp

where P;(e) = P;(0) +eC;, R;(e) = R;(0) + eCgi, S(e) = S(0) + eCg. Now
note that all invariant measures m; () of the perturbed Markov chain can be
immediately constructed from the invariant measures of the ergodic classes
associated with stochastic matrices P;(¢),7 = 1,...,4. Namely, m;(e) =
[0---0 m(e) 0---0], where 7;(¢€) is uniquely determined by the system

{ mi(e)Pi(e) = mie),
ﬂ'i(&‘)l = 1.

This is exactly the perturbation problem under the assumption that there
are several ergodic classes plus possibly a set of transient states coupled by
the perturbation into a single ergodic class. This issue was covered in the
previous subsections.

The challenging task that we face in this case of multi-chain perturbed
process is the computation of power series for the right eigenvectors of the
perturbed Markov chains. The pertubed right eigenvectors contain the prob-
abilities of being absorbed in each of the ergodic classes under the perturbed
processes. These quantities exhibit the multi-chain ergodic properties of the
perturbed process. For instance, nothing conceptually new would emerge
had the set of transient states in the perturbed process been empty.
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The right —gigenvectors of the perturbed chain can be written in the
following form [55]

0
wo=| ¢ | 1™ (16)

wi(e) | }Qr

where subvector ;(e) is given by

pie) = (I - 8(e) " () R(e)L, (17)

Note that if some ergodic classes become transient after the perturbation,
then the matrix valued function (I — S(g))~! has a singularity at ¢ = 0. To
further elaborate on this phenomenon, let us consider the structure of the
substochastic matrix S(0).

y 2 0 0
SO: E N
R I A
Ry R, S

Blocks P, ..., P,, represent the ergodic classes of the original Markov chain
which merge with the transient set after the perturbation. Of course, m = 0
is possible. Since each of P, ..., Py, is a stochastic matrix, we conclude that
matrix I — S(0) has zero as an eigenvalue with multiplicity of at least m. Of
course, I — S(0) is not invertible. However, the matrix (I — S(g)) ! exists
for small positive (but not zero) values of e. (From the results of ?ﬁ, it
follows that one can expand (I — S(g))~! as a Laurent series at ¢ = 0

(I-S()" = EipU("’) ot %U“l) +UO eu® 4. (18)

H
One can use the methods of H to calculate the coefficients of the above

series. Subsfituting the expression R; () = R;(0) + eCpr; and the Laurent
series (IS; into formula (E( i: we obtain the asymptotic expansion

i(e) = o0 +ept) + 20 1., (19)

where

o™ = UM RO 4 U, m > 0. (20)

The above formulae are valid in the most general setting. Some interesting
particular cases are discussed in [9].
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3 Singularly Perturbed Markov Decision Processes

In this section we review some results on singular perturbations of Markov
decision processes (MDPs) and introduce a unified approach to singular per-
turbation, Blackwell optimality and branching Markov decision processes.
First we briefly intoduce notation and define various optimality criteria. The
ﬁgg% gan }glilq( ﬁfﬁrﬁ\%ﬁtaﬂed study on MDPs in the books and surveys
26, 42, 44, 53, 54, 70, 80| and the references therein.

We consider a discrete-time MDP with a finite state space X = {1,..., N}
and a finite action space A(i) = {1,...,m;} for each state i € X. At any
time point ¢ the system is in one of the states i+ € X and the controller or
“decision-maker” chooses an action a € A(7); as a result the following occur:
(a) the controller gains an immediate reward r(i,a), and (b) the process
moves to a state j € X with probability p(j|i,a), where p(j|i,a) > 0 and
Zjexp(jli,a) =1

A decision rule m at time t is a function which assigns a probability
to the event that any particular action a is taken at time ¢. In general,
m¢ may depend on history h; = (49, ag, i1,a1, ..., a¢_1,%) up to time t. The
distribution 7;(-|h¢) defines the probability of selecting any action a at time
t given the history h;.

A policy (or strategy) is a sequence of decision rules m = (mg, 71, ..., T, ... ).
A policy 7 is called Markov if m(+|hy) = m(-|3¢). If my(-|i) = mp(-]d) for all
t,t' € N then the Markov policy = is called stationary. Furthermore, a
deterministic policy 7 is a stationary policy whose single decision rule is
nonrandomized. It can be defined by the function f(i) = a,a € A(7).

Let IT, ITI° and IT” denote the sets of all policies, of all stationary policies
and of all deterministic policies, respectively. For the stationary policy 7 €
1% define the corresponding transition matrix P(7) = {pij(w)}f-j’j:l and the

reward vector r(m) = {r;(m)}X,
pij(m) = Y p(jli,a)m(al), ri(m):= Y r(i,a)r(ali).
a€A(i) a€A(7)

Let the limit matriz P*(n) and the deviation matriz (or reduced resolvent
as it is sometimes refer to in this setting) Y (7) associated with policy 7 be
defined by

and



m-discount

The expected average reward g;(w) and the expected discounted reward
v () are defined as follows:

gim) 1= Jim =5 [P (e,
and -
vp(m) =Y NPT ()], = [(T = AP(m) tr(m)];,

where ¢ € X is an initial state and A € (0, 1) is a discount factor. One can
also use the interest rate p = (1 — A)/A € (0,00] instead of the discount
factor A\. Note that A T 1 is equivalent to p | 0. Then, the expect g q%ﬁcgmt
reward v” () := v*?) (1) can be expanded as a Laurent series %5,_79,_59]“
for sufficiently small p

W(r) = (14 p)

m=0

where y_1(7) = P*(n)r(r) and and y,,, = (—1)™Y (7)™ ir(7) for m > 0.
Note that Egae I@tbove series can be considered as a particular case of resolvent
expansion 3], which in turn can be viewed as a particular case of the
inversion of singularly perturbed matrices. Note that in particular y_q(7) =
g(m) and yg = h(m), where g() is the expected average reward vector defined
above and h(7) is the bias vector.

Definition 1 The stationary policy m, is called a discount optimal policy
for the discount factor X € (0,1) if v} (m) > v}(w) for all i € X and all
7 e %,

Definition 2 The stationary policy m. is called a gain optimal policy if
gi(ms) > gi(m) for each i € X and all m € IS,

It is well known that there exists a deterministic discount policy and a
gain optim ]roq}uiypeach of which can be compu’gedrby a number of efficient

algorithms qun&tezxpansmn allows us to define more
selective optlmahty crlterla

Definition 3 A policy ©* € II¥ is called an m-discount optimal policy for
some integer m > 0 if

[ym (7)) 2 [ym ()]

for all i € X and all policies w that are (m — 1)-discount optimal. By
convention, the gain optimal policy is (-1)-discount optimal policy.

20
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In particular, 0-discount optimal policy is called bias optimal

Moreover, it is known that there exists a stationary fven « (ietermln—
istic) policy that is n-discount optimal for g > -1 E(% 79, 80]. It is
referred to as the Blackwell optimal policy %ﬁnd is defined equivalently
in the following way.

Definition 4 A policy 7, is said to be Blackwell optimal if there exists some
po > 0 such that for all p € (0, po] v (7*) > vP(m) for all m € 1I5.

In other words, a Blackwell optimal policy is a policy which is discount
optimal policy for any discount factor sufficiently close to one.

The results of singular perturbation theory have several applicat'%ng to
Markov decision processes. The first example is the Laurent series (21) for
the expected discount reward. Another important application is singularly
perturbed MDP. For the clarity of exposition we restrict ourselves to the case
of linear perturbation, namely, we assume that the transition probabilities
of the perturbed MDP are given by

pg(jli,a) :p(jﬁ’a) +€d(j|i7a) >0, (22)

where p(j|i,a) are transition probabilities of the original unperturbed chain,
>-jd(jli,a) = 0, and € is a “small” perturbation parameter. We are es-
pecially interested in the case of singular perturbations, that is when the
perturbation changes the ergodic structure of the underlying Markov chain.

As the following example shows, the policies that are optimal for the un-
perturbed MDP may not coincide with the optimal policies for the perturbed
MDP.

Example 2.1 Let us consider an MDP model with X = {1,2}, A(1) =

{a1,b1}, A(2) = {az} and
P(ULa) =1, pf(2[1,a1) =05
P (11,01) =1—¢, p°(2]1,b1) =¢;
p°(12,a2) =&, P°(2]2,a2) =1—c¢;
r(l,a1) =1, 7(1,b1) =15, r(2,a2)=0

There are only two deterministic policies, u = [a1,a2] and v = [b1,az]. For
these policies one can easily calculate the average reward vectors. Nainely,

] [ ]

QE(U) - 1 and gE(U) = 0 75
0 e>0 [ .O } e>0
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Thus, we can see that for € = 0 the average optimal policy is v, whereas for
€ > 0 the average optimal policy is u.

Since often we do not know the exact value of the perturbation parameter
€, we are interested in finding the policy which is “close” to the optimal one
for £ small but different from zero. We will call it a suboptimal policy or
a limit control optimal policy. A strict definition will be given later in this
section.

Most research in this topic was carried out with the assumption that
the unperturbed MDP is completely decomposable and that the perturbed
process is ergodic. More precisely, one can introduce the following four
assumptions:

A1) X = U _ X, where Xp,nX; = Qifk # [, n > 1, and >} _; card(Xy) =
N

A2) p(jli,a) = 0 whenever i € X, j € X; and k # [.

A3) For every i = 1,...,p the unperturbed MDP associated with the
subspace Xy, is ergodic.

A4) The transition matrix P?(r) is irreducible for any = € II° and any
¢ sufficiently small but different from zero, that is the perturbed MDP is
ergodic.

The structure defined by assumptions A1)-A4) has a clear interpretation.
The perturbed MDP model can be viewed as a complex system consisting of
p “weakly-interacting” subsytems associated with Xi, k =1, ..., p. Note that
perturbation ed(j|i,a), where i and j are the states of different subsystems
Xk and X respectively, represents the probability of rare transitions between
the subsystems, which are independent in the unperturbed chain.

This model of singularly perturbed MDP was first studied by Pervoz-
vanski and Gaitsgoryg%]. They proposed an aggregation - disaggregation
algorithm for the computation of suboptimal policies for the perturbed
MDP with average and discount optimality criteria. Furthermore, they have
shown that in the case of discount optimality criterion, an optimal policy for
the original problem is also suboptimal for the perturbed problem. The lat-
ter is not true in general if one uses the gain optimality criterion. In partic-
ular, if the perturbation is singular, the suboptimal policy of the perturbed
problem can be quite different from the optimal policies of the unperturbed
problem (see Example 2.1). The explanation for this phenomenon is that the
interaction between weakly-coupled subsytems in the singularly perturbed
process makes an effect only after sufficiently long time interval, and, if one
uses discounting, the end of the trajectory has no significant contribution to
the expected discount reward.
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To investigate the above phenomenon, it was proposed in HZEZE]E‘GO consider
the discount optimality criterion for the case where the interest rate goes
to zero (equivalently, the discount factgr goes to one) as the perturbation
parameter vanishes. In particular, in it is assumed that p = p(e) =
pe for some constant p. The latter allows one to exhibit the two time

calce behaviour of the singularly perturbed MDP. In addition, the model in
%admits a set of transient states. & dynamic programming equation
for the perturbed model is solved in by using an approach based on
ﬁicographical ordering. This concept was first applied to MDPs by Veinott

] to calculate a Blackwell optimal policy. Moreover, as one can seen there,

JP%EIW pe ftﬂ,ll‘b d MDPs have a close relation with Blackwell optimality
'%()TGBT?T?’U_SU?End Markov branching decision chains (for comprehensive
study of Margzgf branching chains t}}g reader is refered to the paper by H jalag;
and Veinott ater, based on [25], results which appeared first in
were extended in KJ? to include the possibility of several time scales. The
key point in [[25] and]#? ] is the use of the following dependency of the interest
rate on the perturbatlon parameter: p = p(e) = pe!, where [ represents the
order of (‘E'me scale. In Altman and Gaitsgory have generalized the
results of [67] to constrained N&gﬁ«mﬂgilwﬁ rocesses.

Abbad, Bielecki and Filar [T, 3, 14, 2] formulated the limit control prin-
ciple, which provides a formal settlng for the concept of suboptimal policies.
First, as elaborated in Section 2, we note that for any stationary policy
7 € T19, there exists a limiting ergodic projection

P*(m) := ll_r)x(l) P (7).

(C

)

The average reward optimization problem for the perturbed MDP can be
written in the form

opt,e *,E . £
gi"" = max[P™*(m)r(m)li  (L7).

The limit control principle says that instead of the above singular program
one can consider a well-defined limit Markov control problem:

g = ﬁ%[ﬁ*(ﬂ)r(ﬂ)]i (L)-

It is natural to expect that an optimal strategy to (L), if exists, will approx-
imate well the optimal strategy for the perturﬁﬁi%froblem (LF), in the case
where the perturbation parameter is small. In it was shown that this is
indeed the case. Specifically, let 7, be any maximizer in (L), then

1 oplie| .
lim mapx |gg () — g7 = 0
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In H%t is proved that there exists a deterministic polic icggcat solves the limit
control problem (L). Recently, Bielecki and Stettner have generalized
the limit control principle to MDPs with general Borel state spaces and
compact action spaces.

Under the assumptions Al) — A4) the limit Markov control problem (L)
can be solved by solving the following linear programming problem (P):

maximise 2221 Y iex . D e A(4) 7 (4, a)zzka

subject to:

SN (6 - p(ilia)k =0, jeXpk=1,...,n

1€X g a,EA( )

ZZZ Z d(jli,a)f, =0; £=1,...,n

k=1jeXpieXy a,EA

n
Sy Y 4
k=11€Xt acA(1)

k>0 k=1,...,m ieXgacA®)

1B1
It can be shown (see at an optimal strategy in the limit Markov

control problem (L) can be constructed as follows.

Theorem 8 Let {zf|k=1,...,n; i € Xy; a € A(i)} be an optimal extreme
solution to the linear program (P), then the deterministic strategy defined
by

fl@d)=a, i€Xp, k=1,...,n<>2E >0

is optimal in the limit Markov control problem (L).

The 11 program (P) is similar to one given by Gaitsgory and Pervoz-
%@ . However, these authors used techniques different from those in

As a result of the solution of problem (L), one gets limit control optimal
policy f. € IIP such that for any other deterministic policy f € IIP the
holds

lim (g5 (fe) =95 (f)) 20, ieX.
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unif_examp

However, as was noted in E]?a policy that solves (L), in general, is only
suboptimal. Interestingly, there exists a policy that is optimal for all suffi-
ciently s L]ﬁ but different from zero (see F%]E%},This policy is called uniform
optimal [5] and it satisfies the following inequality

g5 (f) = g; (f),

for any deterministic policy f and all € sufficiently small but different from

zero. We like to emphasize that a uniform optimal policy is limit control

optimal, but the converse need not hold, as the following example illustrates.
Example 2.2 Consider X = {1,2}, A(1) = {a1,b1}, A(2) = {az}; let

1€ X,

p°(11,a1) =1, r(1,a1) =10
p*(1|1,b1) =1—¢, r(1,b1) =10
P°(2[]1,01) =&,

p°(1]2,a2) =1, r(2,a2) =0

Then the stationary policy u(1) = a1,u(2) = ag is uniformly optimal with
expected average reward g5 (u) = 10. The stationary policy v(1) = b1,v(2) =
ay is limit control optimal as lim,_,o g5 (v) = 10, but for every € > 0,

£ —

< g; (u).

A het ris‘&ic procedure to determine the uniform optimal policy is pro-
posed in 1] contrast, a well-defined computational procedure was pro-
posed in hBT;Lwhich is based on asymptotic linear program éllgi ;F?g asymp-
totic linear programming was first introduced by Jeroslow%ﬁﬁnd later
refined by Hordijk, Dekker and Kallenberg %’% It is designed to solve the
following parametric linear program

=

(23)

max c(e)z

A(e)x = b(e),
for & small but different from zero. The elements of A(e),b(e) and c(e) are
assumed to be polynomials of €. The basic idea of this method is to perform
the simplex algorithm over the field of rational functions instead of the field
of real numbers. The latter results in a solution that is optimal for all £ suf-
ficiently small but different from zero. We would like to note that instead of
asymptotic line prg’%{aﬁgnrgl Ofe can use its modification, the asymptotic
simplex method ;6?, 57, b8, 7], which operates over the field of Laurent se-

ries. Moreover, if the asymptotic linear programming or asymptotic simplex

x>0 (24)
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method is used, then one can drop Assumptions A1)-A4) and consider the
most general situation.

As can be concluded from the above overview of Markov decision pro-
cesses, there is an intrinsic relationship between the Blackwell optimality
and singul e turbations. Actually, the contributions of Delebecque and
Quadrat%l] clearly emphasize this connection. It turns out that the
Blackwell optimality, singularly perturbed MDPs and branching Markov de-
cision chains can all be considered in a unified framework based on asymp-
totic simplex method. Towards this end, let us consider the linear program-
ming formulation for the following four MDP models.

Model I: MDP with Blackwell optimality criterion

A Blackwell optimal policy is a discount optimal policy for all discount
factor sufficiently close to one, or, equivalently, the policy which is optimal
for all interest rate sufficiently close to zero. A Blackwell optimal policy
ﬁﬁﬁlﬁ%igﬁ?ﬁnaéﬁed by using the asymptotic line:emr programming .appr.oach
6, 43, 57, 58]. Namely, one needs to find a solution for the following linear
program which is optimal for all interest rate p > 0 which are sufficiently

small:
e 37 (14 p)r (i, )i

2,0

Y [ +p)dij — pljlis@)lzia = 1, @ia 2 0. (25)

7,a

}é(%e 1ih t the above linear ram can be immediately written in the form
(23),( with ¢ = p. In %Yfé ! Eeﬁzned version qu m%%reqslow’s asymptotic
linear programming method [50, or solving (bm developed. Later
Lamond applied his version of the asymtoti 'Xr‘}plex method to the
above parametric LP. Of course, qur, algorithm can be applied to this
model as well. As pointed out in %5%2’, in this particular case, the Laurent
series for the basis matrix always admits a simple pole. This in turn implies
that the complexity of the basis updating is O(n?), which is comparable
with the complexity of the basis updating for the ordinary simplex method.

Model II: Markov branching decision chains. v

The Markov branching decision chains were introduced in %[5] These
are MDPs with immediate rewards which dependent on the interest rate.
Namely, it is assumed that r(i,a) = r°(i,a) is a polynomial in the interest

rate p. To ﬁ%& policy which is optimal for all sufficiently small p (Str%ggr—ﬂo del

value policy [45]), we need to solve only slightly modified version of (
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that is
max Z(l + p)rP(i,a)T4q

1,a

Z[(l + p)(SZ] _p(jliaa)]mia =1, x>0 (26)
2,a

Again the asymptotic simplex method can be immediately applied.

method of finding the optimal policy proposed by Huang and Veinott F%[S]

also employs the asymptotic programming approach. The method is based

on the subsequent solution of the augmented LPs, whose objective functions

and right hand sides (but not the constraint coefficient matrix) depend on

the parameter.

Model III: Singularly perturbed MDP with average criterign L\ Jern HDK
In Section 3.4 we applied the asymptotic linear programming r5U o1,

43], which is based on the ordering in the field of rational functions, to
singularly perturbed MDPs with average criterion. Since one needs to solve
the following parametric program

max Z (%, Q) Tiq
1,a

Z[(SZ] - p(ﬂi’ a) - ‘Sd(]h’ a)]xia = 07

2,0

sz[ i — p(iliya) — ed(jli, a)]yia = Bj,
Tia 20, Yia 20, (27)

the asymptotic simplex method, based on the Laurent series expansions, can
be applied as well. Moreover, since the basis updating in the asymptotic
linear programming takes O(m®*log(m)) flops, and the asymptotic simplex
method takes m? flops. The latter method is computationally superior.

Mode Slngularly perturbed MDP with killing interest rate
In %2[121,_71] considered singularly perturbed MDPs with “killing interest
rate” p(e) = pe', where [ is the order of a time scale were considered. This
model exhibits the nec ssity of different control regimes for the different time
scales. The papers [24, 71] provided a lexicographical policy improvement
algorithm for the solution of the perturbed dynamic programming equation.
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Alternatively, the extension of our asymptotic simplex method for the poly-
nomial perturbation can be used in this problem. Here the parametric linear
program takes the following form

max Z(l + pue)r(i, a)ziq

2,a

> 11+ ueh)dij — p(jlis a) — ed(jliy a)]zia =1,  ia > 0. (28)

2,0

Generalized Model:

Finally, we would like to note that the Models I,IT and IV can be viewed
as particular cases of the next unified scheme. Let transition probabilities
p°(jl¢, @), immediate rewards r°(, a) and interest rate p(e) of an MDP model
be polynomials of the parameter €. Then a policy which is optimal for all
sufficiently small values of parameter € can be found from the next perturbed
linear program.

max Z(l + p(€))r*(i,a)Tiq

Y 1A+ p(e)dij — p(jli, a)lwia = 1, i 2 0. (29)
,a
The above perturbed LP can be efficiently ;%!\f‘)’d by the generalization of the
asymptotic simplex method proposed in [7]. Note that we retrieve Model I
with p(e) =€, r*(i,a) = r(3,a), p°(j|i,a) = p(jli,a); Model IT with p(e) =&,
r(i,a) = Y b_o&*r(i,a), p°(jli,a) = p(jli,a); and Model IV with p(e) =
pe', (i, a) = r(i,a), p°(jli,a) = p(jli,a) +ed(jli, a).

4 Singularly Perturbed MDP’s and the Combina-
torial Hamiltonian Cycle Problem

In this section we demonstrate that a famous combinatorial optimisation
problem such as the Hamiltonian Cycle Problem (HCP) can be regarded
as a singularly perturbed Markov Decision Process. We begin with a brief
description of only one version of the HCP.

In graph theoretic terms, the problem is to find a simple cycle of N arcs,
that is a Hamiltonian Cycle or a tour, in a directed graph G with N nodes
and with arcs (4, j), or to determine that none exist. Recall that a simple
cycle is one that passes exactly once through each node comprising the cycle.
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It is known that HCP belongs to the NP-complete class of problems and, as
such, is considered very difficult from an algorithmic perspective.

In this section we propose the following, unorthodox, perspective of the
Hamiltonian cycle problem: Consider a moving object tracing out a directed
path on the graph G with its movement “controlled” by a function f map-
ping the set of nodes X = {1,2,..., N} into the set of arcs A.

Clearly, we can think of this set of nodes as the state space of a Markov
decision process I' where for each state/node i, the action space

A(i) = {a = j|(i,j) € A}
is in one to one correspondence with the set of arcs emanating from that
node.

Of course, we shall ignore the trivial case A(i) = (), because in such
a case, obviously, no Hamiltonian cycle exists. Furthermore, if we restrict
the function f above in such a way that f(i) € A(4), for each i € X, then
we see that f can be thought of as a deterministic strategy f in an MDP
I". Designating node 1 as the “home node” in (G, we shall say that f is a
Hamiltonian cycle in G if the set of arcs {(1, f(1)), (2, f(2)),..., (N, f(N))}
is a Hamiltonian cycle in G. If the above set of arcs contains cycles of length
less than N, we shall say that f has subcycles in G.

Note that if P(f) is the transition probability matrix of a Markov chain
induced by f that is a Hamiltonian cycle, then P(f) is irreducible and
the long-run frequency of visits to any state z;(f) = 1/N. Of course, if
f has subcycles in G, then P(f) contains multiple ergodic classes which
complicates the analysis of the Markov decision process I, in which we have
embedded our graph theoretic problem.

A class of limiting average Markov decision processes that retains most of
the desirable properties of the irreducible processes is the so-called “unichained”
class. Briefly, a Markov decision process is unichained if for every deter-
ministic stationary control f, P(f) contains only a single ergodic class and
possibly a nonempty set of transient states. We now perturb the transi-
tion probabilities of T" slightly to create an e-perturbed process I'(¢) (for
0 < e < 1) defined by:

ifi=1landa=)
ifi=1landa#j
ifi>landa=j=1
ifi>1l,a#j,and j=1
—¢ ifi>1l,a=j,and j > 1
ifi>1,a#j,and j > 1.

p(jli,a) = <

O, 0 =k O =
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Note that with the above perturbation, for each pair of nodes i, j (not
equal to 1) corresponding to a “deterministic arc” (i,j) our perturbation
replaces that arc by a pair of “stochastic arcs” (i,1) and (i, j):

Figure 1:

with weights € and (1 — ) respectively (¢ € (0,1)). Note that this pertur-
bation changes I' to an e-perturbed Markov decision process I'(¢).

Example 4.1
Consider the following complete graph G on four nodes (with no self-loops):

Figure 2:

and think of the nodes as the states of an MDP, denoted by I', and of the
arcs emanating from a given node as actions available at that state. The
Hamiltonian cycle ¢; : 1 - 2 — 3 — 4 — 1 corresponds to the deterministic
stationary strategy f1 : {1,2,3,4} — {2,3,4, 1} where f1(2) = 3 corresponds
to the controller choosing arc (2,3) in state 2 with probability 1. The Markov
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chain induced by f; is given by the transition matrix

P(f1) =

o OO
o o o
o o = O
o= O O

which is irreducible. On the other hand, the union of two sub-cycles: 1 —
2 — 1 and 3 — 4 — 3 corresponds to the policy f2:{1,2,3,4} — {2,1,4,3}
which identifies the Markov chain transition matrix

0100
1 0 00
0O 010

containing two distinct ergodic classes.

As mentioned earlier, the perturbation destroys multiple ergodic classes
and induces a unichained, singularly perturbed, Markov decision process
I'(¢). For instance, the policy fo now has the Markov chain matrix

0 0
0 0
0 1—c¢
1—¢ 0

P(f2) =

n oo RO
oo oM

Remark 4.1

Our perturbation has made the home node/state 1 rather special. In par-
ticular, the home state always belongs to the single ergodic class of P(f) for
any f € IT°. Of course, some other states could be transient.

We shall undertake the analysis of the Hamiltonian cycle problem in the “fre-
quency space” of the perturbed process I'(¢). Recall that with every f € II°
we can associate the long-run frequency vector x(f). This is achieved by
defining a map M : I — X (¢) by

zia(f) = mi(e, f) f(ali); feT®

for each i € X and a € A(i), where m;(e, f) is the i-th element of the

stationary distribution vector of the perturbed Markov chain transitions

matrix P(f), and f(al?) is the probability of choosing action a in state i.
Now consider the polyhedral set X(¢) defined by the constraints
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—pe(jli,a)] g = 0; j € X.

Mz

.
Il
—

I

m

Ali)
Z:
EA(

(iii) ziq > 0;a € A(3), 1 € X.

=

an

Next define a map M : X(g) — II° by

%; if T; = ZaGA(i) Tig > 0
ifz; =0and a =aq

fx(iaa’) = 1
0; ifx;=0anda+#a,

for every a € A(i), i € X where a; denotes the first available action in a
givﬂ_;% state i(ipording to some ordering. The following result can be found
]

in and

Lemma 4.1

(1) The set X(e) = {x(f)|f € I°} and will henceforth be called the (long-
run) “frequency space” of T'(e).

M (M(x)) -

but the inverse of M need not exist.

(ii) For every x € X(g),

(iii) If x is an extreme point of X(e), then

fx = M(x) eTIP.

(iv) If f € TI? is a Hamiltonian cycle, then x(f) is an extreme point of
X(e).

We shall now derive a useful partition of the class II” of deterministic strate-
gies that is based on the graphs they “trace out” in G. In particular, note
that with each f € IIP” we can associate a subgraph G ¢ of G defined by

arc (i,§) € Gy = f(i) =
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We shall also denote a simple cycle of length m and beginning at 1 by a
set of arcs

Crln = {(7’1 = laiQ)a(i25i3)’---a(7;maim—|—1 = 1)}; m=2,3,...,N.

Of course, c}\, is a Hamiltonian cycle. If G; contains a cycle ck, we write

Gy D¢}, For 2<m < N, let Cy, := {f € IP|G D c}, } ,namely, the set of
deterministic strategies that trace out a simple cycle of length m, beginning
at 1, foreach m = 2,3,..., N. Of course, Cy is the set of strategies that cor-
respond to Hamiltonian cycles and any single C,, can be empty, depending
on the structure of the original graph GG. Thus a typical strategy f € Cj3, for
example, traces out a graph G in G that might look like Figure 3 where the
dots indicate the “immaterial” remainder of Gy that corresponds to states
that are transient in P(f).

Figure 3:

The partition of the deterministic strategies that seems to be most rele-
vant for our purposes is

n’ =

UB, (30)

N
J
m=2

where B contains® all the deterministic strategies that are not in any of the
Cin’s. Note that a typical strategy f in B traces out a graph Gy in G that
might looks as follows:

5Tt will soon be seen that the strategies in B are in a certain sense “bad” or, more
precisely, difficult to analyse, thereby motivating the symbol B.
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Figure 4:

where the dots again denote the immaterial part of Gy. However, it is im-
portant to note that for any € > 0, the states 1,149, ...,%;_1 are not transient
in Ty ().

It is, perhapsé iﬁl‘%griesting to observe that all strategies in a given set
in the partition (bﬁ)ﬁduce the same long-run frequency x1(f) of visits to
the home node 1. This observa '(l)y is captured in the following proposition
which can be found in %6] and

Proposition 4.2

Let € € (0,1), f € TI?, and x(f) be its long-run frequency vector (that is,
x(f) = M(f)). The long-run frequency of visits to the home state 1 is given
by

1
 if feCy,, m=2,3,...,N
n(f)= Y za(f)=3 )
a€A(1) T if f € B,

where dp(€) =1+ >0 5(1 —€)"™2 for m =2,3,...,N.
The above proposition leads the following characterizations of the Hamil-
tonian cycles of a directed graph.

Theorem 9

(i) Let f € IP be a Hamiltonian cycle in the graph G. Then Gy = c,

x(f) is an extreme point of X(¢) and z1(f) = _le((-;)'

(ii) Conversely, suppose that x is an extreme point of X(¢) and that x1 =
2 acA(1) Tla = Wl(g), then f = M(x) is a Hamiltonian cycle in G.

(iii) Hamiltonian cycles of the graph G are in 1 : 1 correspondence with
those points of X(g) which satisfy

1
(a) 1 = Z Tig = m

a€A(1)

34



(b) For every i € X, z; = Z Tia > 0 and %‘L € {0,1} for each
a€cA(l)
a€ A(), ieX.

Remark 4.2: It is, perhaps, significant to note that for all € € (0,1),
m=2,3,...,N—1
1 1 €

> > :
dm(e) = dmia(e) = 1+e

Thus Theorem 9 demonstrates that the extreme points x of X(¢) can be
“ranked” according to their values of the linear function I(x) = >_,c 4(1) Z1a-
Unfortunately, the Hamiltonian cycles (if they exist) may attain only the

1

“second lowest” value of [(x), namely, R The latter, %;‘oblem is, partially,
1

rectified in the following result that can be found in ;

Theorem 10 Let f* € TIP be a Hamiltonian cycle in the graph G. Then
for € > 0 and sufficiently small f* is a global minimiser of the following
perturbed optimisation problem:

min (1 = P(f) + P* (1)),

where Hyy denotes the (1,1)™ entry of matriz H.

The above theorem shows that if Hamiltonian cycles exist, they are the
minimisers of the top left element of the fundamental matrix, over f € II7”,
as long as ¢ is sufficiently near 0. However, from the optimisation point of
view, elements of the fundamental matrix are not straightforward to analyse.
This leads naturally to the open problem: can asymptotic expansions such as
the one in Theorem 5, facilitate algorithmic approaches to the optimisation
problem in Theorem 10?7

To date the best algoritjg%c results based on this stochastic approach
to the HCP are reported in [8]. These results exploit the properties in (i)
— (iii) of Theorem 9, above. In particular, it can be checked that the most
awkward requirement x;,/x; € {0,1} for all i € X,a € A(3) is equivalent
min{z;q, zjp} = 0 for all i € X, a,b € A(¢) and a # b. This observation
immediately leads to the following mixed integer programming formulation
of the HCP problem:
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min ), . Ciaia

s.t. z € X(e)
1 = 1/dn(e)
Tia < Myiq : 1€X,a € A()
Yia Tty < 1 ; 1€X,a,b€ A(i),a#b
via € {0,1} ;i €X,a € A().

In the above M > 1/dn(e) and ¢;4’s can %ejzgexperimented with. In pre-
liminary numerical experiments reported in 8], randomly generated prob-
lems with up to 100 nodes and 300 arcs were solved in les Lthan 150 cpu
seconds on a Sun Workstation. Recently, Filar and Lasserre %30] proposed a
non-standard branch and bound algorithm for the formulation

min Z Z CiaZiq
i a
st.  (a) x€X(e)

(b) x1=1/dn(e)
(€) xi/xi €{0,1}; i€ X, a€ A(i)

which exploits the structural property that ensures that if the relaxation
omitting (c) is solved by the simplex method, then (c) can be violated for
at most one i and at most one pair of arcs a, b. )

In an interesting, related, development Feinberg E’%fhas recently consid-
ered the embedding of a Hamiltonian cycle problem in a discounted Markov
decision process. In that paper the perturbation parameter € is not necessary
but, instead, the discount factor A € [0,1) plays a crucial role. In particular
Feinberg’s embedding can be obtained by setting € = 0 in p5(j|i, a)’s defined
earlier and by setting

Gay= [ 1 ii=1aeA0)
"B =9 0 otherwise

For any 7 € II° the expec d discounted reward v} (m) is now defined as in
Section 3. The analysis in is based on the following interesting observa-
tion. Let 4,, denote the state/node visited at stage m, then

o0

)= 3 NP (i = 1),

m=0

36



where P['(-) denotes the probability measure induced by 7 and the initial
state ig = 1, and

Plin=1) = o | 0}

— .
m! A=0

The above lead to novel characterisations of Hamiltonian cycles that are
summarised below.

Theorem 11 With the embedding in Iy described above the following state-
ments are equivalent:

(i) A policy m = f is deterministic and a Hamiltonian cycle in G.
(ii) A policy m is stationary and a Hamiltonian cycle in G.

(iii) A policy f is deterministic and vi(f) = (1 — AN)7! for at least \ €
[0,1).

(iv) A policy 7 is stationary and v (7) = (1 — AN)~! for 2N — 1 distinct
discount factors A\, € (0,1); k=1,2,...,2N — 1.

The above characterisation naturally leads to a number of mathematical

O ramming formulations of both HCP and TSP that are described in

. There is clearly a need to explore the algorithmic potential of these
formulations.
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