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Chapter 1

Finite state and action
MDPs



Abstract

In this chapter we study Markov decision processes (MDPs) with finite state
and action spaces. This is the classical theory developed since the end of the
fifties. We consider finite and infinite horizon models. For the finite horizon
model the utility function of the total expected rewards is commonly used.
For the infinite horizon the utility function is less obvious. We consider sev-
eral criteria: total discounted expected rewards, average expected rewards
and more sentitive optimality criteria including the Blackwell optimality
criterion. We end with a variety of other subjects.

The emphasis is on computational methods to compute optimal policies for
these criteria. These methods are based on concepts like value iteration,
policy iteration and linear programming. This survey covers about three
hundred papers. Although the subject of finite state and action MDPs is
classical, there are still open problems. We also mention some of them.



1.1 Introduction

1.1.1 Origin

Bellman’s book [FFB], can be considered as starting point of Markov dleci—
sion processes (MDPs). However, already in 1953, Shapley’s paper [222]
on stochastic games includes as a special case the value iteration method
for MDPs, but this was recognized only later on. About 1960 the basics
for the other computational methods (policy iteratj and linear prog

ming) were (élev&goped i ub]égatlons like HOIFZTF , De Ghellinck

D’Epenouxi%gﬁ_l\/fannenf%sffand Blackwell . Slnce the early 31xt1es
many results on MDPs are published in numerous journals, monographs,
books and proceedings. Over thousand papers were published in scientific
journals. There are about fifty books on MDPs. Arou d 870 a first e111‘11_e
of books was published. These QO e g. DeerragI;-%E'f Hinderer %’DT?
Kushner , Mine and Osaki and Ross contain the funda-
mentals of the theory of finite MDPs.

Since that time nearly every year

one or more MDP 6]gooks appeared
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1.1.2 The model

We will restrict ourselves to discrete, finite Markovian decision problems,
i.e. the state space E and the action spaces A(i),i € E, are finite, and the
decision time points t are equidistant, say ¢t = 1,2,.... If, at time point ¢,
the system is in state ¢ and action a € A(%) is chosen, then the following
happens independently of the history of the process:

(1) a reward r;(a) is earned immediately;

(2) the process moves to state j € E with transition probability p;;(a), where

pij(a) > 0 and ¥;p;j(a) =1 for all 7, j and a.

The objective is to determine a policy, i.e. a rule at each decision time
point, which optimizes the performance of the system. This performance
is expressed as a certain utility function. Such utility function may be the
expected total (discounted) rewards over the planning horizon or the average
expected reward per unit time. The decision maker has to find the optimal



balance between immediate rewards and future rewards: a high immediate
reward may bring the process in a bad situation for later rewards.

A policy R is a sequence of decision rules: R = (7!, 72,... ,7%,...), where

7t is the decision rule at time point ¢. The decision rule at time point ¢
may depend on ”all information” of the system until time %, i.e. on the
states at the time points 1,2,... ,t and on the actions at the time points
1,2,... ,t—1. A formal definition of a decision rule is stated below.

Let ExA = {(i,a) |7 € E, a € A(i)} and let H; denote the set of the
possible histories of the system up to time point ¢, i.e.

Hy={(i1,a1,... ,it-1,at-1,%)|(ik, ax) EEX A, 1 < k <t—1;4 € E}. (L.1)

A decision rule w' at time point t gives the probability, as function of the
history H; to the action space, of choosing action a; i.e. ﬂ'};t (at) > 0 for
every a; € A(i) and g, 7}, (as) = 1 for every hy € Hy.

A policy R = (7!, 72,... 7%, ...) is said to be memoryless if the decision
rule 7t is independent of (i1,a1,...,4; 1,a; 1) for every t € N. Hence,
in a memoryless policy the decision rule at time ¢ only depends on the
state 7;. Memoryless policies are also called Markov policies. If a policy is
memoryless and the decision rules are independent of the time point, i.e.
7l = 72 = ..., then the policy is called a stationary policy. We will
denote the stationary policy R = (m,7,...) by 7. If the decision rule
7w of a stationary policy 7 is nonrandomized, then the policy is called
deterministic. A deterministic policy can be described by a function f on E
such that f(7) is the action chosen in state i,7 € E. A deterministic policy
will be denoted by f°.

Any policy R and any initial distribution 3, i.e. [(; is the probability that
the system starts in tg%esg,minduce - by a theorem of Ionescu Tulcea (cf.
Bertsekas and Shreve [22 ) - a probability measure Pg g on Hy, where

Hy = {(il,al,ig,ag,...) | (ik,ak) ceExAk=12... } (1.2)

Let the random variables X; and Y; denote the state and action at time
t(t = 1,2,...) and let Pgg[X; = ¥ = a] be the notation for the
probability that at time ¢ the state is j and the action is a, given that policy
R is used and g is the initial distribution. The next theorem shows that
for any initial distribution 3, any sequence of policies Ri, Ro,... and any



convex combination of the marginal distributions of Pg gz, ,k € N, there
exists a Markov policy R which has the same marginal distribution.

Theorem 1 Given any initial distribution 3, any sequence of policies R1, Ro, . ..

and any sequence of nonnegative real numbers p1, pa,... with Xgpr = 1, there
exists a Markov policy R, such that for every (j,a) € E x A

P r. [ Xt =4, Y: = a] = Sppi - Pp.g, [X: = 5, Y = a],t € N. (1.3)

Corollary 2 For any starting state i and any policy R, there exists a Markov
policy R, such that

Pir (Xt =5,Yi=a] =P g[X; = j,Y; =a],t e N,(j,a) e Ex A.  (1.4)

The results of Theorem 1 and Corollary 2 imply the sufficiency of Markov
policies for performance measures which only depen or 6the marginal dis-
tributions. Corollary 2 is due to Derman and Stra;cll(;h %I and the extension
to theorem 1 was given by Strauch and Veinott fZBB] The result IS 1f171 ther
generaliz %e more general state and actions spaces by Hordijk and
Van Hee }

1.1.3 Optimality criteria

Let v;(R) be the utility function if policy R is used and state i is the starting
state, i € E. The value vector v of this utility function is defined by

v; =supv;(R),i € E. (1.5)
R

A policy R is an optimal policy if v;(R) = v;,i € E. In Markov decision
theory the existence and the computation of optimal policies is studied.
For this purpose a so-called optimality equation is derived, i.e. a functional
equation for the value vector. Then a solution of this equation is constructed
which produces both the value vector and an optimal policy. There are three
standard methods to perform this: value iteration, policy iteration and linear
programming.

In walue iteration the optimality equation is solved by successive approxi-

mation. Starting with some v?,v**! is computed from v*,t = 0,1,.... The
sequence v°,vl, ... converges to the solution of the optimality equation. In
policy iteration a sequence of improving policies f§°, fi°,... is determined,



ie. v(f£y) = v(ff°) for all ¢, until an optimal policy is reached. The linear
programming method can be used because the value vector is the smallest
solution of a set of linear inequalities; an optimal policy can be obtained
from its dual program.

In this survey we consider the following utility functions:

(1) total expected rewards over a finite horizon;

(2) total expected discounted rewards over an infinite horizon;
(3) average expected rewards over an infinite horizon;

(4) more sensitive optimality criteria for the infinite horizon.

Suppose that the system has to be controlled over a finite planning horizon
of T periods. As performance measure we use the total expected rewards over
the planning horizon, i.e. for policy R we will consider for starting state ¢

vi (R) = S Biglrx, (Y2)] = £{155,0Pir[Xe = 5,V = a] - 7j(a).  (1.6)

A matrix P = (p;;) is called a transition matriz if p;; > 0 for all (7, ) and
Y pij = 1 for all i. Markov policies, and consequently also stationary and
deterministic policies, induce transition matrices. For the Markov policy
R = (n',72,...) we define, for every t € N, the transition matrix P(n') by

[P(7%)]ij = Zapij(a)7l(a) for all 4,5 € E, (1.7)

and the reward vector r(nt) by

ri(m") = Toml(a)ri(a) for all i € E. (1.8)

Hence the total expected rewards can be written in vector notation as

vI'(R) = XL, P(e")P(r?) - -« P(x"1)r(nh). (1.9)

It can be shown (we refer to section 2) that an optimal Markov policy
R, = (fLf2,...,fF) exists, where f! is a deterministic decision rule
1 < t < T. Such policy is called nonstationary deterministic. The nonsta-
tionarity is due to the finiteness of the planning horizon.

Next, we consider an infinite planning horizon. In that case there is not
a unique optimality criterion. Different optimality criteria are meaningful:
discounted rewards, total rewards, average rewards or more sensitive criteria.
In the discounted reward criterion an amount r that is obtained at time
point 1 has at time point 2 the value (1 + p) - r, at time point 3 the value
(14-p)2-r, etc., where p is the interest rate. In the discounted reward criterion
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the rewards are considered as earned at time point 1. Therefore, the reward
rx,(Y;) at time point ¢ has at time point 1 the discounted value o 17y, (V3),
where a = (1 + p) L. is called the discount factor and 0 < o < 1.

The total expected a-discounted reward, given initial state ¢ and policy R, is
denoted by v*(R) and defined by

v (R) =32 gla'rx, (V)]

g - . 1.10
= X2,0"18; P k[ X = 5,Y: = a]rj(a). (1.10)

In section 3 it will be shown that there exists an optimal deterministic policy
and that any stationary policy 7, and therefore also any deterministic
policy, satisfies

v (7°) = 22,7 P(n) (1) = [T — aP(m)] " tr(x). (1.11)

When there is no discounting, i.e. the discount factor a equals 1, then -
for instance - we may consider the total expected reward and the average
expected reward criterion. In the total expected reward criterion the utility
function is X2, E[rx,(Y;)]. However, this infinite sum does not exist, in gen-
eral. When the average reward criterion is used, the limiting behaviour of the
expectation of %Ethl rx,(Y:) is considered. Since limg_, %Eg;l E[rx,(Y?)]
or Ellimr0 731—; Tx,(¥)] does not exist, in general, and interchanging
limit and expectation may not be allowed, there are four different evaluation
measures, which can be considered for a given policy:

(a) the lower limit of the average expected reward:

o1 .
¢i(R) = lim inf fEtT:lEi,R[TXt (Yp)l,i € E; (1.12)

(b) the upper limit of the average expected reward:

: 1 :
®;(R) = limsup thTzlEi,R[rXt (Y2),i € E; (1.13)

T—o00

(c) the expectation of the lower limit of the average reward:

o1 .
Ui(R) = By gllim inf TZthert (Y2)],i € E; (1.14)

(d) the expectation of the upper limit of the average reward:

. 1 ,
U,;(R) = E; g[limsup TEtT:ﬂ"Xt (Y2)],i € E. (1.15)

T—o00



Lemma 3 (i) ¥(R) < ¢(R) < ®(R) < YU(R) for every policy R; (ii)
P(r®) = p(n™®) = <I>(7r ) = ¥(7™®) for every stationary policy 7

Remark

In Bierth [FZG]EIS shown that the four citeria are equivalent in the sense that
the value vectors can be attained for one and the same deterministic policy.
Examples can be constructed in which for some policy R the inequalities of
Lemma 3 part (i) are strict.

The long-run average reward criterion has the disadvantage that it does
not consider rewards earned in a finite number of periods: the streams of
rewards 0,0,0,0,0,... and 100,100,0,0,0,... are measured as the same.
Hence, there may be a preference for more selective criteria. There are
several ways to be more selective. One way is to consider discounting for
discount factors that tend to 1. Another way is to use more subtle kinds of
averaging. We will present some criteria and results. For all criteria it can
be shown that deterministic optimal policies exist and that these policies
are (at least) average optimal.

A policy R, is called bias-optimal if limg4q [v*(Rs) — v*] = 0 and Blackwell

optimal if v*(R,) = v® for all @ € [ap,1) for some ap. These two criteria
are special cases of a class of criteria called n-discount optimality,for n = —1,
0,1,....

A policy R, is called n-discount optimal if limq4q (1—a) ™" [v*(R,) — v®] = 0.
Obviously, 0-discount optimal is the same as bias-optimal. One can show
that (-1)-discount optimality is equivalent to average optimality, and that
Blackwell optimality is n-discount optimality for all n > N — 1, where
N = #E. In this chapter we will always use the notation N for the number
of states.

There is also the concept of n-average optimality. For any policy R,t € N
and n = —1,0,1,..., let the vector v™!(R) be defined by

(R) for n=-1

(R = {Zt v L3(R) for n=0,1... (1.16)

R, is said to be n-average optimal if liminfr_,o 4 [v™7 (R,) — v™T(R)] > 0
for all policies R. (-1)-average optimality is equivalent to average optimal-
ity. Furthermore, it can be shown that for all n € {—1,0,...} n-average
optimality is equivalent to n-discou t timality.

In a fundamental paper Blackwell presented a mathematical rigorous
proof for the policy iteration method to compute an a-discounted optimal



policy. He also introduced the concept of bias-optimality (Blackwell called
it nearly optimality) and established the existence of a discounted optimal
policy for all discount factors sufficiently close to 1. In honour of Blackwell,
such policy is called a Blackwell optimal policy.

The n-discount optimality criterion, and the policy iteratio thod for
finding an n-discount optimal policy, was proposed by Veinott . He also
showed that Blackwel‘li optimality is the same as n-discount optimality for
n > N—1.Sladky @4] has introduced the concept of n-average optimality;
furthermore, he also showed the equivalence between this criterion and the
n-discount optimality.

1.1.4 Applications

White has Pub éﬁ?g&&l{g& ?1ap|$£§t%83’1real applicat‘ions’ of Markov decisi(?n
theory (White [281], [282[ and [285]. We also mention Lamond’s chapter in
this book on water reservoir applications. Many problems can be formulated
as MDPs. In this section we shortly introduce the following examples: rout-
ing problems, stopping and target problems, replacement problems, main-
tenance and repair problems, inventory problems, the optimal control of
queues, stochastic scheduling and multi-armed bandit problems. In this
book there are also chapters on applications in finance (by Schél) and in
telecommunication (by Altman).

Routing problems

In routing problems the problem is to find an optimal route through a net-
work. Well known is the deterministic shortest path problem. Consider a lay-
ered network, i.e. the nodes V' are partitioned into V; = {v1}, Vo, -+, Vi1,
Vin = {uvn}, and if (4,7) is an arc then ¢ € Vi and j € Vjyq for some
1 < k < m—1. In the shortest path problem one has to find the (length of
the) shortest path from node v; to node v,. This problem can be modelled
as an MDP with a finite horizon (m stages). The state space E consists of
the nodes; the action set A(%) in state ¢ corresponds to the arcs with start-
ing point node 7; the transitions are deterministic: p;j(a) = 1 if action a
corresponds to the arc (i, ), and the length /;; is considered as cost when
in state ¢ action (4, j) is chosen, i.e. r;(a) = —1; if action a = (i, 7).
Let u; be the minimum distance from state ¢ to the destination v,. Then, by
the principle of optimality, we obtain the so-called optimality equation for
the shortest path problem, i.e. u; = min{l;; + u;|(,7) € A}, # n;u, = 0.
u1 is the solution of the shortest path problem. There is also a stochastic
version of the shortest path problem.



Another application of this kind is the mazimum reliability problem. In this
network the (direct) connections are unreliable: let p;; be the probability of
reaching node j when the arc from node i to node j is chosen. The objective
is to obtain the maximum probability of reaching a terminal node n when
starting from node 1.

Let P be a path from node 1 to node n. Notice that P(P), the probability to
reach n from 1 when path P is chosen, satisfies P(P) = I1(; j)cppi; and that
maxp P(P) is equivalent to maxp[log{P(P)}] which in turn is equivalent
to minp[-log{P(P)}]. Since log{P(P)} = X jjep log[pi;] the maximum
reliability problem is equivalent to the shortest path problem with [;; =
-log[py;].-

Results for the stochastic version of the sho test eB%th problem can for in-
stance be found in Bertsekas and Tsitsiklis %231._’1”59, maximum reliability
problem is discussed in Roosta [195]. We also mention White’s chapter in
this book on transportation applications.

Optimal stopping problems

In an optimal stopping problem there are two actions in each state. The first
action is the stopping action and the second action corresponds to continue.
If we continue in state 4,a cost ¢; is incurred and the probability of being
in state j at the next time point is p;;. If the stopping action is chosen in
state 4, then a( final) reward r; is earned and the process terminates. In an
optimal stopping problem, in each state one has to determine which action
is chosen with respect to the total expected reward criterion.

An exam rlgzss an optimal stopping problem is the house selling problem
(see Ross . At the beginning of each period a decision has to be taken
whether to sell the house for the best offer so far, or to wait for another period
(when the house is unsold there are maintenance costs for the next period).
We assume that the numbers p; are known, where p; is the probability of
an offer j during a period (these probabilities are stationary, i.e. they are
independent of the period). This house selling problem can be modelled
as an optimal stopping problem with the following state descrition: state
1 means that the best offer so far is i. Selling the house corresponds to
the stopping action; otherwise we continue and have probability p; for a
transition from state ¢ to state 7 > 4 and the transition probability from ¢
to 7 is equal to Xj<; p;.

For this kind of problems it can be shown that a control limit policy is optimal
(i.e. sell the house at the first offer of at least i, for a certain amount i, ).
It is possible to derive an explicit expression for i,.

The original analysis of optimal stopping problems appeared in Derman and



er60 . ho . .
Sacks l61) , and Chow and erbms 361, A dynamic programming approach
can be found in Breiman who showed the optimality of control limit

policies. We refer also to Sonin’s chapter in this book.

Target problems
In a target problem one wants to reach a distinguished state (or a set of
states) in some optimal way, where in this context optimal means e.g. at
minimum cost or with maximum probability. The target states are absorb-
ing, i.e. there are no transitions to other states and the process can be
assumed to terminate in the target states. These target problems can be
modelled as MDPs with the total expected reward as optimality criterion.
To the class of target problems we may count the first passage problem. In
this problem there is one target state and the objective is to reach this state
(for the first time) at minimum cost. We assume that the costs are positive.
It is easy to see that the first passage problem is equivalent to this MDP.
A second class of target problems are the gambling problems (the gambler’s
goal is to reach a certain fortune IV and the problem is to determine a policy
which maximizes the probability to reach this goal). For more information
about MDPs and gambling problems we refer to Maitra and Sudderth’s
chapter in this book.

aton
The first passage problem was introduced by Eaton and Zadeh }F()’?]»under
the name ” pursuit e{.%lé’lem”- The dynamic programming approach is intro-
duced iy Derman %ﬁrThe standard reference on gambling is Dubins and
Savage . Dynamic programming approaches are given in ROSSL%ZUU?TH}d
Dynkin Eég]

Replacement problems

Consider an item which is in a certain state. The state of the item describes
its condition. Suppose that in each period, given the state of the item, the
decision has to be made whether or not to replace the item by a new one.
When an item of state 7 is replaced by a new one, the old item is selled at
price s;,a new item is bought at price ¢, and the transition to the new state
is instantaneously. In case of nonreplacement, let p;; be the probability that
an item of state ¢ is at the beginning of the next period in state j, and
suppose that ¢; is the maintenance cost - during one period - for an item
of state i. This problem can be modelled as an MDP. It turns out that
an efficient algorithm for the computation of an optimal polié:ly exists, the
so-called myopic algorithm with complexity O(N3), see Gal [83].

Next, we consider the model deterioration with failure. In this model the
states are interpreted as 'ages’. In state i there is a failure probability p; and,
when failure occurs, there is an extra cost f; and the item has to be replaced



by a new one. If there is no failure the next state is state ¢ + 1. It can be
shown that, under very natural assumptions about the failure probabilities
and the costs, a control limit policy is optimal, i.e. there is an age ¢, and the
item is replaced by a new one if its age exceeds i,. This structural property
holds for the discounted reward criterion as well as for the average reward
criterion.
There are a lot ofhlgeferences on replacement models. The early survey of
Sherif and Smith fZ’ZB] contained already over 500 references. Results on the
optimality %%&;?Ol lim%I;olicies for >placement pr oblems ca%é%e found
in Derman , Kolesar ], Derman , Ross 199] and Kao [139].
Maintenance and repair problems
In maintenance and repair problems there is a system which is subject to
deterioration and failure. In each period the state of the system is observed.
Usually, the state is a characterization of the condition of the system. When
the state is observed, an action has to be chosen, e.g. to keep the system
unchanged, to execute some maintenance or repair, or to replace one or more
components by new ones. Each action has corresponding costs (total costs,
discounted costs or average costs) over a finite or infinite horizon.
As an example of a repair problem, consider a system with two components
in series. Each component may be either in a functioning or a failed state.
At the end of a period a functioning component may be in a failed state with
probability p. For the production of one unit operations on both components
are needed. When both components are functioning (at the begin of the
period) a good unit is produced; if one of the components has failed, then
a good unit is produced with probability ¢; if both components have failed
the unit is defective. After inspection of the state of the components, there
are the following possible actions:
- if both components are functioning: do nothing;
- if one component has failed: either do nothing or repair the component;
- if both components have failed: either repair one component or repair both
components.
The repair of a component costs ¢ and the production of a good unit gives a
reward r. The objective is to maximize the average reward over an infinite
horizon. This problem can easily be modelled as e}\/IDP.
The one-component problem is described in Klein . The two-component
maintenance problem was introduced by \/;?zrgin and Scriabin %260] Other
contributions j utxlllis area are e.g. Oezekici[174], and Van der Duyn Schouten
and Vanneste . An n-component series system is discussed in Katehakis
and Derman @%‘ Asymptotic results for highly reliable systems can be
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found in Smith %7], Katehakis and Derman [T41 , and Frostig :8r°l .

Inventory problems

In inventory problems an optimal balance between inventory costs and or-
dering costs has to be determined. We assume that the probability distribu-
tion of the demand is known. There are different variants of the inventory
problem. They differ, for instance, in the following aspects:

- stationary or nonstationary costs and demands;

- a finite planning horizon or an infinite planning horizon;

- backlogging or no backlogging.

For all these variants different performance measures may be considered.
As an example we will describe an inventory model with backlogging. At
the start of each week the inventory manager observes the inventory and
decides how many units to order. We assume that orders are delivered
instantaneously, and that there is a finite inventory capacity of B. Let D
be the stochastic demand during one week and let P[D = j] be denoted
by p;j,0 < j < M. If the demand during a period excesses the inventory on
hand, then the shortage is backlogged in the next period. If the inventory at
the beginning of a week is 7 (shortages are modelled as negative inventory),
the number of units ordered is a and the inventory at the end of the week
is j, then the following costs are involved:

1 if a>1

Ordering costs : K - 6(a) + k - a, where 6(a) = { 0 if a<0

Inventory costs : h-4(j) - j; backlogging costs : q-d(—j) - (—7)-

The data K, k, h,q and p;,0 < j < M are known.
This inventory problem can be modelled as an MDP with:

E={-M,...,-1,0,1,... ,B}; A(i) ={a >0/0 <i+a < B}
N | pita—j J=Z<t+a .. N
pz](a)_{o ]>7’+a .ZaJGEa G’GA(Z)’
ri(a) =—[K-6(a) +k-a + E;-i%pj-h-(i-i-a—j)

+ 2P g (G —i—a)]

In many inventory models the optimal policy is of (s, S)-type, i.e. when the
inventory is smaller than or equal to s, then replenish the stock to level S.
The existence of optimal (s, S)-policies in finite horizon models with fixed
cost K is based on the so-called K-convexity, introduced by Scarf TZDB] The
existence of an optimal (s, S)-policy in the infinite horizon model is shown

11
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by Iglehart %ﬁ] Another related paper is Veinott r263516 = For the relﬁ%g_?

between discounted and average costs we refer to Hordijk and Tijms
For the co 1 taiti&fl of the values s and S w nger to papers like Federgruen
and Zipkin )7% , and Zheng and Federgruen ]

Optimal control of queues

Consider a queueing system where customers arrive according to a Poisson
process and where the service time of a customer is exponentially distributed.
Suppose that the arrival and service rates can be controlled by a finite
number of actions. When the system is in state ¢, i.e. there are ¢ customers
in the system, action a means that the arrival or the service rates are \;(a)
or pi(a), respectively.

The arrival and service processes are continuous-time processes. However,
by the memoryless property of the exponential distribution, we can find an
embedded discrete-time Markov chain which is appropriate for our analysis.
This technique is called uniformization (see e.g. Tijms [242]).

A queue, or a network of queues, is a useful model for many applications, e.g.
manufacturing, computer, telecommunication and traffic systems. Control
models can optimize certain performance measures by varying the control
parameters of the system. We distinguish between admission control and
service rate control.

As an example of admission control, consider an M /M /1 queue where cus-
tomers arrive as a Poisson process and the service time is exponential. One
has the option to reject an arrival. However, a cost ¢ must be paid for
each rejection. Furthermore, there are holding costs h per period for each
customer in the system. Hence, in an optimal situation there is a balance
between rejection of new customers and congestion of customers in the sys-
tem. Assume that the total expected discounted costs have to be minimized.
It can be shown that there is a control limit or threshold policy which is op-
timal, i.e. there is a value i, and an arriving new customer is rejected if
there are more than 4, customers in the system. For details we refer to
Walrand HL’TG 6].

In a service rate model, the service rate can be chosen from an interval [0, z].
If rate p is chosen, there are service costs c(u) per period; we also assume
that there are holding costs h(i) per period when there are i customers in the
system. Under natural conditions it can be shown that a bang-bang 0{)2'
is optimal, i.e. u = 0 or u = ji. For details see Weber and Stidham
Surveys of optim i:ontrol of (networks of) queue K be found in the
book b LrandjﬁﬁG and the papers by Stidham and Stidham and
Weber ;236
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Stochastic scheduling

In a scheduling problem, jobs are processed on machines. Each machine
can process only one job at a time. A job has a given processing time on
the machines. In stochastic scheduling, these processing times are random
variables. At certain time points decisions have to be made, e.g. which job
is assigned to which machine. There is a utility function by which different
policies can be measured, and we want to find a policy that optimizes the
utility function. Such problems are also considered in the control of queueing
systems. Then, instead of jobs and machines, the terms customers and
servers are frequently used. There are two types of models: the customer
assignment models, in which each arriving customer has to be assigned to
one of the queues (each queue with its own server) and server assignment
models, where the server has to be assigned to one of the queues (each queue
has its own customers).

As a first example we consider one server allocation (with preemption) to
parallel queues. Customers arrive at a system of m parallel queues and one
server. The system operates at discrete time points, i.e. arrival times and
service times have values in the set {1,2,...}. Furthermore, the arrival
times are arbitrary and the service time Tj, for a customer in queue i, is
geometrically distributed with rate p;, which implies that E[T;] = p; L
At any time point the server chooses a customer from one of the queues;
so, this is a server assignment model. Services which are going on may
be interrupted and resumed later on (preemption). For each customer in
queue i, a cost ¢; is charged per unit of time that this customer is in the
system. Which policy minimizes the total costs in T periods? It can be
shown that the so-called pc-rule is an optimal policy. This rule assigns the
server to queue k, where k is the queue with pgcy = max;{p;c; | queue 4
is nonempty}. Note that c;u; is the expected costs per unit of service for a
customer in queue 7, and by using the pc-rule, the largest reduction of the
expected costs in the next period is obtained.

A second example is customer allocation to parallel identical queues. Cus-
tomers arrive at a system of m parallel queues. Each queue has a server and
the service times are identically and exponentially distributed with rate pu.
At arrival, a customer has to join one of the queues (customer assignment
model). Which policy minimizes the total discounted number of customers
in the system? It is clear that the policy that allocates an arriving customer
to the shortest queue is optimal for this individual customer. It can be
shown that this policy, which is called the shortest queue policy (SQP), is
also optimal for the overall criterion.

As a final example of stochastic scheduling we consider the problem of mini-
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mizing the makespan and the total flowtime. Consider a set of n jobs, where
each job has to be processed on one of m identical machines. Job j has an
exponential distribution with rate u;, where p; < py < --- < p,. Let T
be the completion time of job j,1 < j < n. Which policy minimizes the
expected makespan, i.e. E[max(71,75,...,7;,)].- This model can be consid-
ered as a server assignment model with m servers (machines): which jobs
are processed by machine 1, which jobs by machine 2, etc. It can be shown
that an optimal policy is the policy which chooses the longest expected pro-
cessing time (LEPT) first. Hence, the jobs are allocated to the machines in
the order 1,2,...n

When the expected total flowtime E[X?_,T;] has to be minimized, then the
order is reversed, i.e. the shortest expected processing time ﬁrst ( SEPT)
In this case the allocation of the jobs to the machines is n,n —

The optimality of the pc-rule is established in Baras, Ma and Makowsky E‘]L
Ephremides, Varayia and Walrand have shown the optimality of the
shortest queue policy. The results for the optimality of }%e I(;EPT and SEPT
policies are due to Br no, Powney and Frederickson . Related re %lts
are obtained by Weber 267 and by Chang, Hordijk, Ri %E% and Welss%é?ﬁg
For reviews on stoch stic scheduling we refer to Weiss , Walrand [266]
(chapter 8), Righter [T94] and Weber’s chapter in this book

Multi-armed bandit problem

The multi-armed bandit problem is a model for dynamic allocation of a
resource to one of n independent alternative projects. Any project may be
in one of a finite number of states. At each period the decision maker has
the option of working on exactly one of the projects. When a project is
chosen, the immediate reward and the transition probabilities only depend
on the active project and the states of the remaining projects are frozen.
As utility function the total discounted reward is chosen. There are many
applications of this model, e.g. in machine scheduling, in the control of
queueing systems and in the selection of decision trials in medicine. It
can be shown that an optimal policy is the policy that selects the project
which has the largest so-called Gittins-indexr. Surprisingly, these indices
can be computed for each project seperately. As a consequence, the multi-
armed bandit problem can be solved by a sequence of n one-armed bandit
problems. This is a decomposition result by which the dimensionality of the
problem is reduced considerably. Efficient algorithms for the computation
of the Gittins indices exist. The most fundamental contribution on ul‘%lt ”
armed bandit preblems was made by Gittins (cf. Gittins and Jone?‘%ﬁi
and Gittins . The importance of Gittins work was not recognized in the
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hit1e80
seventies. The re-discovery is due to Whittle who_gave a more easy

and natural proof Other prooég are given by Ros Ssg , Varaiya, Walrand
and Buyoccoc %255 Weber HHZEB]gand Tsitsiklis Several methods are
developed foarrthe computation of the %‘c‘mgg mdlces rajyva, Walrand and
Buyukk c |, Chen and Katehakis élenberg E’%‘%[ at% akis and
Veinott , Ben-Israel and S.D.Flam }%d Liu and Liu

1.2 FINITE HORIZON

Consider an MDP with a finite horizon of T" periods. In fact, we can analyse
with the same effort a nonstationary MDP, i.e. with rewards and transi-
tion probabilities which may depend on the time t(1 < ¢ < T). These
nonstationary rewards and transition probabilities are notated by rf(a) and
pgj (a). By the principle of optimality, an optimal policy can be determined
by backward induction as the next theorem shows. The proof can be given
by induction on the length T of the horizon. The use of the principle of
optimality and the technique of ?%?amic programming for sequential opti-
mization is provided by Bellman [I3].

Theorem 4 Let wiTH = 0,7 € E. Determine fort =T,T —1,...,1 a deter-
ministic decision rule f; such that

ri(fe() + [P(fo)a" s = argg»gg){r i(a) +2;pj;(a) - 25} i € B,

and let z* = rt(f;) + Pt(f)x'*tt. Then, R* = (f1, fo,..., fr) is an optimal
policy and z' is the value vector vT.

If 7}(fe(3)) + [P*(fr)2"]; = maxoeap) {rf(a) + Z;p;(a) - 277}, i € E, then
we denote r*(f;) + P'(fi)z = maxp, o {r'+ P'z} and f; € argmazp,p {r'+
Plz}.

Algorithm I (finite horizon)
1. z=0.

2. Determine fort =T7,T7 —1,...,1:
ft € argma:cEXA{rt + Plz} and x = r'(f;) + PY(f;)z-

R* = (f1, f2,--., fr) is an optimal policy and z is the value vector.
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Remarks

1. It is also possible to include in this algorithm elimination of suboptimal
actions. Suboptimal actions are actions that W“lasr%gi} occur in aﬁlgog};imal
policy. References are Hastings and Van Nunen and Hiibner .

2. A finite horizon nonstationary MDP can be transformed in an equivalent
stationary infinite horizon model. In such an infinite horizon model other

options, as the treatment of side co eslgfggmts, are applicab e dhese. %sults
%9 , 1133].

can be found in Derman and Klein and in Kallenberg

1.3 DISCOUNTED REWARD CRITERION
1.3.1 Introduction

In order to find an optimal policy and the value vector v®, the so-called
optimality equation

vt = mglx{ri(a) +aXjpij(a)vi},i € E (3.1)
plays a central role. Consider the mapping U : RN — R¥, defined by

x; = mgx{ri(a) + aX;pij(a)z;},i € E. (3.2)

It turns out that U is a monotone contraction mapping with as fixed point the
value vector v®. By the general theory of monotone contraction mappings
questions can be answered as:

- Is there a unique fixed-point?

- How can the fixed-point be computed?

- What is the rate of convergence of the computation?

We first introduce some concepts and properties of contraction mappings.

Let X be a normed Banach space and B : X — X. The operator B is
called a contraction mapping if for some 8 € [0,1) one has

| Bx — By |[<3- ||z —y]| forall z,y € X. (3.3)

The number (3 is called the contraction factor of B. An element z* € X is
said to be a fized-point of B if

Bz* = ™. (3.4)

The next Fized-point theorem shows the existence of a unique fixed point in
a Banach space.
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Theorem 4 Let X be a Banach space and suppose that B : X — X is a
contraction. Then, for every x € X,x* = lim,_ oo B"x exists and x* is the
unique fized-point of B.

Hence, a straightforward method to approximate the fixed point is: z" =
Bz" ! = B"2%,n € N (choose z° arbitrarily). The convergence rate of the

sequence z%, 21, ... to the fixed point is based on the following result.

Theorem 5 Let X be a Banach space and suppose that B : X — X is a
contraction mapping with contraction factor B and fized-point =*. Then, for
allx € X
(i) ll2*=Bz| <p(1-p)""| B'x—B"z|
<p"1-B)' | Bz—z|n € N
(i) |lz*—z|<(Q-B)""|Bx—=z].

From the above theorem it follows that the convergence of B"x to the fixed-
point is at least linear. This kind of convergence is also called geometric
convergence.

Next, we mention some properties of monotone (contraction) mappings.
Suppose that B : X — X is a mapping in a partially ordered set X. B
is called monotone if x < y implies Bx < By. The next theorem shows an
order property.

Theorem 6 Let X be a partially ordered Banach space and suppose that
B: X — X is a monotone contraction mapping with fized-point z*.
Then,

(1) Bz <z implies that z* < Bz < z;

(id) Bz > x implies that z* > Bz > .

It is well-known that || z ||ooc= maxi<j<n | z; | is a norm, the supremum
norm, in the partially ordered Banach space RY with ordering z < 1y if
z; < g for 1 < i < N. Hence, for z € RY we have z <|| z || -e, where
e is the vector with all components equal 1.The subordinate matriz norm
|| P [[cofor a square matrix P is defined by || P |lso= max; 3;[pj;|(cf. Stoer

and Bulirsch p.178). The following results, which we will express in
the supremum norm, can be generalized to the so-called p-norm, defined by
|z, = maxicicn pi | 2|, where p € RY with y; > 0. For pu = e,

the p-norm and the supremum norm coincide. More results are formulated
in the following lemmas.

Lemma 7 Let B be a monotone contraction in RY with respect to the supre-
mum norm, with contraction factor B and fized-point x*. Suppose that there
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exist scalars a and b such that a-e < Bx —xz < b-e for some xz € RN,
Then,

z—(1—=B)'al-e< Ba—B1-B)|a|-e<a" <
Br+B(1—8) " |bl-e<a+(1—8)|b]-e.

The proof of this lemma can be given by first showing (by induction) that
Bz < Bx+(B++8" ) |b|-e<z+(1+8++8"1)|b]|-e,n € RN,
By letting n — oo we obtain * < Bz + (1 —-8)"' |b|-e<z+(1-p)"!
| b| -e. The other side of the inequalities can be shown similarly.

Since — || Bz — % |00 ‘¢ < Bx —z <|| Bx — z ||oo -, we obtain the following
corollary.

Corollary 8 Let B be a monotone contraction in RY with respect to || = ||oo,
with contraction factor B and fized-point x*. Then,

r—(1-8)"1|Bz—7|w-e< Br—B1-0)"1||Br—2||w-e<z*<
Bz +p(1=p)"1 || Bz — 2 |l e <
z+(1-8)7"1 || Bz -z || e

Lemma 9 Let B be a monotone contraction in RN with respect to || = ||oo,
with contraction factor B3, fized-point =* and with the property that B(x +
c-e) = Bz + fc- e for every x € RN and scalar c. Suppose that for some
scalars a and b and for some t ERN, a-e < Bx —x < b-e. Then,
z+(1-B3)"la-e<Bzr+p(1-pB)la-e<z*<Bx+p(1-p)"th-e<
z+(1—-08)"1b e

The proof of lemma 9 can be given analogously to the proof of lemma 7. We
will apply these general results of monotone contraction mappings to special
mappings in our MDP model. These mappings are U, defined in (3.2) and
L, for any stationary decision rule 7, defined by

Lrx =r(m)+ aP(m)z. (3.5)
Let fy(i) € argmaa:A(i){ri(a) + aX;pij(a)z;}, then

Ly, v =Ux = max Lyx. (3.6)
m

Theorem 10 With respect to the norm || z ||oo, Lz and U are monotone
contraction mappings in RY with contraction factor a.
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Proof. Suppose that x > y. Let 7 be any stationary decision rule. Because
P(m) > 0, we may write L,x = r(m) + aP(m)x > r(7) + aP(n)y = Ly,
i.e. Ly is monotone. Since Uz = max; Lyz > Ly, x > Lgy = Uy,U is also
monotone.

Because || Lxz — Ly [|oo=[| P () (2 = y) o< - || P(7) [loo - [| 2 = ¥ [loo=
a || z—y ||co, Lr is a contraction with contraction factor a. For the operator
U we obtain

Ur—Uy=Lpx—Lpy<Lpx—Lpy=a-P(fe)z—y)<a | z-y|w e
Interchanging = and y yields Uy — Uz < a- || z — ¥ || -e- Hence,

| Uz — Uy ||oo< @ || £ — Y |loo, i-e. U is a contraction with contraction
factor a. n

The next theorem shows that, for any stationary policy 7, the total a-
discounted reward v®(7*°) is the fixed-point of the mapping L.

Theorem 11 For any stationary decision rule w,v*(w>) is the unique so-
lution of the functional equation Lyx = .

Using the property v*(7®°) = [I — aP(n)] !r(n), the proof follows directly
from the theorems 4 and 10.

Corollary 12 v*(7®) = lim,_,o L2z for any z € RY.

Theorem 13 v® is the unique solution of the equation Ux = x.

Proof. An outline of the proof is as follows. First, show that v*(R) < Uv®
for any Markov policy R, implying - by theorem 1 - that v® = supgrec(ar)v®
(R) < Uv®. Then, prove that for any € > 0, v{* > (Uv*); —¢, i € E,
which implies that v®* > Uv®. "

Because, v* = Uv® = Ly 0%, the last equality by (3.6), it follows from
theorem 13 that v® = v*(f$%), i.e. f5& is an optimal policy. If f° satisfies
ri(f(1) + aZj pii(f(i)v§ = maxe{ri(a) + a¥;pii(a)vi},i € E, then
f° is called a conserving policy. fJ5s is a conserving policy and conserving
policies are optimal. Therefore, the equation Uz = = is called the optimality
equation.

Corollary 14 (i) There exists a deterministic and stationary a-discounted
optimal policy; (i) v® = lim,_,o Uz for any x € RYN; (iii) Any conserving
policy is a-discounted optimal.

Since Ly(z +c-e) = Lyx+ac-eand U(x + c-e) = Uz + ac-e for any
z € RY and any scalar ¢, we can apply lemma 9 to obtain bounds for the
fixed points v*(f*°) and v® of the operators Ly and U, respectively.

Lemma 15 For any z € RY we have
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(@) x4+ (1-a)'min;(Uz — z);-e <Uz+ a(l — a) ' min;(Uz — z); - e
< v (fz°) < v*
<Uzr+a(l —a) 'max;(Uz —x); - e
<z+(1—a) max;(Uz —z); - e.
(i) || v = v*(£2°) o< a(l — @) 'span(Uz — z),
where span(y) = max; y; — min; y;.

An action a € A(7) is called suboptimal if there does not exist an a-discounted
optimal policy f* with f(i) = a. Because f*° is a-discounted optimal if
and only if v*(f*°) = v?%, and because v* = Uwv?, an action a € A(7) is
suboptimal if and only if

vit > ri(a) + aXjpij(a)vj. (3.7)

Suboptimal actions can be excluded. Not directly by (3.7), because v* is
unknown, but by using the bounds on v* as given by lemma 15. Then, by
the monotonicity of U, the next result is obtained.

Theorem 16 (i) Suppose that x < v* < y. If ri(a) + aX;pij(a)y; < (Ux);,
then action a € A(i) is suboptimal. (ii) Suppose that for some scalars b
andc, z+b-e<v* <z +c-e Ifri(a)+aX;pij(a)r; < (Uz); —alc—Db),
then action a € A(i) is suboptimal.

Using the bounds of v® from lemma 15, we obtain suboptimality for an
action a € A(q) if

ri(a) + aXipij(a)r; < (Uz); — a(l — @) 'span(Uz — z) (3.8)

or

ri(a) + aX;pij(a)(Ux); < (U%z); — o*(1 — @)~ 'span(Uzx — z) (3.9

Remark

If we relax the property that X;p;j(a) =1 to X;p;j(a) <1 for all (i,a) and
require that the model is transient, i.e. the matrix X2, [P(f)]’ has finite el-
ements for every policy f°°, then the total expected reward criterion, i.e. the
discounting case with discount factor a = 1, is well-defined. For this crite-
rion similar results can be obtained as in the discounted model. The investj-
gation whether X P is transient can be done efficiently (cf. Veinott

and Kallenberga%‘g# Other references on thi etc}ggc are van Hee, Hordijk
and v, n gl or Wal [249], Denardo and Rothblum , and Hordijk and Kallen-
berg .
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Already in 1953, Shapley EIQQ] analysed contraction properties for stochastic
games. In the special case of a one-player game a stochastic game becomes an
MDP. A comprehensive treatment of the theory of contractio L gppings for
discounted Markov decision processes was giveny[;;%ﬁ)enaurdor%fgL Th gen- o
eralization to the y-norm was made by Wessels and Van Nunen [251].
They apply this y-norm to MDPs with countable state space and unbo1ﬁrégg?
rewards. The details of the proof of theorem 13 can be found in Ross

An alternative proof thgt U has a fixed point, based on Brouwer’s theorem,
was given in Shapiro [221]. T > goncepts ‘cons rv'n?%’ and ’span’ were intro-
duced by Dubins and Savage E)'ZI and Bather %U%Concermng the b unds
of lemma 15, the weakest b nds were proposed by Mac uee

the st ongesyspy Porteus . Related papers are Porteus and Bert—
sekas %_T'Ee notion that suboptlmal actions can be excluded 1& bounds
on the value vector are available can be found in MacQueen oﬁ , which
paper includes the test (3.8). Test (3.9) is proposed by Porteus JLT80]. (ﬁthher
suboptimaht)kzqgts can be found in Hastings and Mello 97 , White

and Thomas

1.3.2 Policy iteration

For z,y € RNz > y means that x; > y; for every i and z; > y; for at least
one i. In the method of policy iteration a sequence of deterministic policies
fi2, f5°, ... is constructed such that

v (frer1) > v (fi) for k=1,2,... (3.10)
Because there are finite deterministic policies f°°, the method of policy
iteration is finite. Furthermore, it can be shown that the method terminates
with an a-discounted optimal policy. We first remark that the following
lemma is a consequence of theorem 10.
Lemma 17 (3) If Lyx < z, then v*(f*°) = lim,_,o Liz < Lyz < =; (i) if
Lz > x, then v*(f*°) = lim, o0 L?l‘ > Lz > x.

For every i € E and deterministic policy f, the set A(i, ) be defined by

At f) = {a € AQ@)[ri(e) + a¥jpij(a)of () > 07 ()} (3.11)

The intuitive idea of policy iteration is that if action f(i) is replaced by an
action a € A(i, f) the resulting policy improves the a-discounted rewards.
Therefore, the actions of A(i, f) are called improving actions.The correctness
of this idea is established by the following theorem.
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Theorem 18 (i) If A(i, f) = 0 for every i € E, then f* is a-discounted
optimal; (i1) If A(3, f) # 0 for some i € E, then v*(¢g™®) > v*(f*°) for any
policy g with g # f and g(i) € A(i, f) if g(i) # f ().

Proof. (i) A(i, f) =0, i € E, implies Lyv*(f*°) = r(g) + aP(g)v*(f*) <
v*(f°) for every g. By lemma 17(i) v*(¢>°) < v*(f™) for every g, i.e. f®
is optimal.

(ii) Take any g # f such that g(i) € A(s, f) if g(i) # f(¢). Then, if
g(@) # f(4), ri(g) + aXjpij(g)v§ (f*°) > v (f*°).

If g(i) = f(i), ri(g) + aXjpij(9)v5(f*) = ri(f) + aZjpi; (f)v(f*) =
v§ (f*°). Hence, Lyv®(f*°) = r(g)+aP(g)v*(f*°) > v*(f*°) and, by lemma
17(ii), v*(g™) > v*(f*°). .
Let

sia(f) = ri(a) + aXjpij(a)vf () — v (f*°), a € A(i) and i € E. (3.12)

Algorithm ITI (policy iteration; discounted rewards)
1. Start with any deterministic policy f*°.
2. Compute v*(f*°) as unique solution of the linear system Lz = x.
3. Determine for every i € E : A(i, f) ={a € A(i)|sia(f) > 0}.

4. If A(i, f) = 0 for every i € E: go to step 6.
Otherwise: take any g # f such that, if g(i) # f(i),9(:) € A(I, f).

5. f =g and go to step 2.

6. f°° is an a-discounted optimal policy.

The idea t Juse policy iter tig to determine an optimal policy appeared
in Howard ]. Blackwell has proyided a strong mathematical treat-
ment of %%SF method. In Porteus %B%and in Hartley, Lavercombe and
Thomas efficient ways to determine v*(f°°) as solution of the linear
system Lyr = z are analysed.

Remarks

1. There is some freedom in the choice of policy ¢* in step 4. A usual choice
is to take g such that s;y;)(f) = maxg sia(f), i.e.ﬁg%e argmazgSiq(f)-

2. Tt can be shown (see Puterman and Brumelle that the policy itera-
tion method, with the above choice for g, is equivalent to solve the optimality
equation Uz = 1z by Newton’s method.
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3. Furthermore, we can derive a result on the convergence rate. It can
be shown that z" = v*(f$°),n = 1,2,..., where " are the iterates of the
Newton method and f2° the policies of the policy iteration method.

Since, it can be shown that || v® — v*(f2%;) < 2a(l —a)™! || v* —
v (f°) llogs fhere is geometric convergence. Already in Pollatschek and
Avi-Ttzhak ], in the context of stochastic games, the equivalence between
the policy iteration met, d and Newton’s method was noticed. A related
paper is Schweitzer . Puterman and Brumelle were the first who
derived result for the rate of convergence.

4. We can also include in policy iteration the exclusion of suboptimal actions.
We can use e.g. test (3.8) with x = v*(f*). Since, for x = v*(f*>),
(Uz — z); = maxg{ri(a) + Ejpij(a)vf (f*°) — v (f*)} = max, sia(f),i € E,

we have span(Uz — x) = max;[max, Sio(f)] — min;[max, s;o(f)]. Hence
(3.8) becomes: if s;p(f) < max, Sio(f) — a(l — ) }[max; m Xg Sia(f) —
min; max, Siq(f)], then action b € A(i) is suboptimal. Grinold pointed

out that suboptimality tests can be implemented in policy iteration. The
above test is stronger than Grinold’s test.
5. We can implement a modification of the method. Instead of the steps 3
and 4, we take the steps 3’ and 4’ which are as follows:
Step 3’. For i = 1 to N do
a. dia(f) = ria) + T, pij(a)z; + X pij(a)vf (f),a € A(i);
b. if dig(f) < v (f°) for every a € A(7) : z; = v*(f*°) and g(i) = f(4);
c. if dig(f) > v(f*°) for some a € A(i) : ; = max,di(f) and take
g(i) = argmazdiq(f).
Step 4’. If g(i) = f(¢) for every i € E, then go to step 6.
This mo 'gggegemlgorithm, which can be shown to be correct, is proposed in
Hastings * sehm
6. In Schmitz FZUB] the question is raised: ”"Does there exist a polynomial
bound for the number of iterations in the policy iteration?”. Meister and
Holzbaur ﬁ%(si] have shown that this method is polynomially in time. In
ng [T72] is shown that the complexity of one iteration is O(mN?), where m
is the number of states ¢ for which g(i) # f(4).

1.3.3 Linear programming

A vector v € RY is said to be a-superharmonic if

v; > 1i(a) + aX;pij(a)v; for every (i,a) € E x A. (3.13)

Theorem 19 v?* is the (componentwise) smallest a-superharmonic vector.
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Proof. Theorem 13 implies that vf* > ri(a) + aX;pij(a)vf for every (i,a),
i.e. v® is a-superharmonic. Suppose that v € RY is also a-superharmonic.
Then, v > r(f) + aP(f)v for every f*°, which implies that [[ — aP(f)]v >
7(f). Since [I — aP(f)]~! = 22,a!P(f)? > 0, we obtain v > [ — aP(f)]~}
r(f) = v*(f*°). Hence, v* = max;v*(f®) < v, i.e. v* is the smallest
a-superharmonic vector. .

Corollary 20 v® is the unique optimal solution of the LP-problem

min{EjﬁjvﬂEj [(iij — apij(a)]vj > Tiq, (1,0) € E x A} (3.14)
where B; > 0 for every j € E.

By corollary 20, the value vector v* can be found as optimal solution of
the linear program (3.14). This program does not give an optimal policy.
However, an optimal policy can be obtained from the solution of the dual
program

YiXal0ij — apij(a)] e =P, jEE

max{zizan(a)xia i >0, (i) € B x A} (3.15)

Theorem 21 Let x* be an optimal solution of (3.15). Then, a policy f*
with :c;ff(j) > 0 for every j € E exists and is an optimal policy.

Proof. From the constraints of (3.15) it follows that

YT}, = Bj +aXiX.pij(a)x;, > B >0, j € E. Let f* be such that x;f(j) >
0,7 € E. The complementary slackness property of linear programming
implies that ¥;[0;; — ap;;(f())]vf = ri(f),7 € E. Hence, [I — aP(f)]* =
r(f), implying v® = [I — aP(f)]7!r(f) = v*(f*), i.e. f*™ is an optimal
policy. "

Moreover, there is a one-to-one correspondence between the set of feasible
solutions of (3.15) and the set of stationary policies, given by the following
relations. For a stationary policy 7 the feasible solution z(7) satisfies

Tio(m) =[BT (I — aP(7)) )i - Tia, (i,a) € E x A. (3.16)
Conversely, for a feasible solution z of (3.15), define 7°°(z) by

Tia(T) = Tia/Bamia(i,a) € E X A. (3.17)

Theorem 22 The mapping (3.16) is a one-to-one mapping of the set of sta-
tionary policies onto the set of feasible solutions of the dual program (3.15)
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with (3.17) as the inverse mapping; furthermore, the set of extreme feasible
solutions of (3.15) corresponds to the set of deterministic policies.

Algorithm III (linear programming; discounted rewards)

1. Take any 3 € RY with 8; >0,j € E.

2. Compute optimal solutions v* and z* of the dual pair LP-problems
(3.14) and (3.15).

3. Take any f, such that x;.‘f*(i) >0,i€ FE.

4. v* is the value vector and f&° is an a-discounted optimal policy.

It turns out that the linear programming method is, in some sense, equiv-
alent to policy iteration. This is formulated in the next theorem, in which
the term block-pivoting simplex algorithm is used. A simplex LP-algorithm,
which in one iteration more than one pi %t Sztf may use, is called a block-
pivoting simplex algorithm (cf. Dantzig

Theorem 23 (i) Any policy iteration algorithm is equivalent to a block-
pivoting simplex algorithm; (i) any simplex algorithm is equivalent to a
particular policy iteration algorithm.

Remarks

1. Since the LP-method and policy iteration are equivalent, exclusion of
suboptimal actions can also be implemented in the LP-method. The relevant
data s;,(f) for this test (see (3.12)) are available in the simplex tableaus as
the so-called reduced costs.

2. The variables z;,(7), defined in (3.16) can be interpreted as discounted
state-action frequencies, i.e. if policy 7> is used, then z;,(7) is equal to
the total expected discounted number of times that state ¢ is visited and
then also action a is chosen, given that the starting state is state j with
probability 8;,j € E.

3. The linear programming method is the only method which can handle
additional constraints. Constrained optimization arises in many MDP ap-
plications, Hgn inventory and queueing modg%g.‘l For examples we refer
to Derman §8, chapter 7, and to Puterman , section 8.9. The con-
straints have to be expressed in terms of the state-action frequencies and
added to the dual program (3.15). Constrained problems have a stationary,
but not neces a1&]8)7 deterministic optimal policy. Fi oL adetails we refer
to Kallenberg , and to Hordijk and Kallenberg . In Altman and
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Shgla .. . . . . .
Shwartz % the sensitiv g%f constrained MDPs is investigated. Altman,
Hordijk and Kallenberg ave analysed the behavior of the value function

in constrained MDP.

The idea to use li car é&rogramming to compute an optimal policy originated
with D’Epenoux . The one-to-one correspondence between the feasible
solutions of the dual progr I 851 the set of stationary policies can be found
in De Ghellinck and Eppena%;‘%?‘._The equivalence tween block-pivoting and
policy iteration was mentioned in De Ghellinck } r}%e implementation
of the subopti a()l% Jests was Iproposed by Grinold and by Hordijk
and Kallenberg . In Sun EZHQ] an implementation gf the LP-method is
described, based on the revised simplex method. Stein &34] has investigated
the computational aspects of the linear programming method in comparison
with other methods. It turns out that the LP-method is preferable if the
discount factor is close to unity and the state space is not too large.

1.3.4 Value iteration

In the value iteration method the value vector v® is approximated by a
sequence {v"}°%;, which converges to v*. Furthermore, a nearly optimal
policy is obtained. For e > 0avector v € RY is an e-approzimation of v® if
|| v* — v |lo < € apolicy Risan e-optimal policyif || v* — v*(R) |0 < €,
i.e. v*(R) is an e-approximation of v®. From corollary 14(ii) it follows that
v® = limy, 00Uz for every z € RV,

Define the sequence {v"}5° ; by

1 N . .
v- €R arbitrarily chosen
{ vl =TUv, n=1,2,... (3.18)
with a corresponding sequence fi°, f$°,... of policies where f,, = f,» for
every n € N, ie.
V" = Uv™ = Ly, v" = 7(fn) + aP(fn)v",n € N. (3.19)

The next lemma shows that f° is an e-optimal policy for n sufficiently large.
The proof is based on contraction properties as applied in lemma 15.

Lemma 24 || v*(f°) — v% [|o< 20" (1 — @)1 || v?2 = v! ||oo,n € N.

Algorithm IV (value iteration; discounted rewards)

1. Choose € > 0 and z € RY arbitrarily.
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2. Compute y = Uz and take f = f,.

3.If ||y — 2 ||oo< (1 — @)a e, then f* is a 2e-optimal policy and v is
an e-approximation of v*(Stop);

Otherwise: = = y and goto step 2.

The correctness of algorithm IV is a consequence of the next theorem, which
also follows from the contraction properties.

Theorem 25 (i) || v*(f) — v ||oo< 2a(l — @)™ || Uz — 2 ||oo; (%)
| Uz —v® o< a(l—a) 1 | Uz — 7 | oo-

In the next theorem we summarize some suboptimality tests.

Theorem 26 An action a € A(i) is suboptimal if one of the following tests
18 satisfied:

ri(a) + aXjpij(a)z; < (Uz); —2a(l —a) 1 | Uz — 7 || (3.20)

ri(a) + aXipij(a)(Uz); < (U?z); —2a*(1—a) || Uz — 2 |00 (3.21)
ri(a) + a¥;pij(a)r; < (Uz); — a1 — @) 'span(Uz — ) (3.22)

ri(a) + aX;pij(a)Uz); < (Uz);+ a(l — @) ' min;(Uz — z);—
a?(1—a) Y max;(Uz — z);

Remarks
1. In the usual computation scheme of the value iteration algorithm, test
(3.22) is the best available test.
2. We also mention two variants of the standard algorithm. In the Pre-
Gauss-Seidel variant we use for the computation of y; the components y; =
(Uz); which are already computed, i.e.

yi = maxq{ri(a) + o pij(a)y;+ oSl pij(a)z;}, (3.24)

1=1,2,... ,N )

In the Gauss-Seidel variant also the i-th component x; is replaced by ;,
which gives
yi = maxa[l — apii(a)] - {ri(a) + azé;llpij (a)y;

2
+aX @)z}, i=1,2,... ,N (3.25)

For both variants it can be shown that the corresponding operators are con-
traction mappings with fixed point v® and with contraction factor at most
«a. Hence, they may be considered as an acceleration of the basic algorithm.
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The proofs can be given by induction of the states. Also suboptimaly tests
for the actions can be included.

060
Howard FF[ZZ] was the first who studied value iteration for a Markov decision
process. F C psurvey of the basic properties we refer to Federgruen and

Schweitzer . The idea to accelerate '}égtggnvergence by the pre-Gauss-
Seidel method was proposed in Hasti%%U%m._The Gauss-Seidel method can
be found in Kushner an g(leinman . An overview of these variants is
presented in Porteus . Other techniques, based on successive overrelax-

ation an ste ing ti mes, in order to ccflelerate the co gence can be ound7 6a
in Reetz and ) chel]_}%aas Wessels b?g Van N
unen77

Van Nu n and Wessels , Porteus an Tottgg Oy

or er tse C o]
teus Herzberg and Yechah [05], and Bertsekas olzbaur
has presented a theoretically polynomial bound for the number of steps in
the value iteration method.

1.3.5 Modified policy iteration

In section 3.2 the policy iteration method was discussed. This method, with
the usual choice for the improving actions, can be considered as Newton’s
method for the solution of the optimality equation. A new iterand y is
obtained from z by the formula

y=x+ AUz — z), where A = [I — aP(g)]™" with g such that L,z = Uz
(3.26)

The determination of the matrix [I — aP(g)]~!, which is equal to

¥2, o'[P(g)]*, requires in general a lot of work. In the modified policy

iteration method the matrix A is truncated by

AW = 5k 10iP(g)] for some 1 < k < oo (3.27)

For k = 1, A®) = T and the value iteration method is obtained; for
k = oo, A®) = A, and we have policy iteration. For 1 < k < oo, the
modified policy iteration method can be considered as a combination of pol-
icy iteration and value iteration, or as an inexact Newton method for the
solution of the optimality equation.

We may allow that in each iteration another value of k is chosen, and we
denote k(n) for the value in iteration n. Hence, we obtain the following
iteration scheme, where f2° is the policy in iteration n, i.e. Ly, z™ = Uz".
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2t = g 4 ARM) (U — z7)
=z" + Efi%)—laiPi(fn)[T(fn) + aP(fp)z" — 2]
= r(fa) + QP (f) 4+ [P ()] 1) + [P ()} "
=L.\"g",
fn

Algorithm V (modified policy iteration; discounted rewards)

1. Choose z € RY, € > 0 and a deterministic policy f.

2. a. Choose k with 1 <k < oc;

b. Determine g such that Loz = Uz, where g(i) = f(4) if possible.

3. If || Uz — z [|o< (1 — a)e: g™ is an 2e-optimal policy and Uz is an
ae-approximation of v® (STOP);

Otherwise: x = L’g“:c, f = g and go to step 2.

Remarks

1. Since z"t! = L’;i")a:”, the iteration operator depends on n, and it is
not obvious that this operator is monotone and/or contracting. Indeed,
in general, this operator is neither a contraction nor monotone. Although
this operator is neither a contraction nor monotone, it can be shown that
v® = limy,_, o0 Lkin)a:” for any starting vector z'.

2. Also in this method, it is possible to implement tests for the exclusion of

suboptimal actions.
nunen7fanen76b  munen76c

Puterman and Shin Fﬁ%’éﬁgand independently Van Nunen [250], 251 and [252]
have developed the modified policy iteration method. The first authors
have shown the convergence under the assumption that the starting vector
x satisfies Uz > z. The convergence of the method for n ggb,iggary starting
vector was proved by Rothblum ]. In Van Nunenaﬁh?ﬂfﬁ example is
given which shows that the operator of the modified policy iteration method
can be neither contracting nor monotonic. The observation that the modified
policy iteration method can %%%iewed as an inexact Newton method was
made by Dembo and Haviv . The exclusion of 1111’%) timal actio su{%
this method was developed by Puterman and Shin . Puterman [T86
reviews computational results for the modified policy iteration method.
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1.4 AVERAGE REWARD CRITERION

1.4.1 Introduction

We start this section with some properties of the transition matriz P, i.e.
a matrix with nonnegative elements and with every row sum equal to 1.
Note that, for every stationary policy #°°, P(r) is a transition matrix. The
stationary matriz P* of P is defined by the so-called Cesaro-limit of P, i.e.

1
P* = lim =¥}_, P+ ! (4.1)

n—oo n

The stationary matrix has some nice properties, summarized in the next
theorem.

Theorem 27 (i) P*P = PP* = P*P* = P*; (ii) [P — P*]* = P —
P*,n > 1; (ii) limgp (1 — @)X o™ (P" — P*) = 0; (i) [I — P+ P*] is
nonsingular with inverse [I—P+P*]~1 = lim, o 1X7_ 5k [P—P*]""15 (1)
for every stationary policy w*°, the average reward ¢(mw°) satisfies ¢(n>°) =
P*(m)r(m), where P*(w) is the stationary matriz of the transition matriz

P(m); (vi) ¢(m™) = limgp1 (1 — a)v® (7).

The inverse matrix [I — P + P*]~! is denoted by Z and is called the funda-
mental matriz. Furthermore, we introduce the deviation matriz D by

D=_Z7-Pp* (4.2)

Theorem 28 The deviation matriz satisfies (i) D = limy_00 137_, 5K |
[P*=' — P*] (ii) P*"D = DP* = [I-P|D+P*—I=D[I-P|+ P*— I = 0.

For the proofs of the theore semQ'Y and 28 we refer to books on Markov
chains (e.g. Kemeny and Snell [T45] [1960]). A treatment, related to MDPs,
of the stat'voeri%y, the fundamental and the deviation matrix can be found
in Veinott [1974]. The deviation matrix of the transition matrix P(m)

is denoted by D(w).

We continue this section with a classification of MDPs based on the ergodic
structure. We distinguish between multichain, unichain and irreducible
MDPs. The reason for this distinction is that MDPs can be analysed eas-
ier in case they are unichain or irreducible, which may lead to simplified
algorithms for solving these MDPs. We assume the reader familiar with
concepts from Markov chains as recurrent state, transient state, recurrent
class and irreducibility.

30



An MDP is irreducible if the Markov chain P(f) is irreducible for every policy
f°°. We say that an MDP is unichain if for every policy f°° the Markov chain
P(f) has exactly one recurrent class plus a (possibly empty) set of transient
states. Hence, an irreducible MDP is unichained (the reverse statement is
not true, in general). An MDP is multichain if there exists a policy f™
for which the Markov chain P(f) has at least two ergodic classes. If the
ergodic structure is unknown, one can always use the general approach for
multichain MDPs. The determination whether or not an MDP is irreducible
is an easy problem, i.e. polynomially solvable, which means that the number
of steps is %o%ded by a polynomial function of the problem’s data (see
Kallenberg }

Open problem
Does there exist a polynomial algorithm to determine whether an MDP is
unichain or multichain?

Next, we will formulate a theorem on the existence of a Blackwell optimal
policy f§°, i.e. f§° is a-discounted optimal for all discount factors a € o, 1)
for some 0 < ap < 1. The next theorem shows even more, namely that the
interval [0, 1) can be partitioned in a finite number of subintervals such that
in each subinterval there exists a policy which is discounted optimal over
the whole subinterval.

Theorem 29 There are numbers o, ym—1,...,00,a—1 and policies f5°,
F20 1, e f§° such that (i) 0 = am < a1 < -+ < ap < a—q1 = 15 (ii)
va(f]‘?o) =v® for all a € [aj,05-1),j =m,m —1,...,0.

Proof. We give an outline of the proof. Since v®(f*°) is the solution of the
system [I — aP(f)]z = r(f), each component v{*(f>) is a rational function
in a. Suppose that a Blackwell optimal policy does not exist. Since for
any fixed a a deterministic a-discounted optimal policy exists, this implies
that there are series {ay | k = 1,2,...} and {fx | k = 1,2,...} such that
a; < ag < oo with limg_ oo = 1 and v® = v*(f°) > v*(fg2,) for
a = o,k = 2,3,.... Because there is a finite number of deterministic
policies this implies the existence of two policies, say f*° and ¢g*°, that both
are in turn optimal for an infinite number of increasing a’s with limit oo = 1.
Let h(a) = v*(f*) — v*(¢*>°), then for any i € E, h;j(a) is a continuous
rational function in « on [0, 1), which has an infinite number of zeros. This
contradicts the rationality of h;(c). Hence, there exists a Blackwell optimal
policy. With similar arguments, it can be shown that for each fixed a € (0, 1]
there is an interval around « and a policy which is optimal in that interval.
These intervals are a covering of the closed bounded set [0,1]. Hence, by
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the Heine-Borel-Lebesque theorem, it follows that there is a covering by a
finite number of intervals. n

We close this section with the treatment of the Laurent expansion of a sta-
tionary policy ©*°

Theorem 30 Let u*(r),k = —1,0,... be defined byu~'(n) = P*(r)r(n),
u(7) = D(m)r(r) and uk“( ) D(m)u*(r), k > 0. Then, for ap(m) <
a < 1, we have v*(7™®) = 2130——1[(1 —a)/alf - uF (), where ag(r) =||
D(m) || /Tl D) [} +1].

Proof. Let z(r) = a™1- 5% [(1 — a)/a]* - uk(x). Then, z(r) = 20) 4

PE .y {l(@ — 1)/a] - D(m)}Yer(x) for || [(a —1)/a] - D(x) [|< 1, ie.
ap(m) < a < 1. Since v*(7w*°) is the unique solution of the linear system
[[ —aP(7)]z = r(m), it is sufficient to show that r(7) — [I — aP(7)]z(r) = 0.
This can be done in the following steps, using the results of theorem 27(i)
and theorem 28(ii).

r(n) — [[ — aP(n)|z(r) = r(r) — [I — aP(m)](1 — a) ' P*(m)r(r) — [I —
aP(m)a~D(m) - 222 o {[(a—1)/a] D(m)}or(m) = r(m) — P*(m)r(m) — [a{ —
P(m)}+ (1 —a)I]a™' D(m)-32 o {[(a— 1)/a] (m)}rr(m) = [T = P*(m)Jr(m) —
11— P*(m)]Z32 o {[(a—1)/a] D(m) }or (m) + 232 o {[(@— 1) /] D(m) }H () =
[ — P*(m)]r(m) — [I = P*(m)|Z20{l(a = 1) /] D(m)}* - (7)) + 232 {[(a
1)/a|D(m)Yer(m) = [I = P*(m)]r(7) — [I — P*(m)lr(n) — [I = P*(7) — 1] -
2221 {[(a = 1)/a] D(m) }er(m) = 0. .

Corollary 31 (i) ¢(7) = limgpq (1 — a)v®(7); (@) v*(7™°) = qbl(%(:) +ul(m) +
(), where limy41 €(a) = 0.

The first part of the I(al%ient expansion as presented in corollary 31(ii) was

derived by Blackwell The complete Laurent expansion was proposed
by Miller and Veinott ]. The vector u%(r) is called the bias vector of
policy 7

1.4.2 The optimality equation

The multichain case

Before we introduce the optimality equation, we first give some prerequisites.
Lemma 32 limyq (1 — a)v®(R) > ¢(R) for any policy R.

The proof of this glre;&rem is bas %r? Tauberian arguments which can be
found in Derman or Hordijk
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Corollary 33 Any stationary Blackwell optimal policy is also average opti-
mal.

Proof. Let 7 be any stationary Blackwell optimal policy. Then, by the-
orem 27(vi) ¢(7*°) = limg1 (1 — a)v*(7™) = limap1 (1 — a)v® > limgg (1 —
a)v*(R) > ¢(R) for any policy R. .

In the discounting case, the value vector is the unique solution of an opti-
mality equation. A similar result holds for the average reward criterion, but
the derivation is more complex.

Theorem 34 Consider the system

{ Ty = MaX,e A(4) Ejpij(a)xj’ tEE (4 3)
Ti +yi = maXeepgio)iri(@) + Xjpij(a)y;}, i€ E '
where A(i,xz) = {a € A(3) | z; = E;pij(a)z;}, i € E.

This system has the following properties: (i) x = u= (fo), y = u°(fo), where
f§° is a Blackwell optimal policy, satisfies (4.3); (i) If (x,y) is a solution
of (4.8), then x equals the value vector ¢.

Proof. Since f§° is a Blackwell optimal policy, we have for a € [ag, 1)

v (f5°) = vft = maxge () {ri(a) + aX;pi(a)vf} 2 ri(a) + aX;pi;(a)vs (£5°),
(i,a) € E x A. Combining this result with corollary 31(ii) yields

(1= ) di(f5°) + 4 (fo) + €i() = v (f§°) > ri(a) + aZjpij(a)v$ (f§°) =
ri(a) + Z;pij(a)vf (f5°) — (1 — @)Z;pij(a)vf (f5°) = ria) + Zjpij(a).
(1)~ (%) +u2( fo) e (@) — (1) Sy (@) 1—) 5 F5°)-+u fo)+
¢j(a)], (4,a) € E x A, o € [a,1]. This result holds for all @ € [a, 1),
so comparing the terms with (1 — a)™! gives ¢;(f5°) > X;pij(a)d;(f°).
Furthermore, when the terms with (1 — a)~! are equal, we compare the
terms with (1 — «)°:

w)(fo) > ri(a) +2;pij(@)u(fo) — Zjpij(@)¢; (f§°) = ri(a) + X;pij(a)ul(fo)—
@i(f§°) for each (i,a) with ¢;(f§°) = Z;pij(a)e;(f5°). Since ¢(f§°) =
P(fo)¢(f5°) and u’(fo) = D(fo)r(fo) = r(fo) — &(f§°) + P(fo)u’(fo), part
(i) is shown.

Next, we prove part (ii). Let (x,y) be a solution (4.3). Then, for any f*°,
z > P(f)z,implying z > P*(f)z and consequently pj;(f){z;—[P(f)z];} =
0 for every 4,5 € E. Let i be a recurrent state in the Markov chain induced
by P(f). Since p}(f) > 0, (i) € A(i,x) and x; +y; > 7i(f) + Z;pi; (f)y;-
Therefore, P*(f)[z + 4] > P*(Nir(f) + PNyl = (/%) + P*(f)y, ie.
6(f*) < P*(flz < o.

On the other hand, any solution of the system gives a policy ¢g*° which
satisfies x = P(g)z and z +y = r(g9) + P(g)y. Hence, x = P*(g)z, and
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#(g*®) = P*(g)r(g) = P*(g9)[z +y — P(g9)y] = . This completes the proof
that © = max; ¢(f*>) = ¢. .

The unichain case

In the unichain case, for every policy f*°, the stationary matrix P*(f) has
identical components. Hence, the value vector ¢ is a constant vector, i.e.
i = X;pij(a)dj, i € E, a € A(i). We will denote this constant vector by ¢-e
(¢ is a scalar). The first part of the optimality equation is always satisfied
and the following result can be derived.

Theorem 35 Consider the system x+y; = maz.{r;(a)+%;pi;(a)y;},i € E.
This system has the following properties: (i) z-e = u=(fo), y = u°(fo),
where f§° is a Blackwell optimal policy, satisfies this system; (i) If (x,y) is
a solution of the system, then x = ¢ and y = u®(fo) +c-e for some constant
c.

The functional equation (4.3) is extensively investigated in Schweitzer and
Federgruen }ZI 7|. Another proof for the solution of the optimality equation

can also be provided by g%gléying Brouwer’s f(l:ﬁ)? point theorem (see Fed-

ergruen and Schweitzer , and Schweitzer . In the unichain case the
solution of the optimality equation can be exhibited as the X¢ (g point of an
N-step contraction (cf. Federgruen, Schweitzer and Tijms 3

1.4.3 Policy iteration

In the policy iteration method a sequence of policies f{°, f5°,... is con-
structed such that ¢(fgS,) > ¢(f¢°) and v*(fp9;) > v¥(fg°) for all a €
(ag,1). Since there are finite deterministic policies and all policies f£° are
different, this method has a finite termination with an optimal policy.

The multichain case

Theorem 36 Consider the following system of linear equations

- P(f)] @ =0
z+[I-P() y —r(f)  (44)
y+[[—P(f)z =0.

Then, (4.4) has a solution (z(f),y(f), z(f)), where z(f) and y(f) are unique
with 2(f) = ' (f) and y(f) = u°(f).
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Proof. We first show that z(f) = v~1(f), y(f) = «°(f) and z(f) = u'(f)
is a solution of (4.4). We can write,
I—P(Nla(f) = - P(flu='(f) = [T — P(OIP*(N)Ir(f) = 0. (f) +[I -
P(NOy(f) = P*(Nlr(f)+ L = P(N)IDf)r(f) = {P* (N + I = P(FID(f)}
r(f) =r(f)- y(f) + I = P()l=(f) = D(f)r(f) — [I = P()ID(f)*r(f) =
{I—[I=P(NID)ID(Sf)r(f) = P*(f)D(f)r(f) = 0. Next, let (z,y,2) be
any solution of (4.4). Then, x = P(f)z implies x = P*(f)z = P*(f){r(f) —
[I—P(f)ly} = P*(f)r(f) = uw'(f). Since y +[I — P(f)]z =0, P*(f)y =0,
we can write {[I — P(f)] +P*(f)}y = [ = P(Nly =r(f) = P*(f)r(f), ie.
= {I-P(N]+P ()} I=P*(flr(f) = [Df)+P*(NHII-P*(f)lr(f) =
D(f)r(f) = u’(f)- .

For every i € E and every policy f*°, we define the action subset B(i, f) by

¥;pij(a)p; (f°) > ¢i(f>°) or }
]pzj( )¢J (f°) = ¢s(f>) and (4.5)
ri(a) + X;pij(a)u (f) > ¢(f) + “?(f)

Theorem 37 (i) If B(i, f) = 0 for every i € E, then f* is an average
optimal policy; (ii) If B(i, f) # 0 for at least one i and the policy g*° satisfies
g7 1 and g(i) € BG, f) if 9(f) # F(0), then $(g™) > 6(f>) and v2(g®) >
v*(f°) for a sufficiently close to 1.

Proof. (i) Since B(i, f) = 0 for every i € E, we have for any policy h*,
Eipij(h)o;(f*°) < ¢i(f*°) and ri(h) + Xjpij(h)u; 2(f) < 6i(f*) + (f) if
5o (Wé (1) = 6:(/). Let policy R = (h f, f,...). Then, v*(R) =
r(h) + aP( Yo (f°). From theorem 30 it follows that av®(f*) = a -
AL+ u(f) + ela) = G+ 0(f) = 6(F%) + e1(@), implying v*(R) =

r<h>+P< R){EL) 4y (f) ) +er(@)) = (1—a) LPR)G(F=) +r(h) +
P(h)u(f) + ex(a). Since v2(f) = (1 — a)6(f*) + u(f) + e2(a), we

have

v*(f*) —va( ) = (1= ) () = P(h)¢(f)] + u’(f) —r(h) (4.6)
(R)u(f) + e3(c), where limg () =0, k=1,2,3. '

B, f) = {a e A(i)

Hence, v*(f*®) > v*(R) + e(a) = r(h) + aP(h)v*(f*°) + €(a) for a close
to 1 and [I — aP(h)]v*(f*) > r(h) + e(a). Therefore, v*(f*) > [I —
aP(h)]7tr(h) + e(a)] = v*(h*®) + (1 — a)~! - ¢(a) for a close to 1. From
the Laurent expansion it follows that ¢(f*) > ¢(h*), i.e. policy f* is an
average optimal policy.

(i) Let R = (g, f, f,...). Then, if g(i) = f(i), row ¢ of P(f) is identical
to row i of P(g) and r;i(g) = ri(f) i.e. v¥(R) = [r(g9) + aP(g)v*(f*)]; =
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[r(f)+aP(flo*(f)]: = v (f*°). I g(é) # f(i), then g(i) € B(4, f), and by

formula (4.6) for h = 9, a(£%) =02 (R) = (1-a) ' [$(f*) — P(9)p(f=)]; +

[WO(f) —r(g) — P(g)u’(f) — P(g)¢ (foo)]i + e3(a) < 0 for « sufficiently close

to 1.

Hence, for a sufficiently close to 1, v*(R) = r(g)+aP(g)v*(f*°) = Lav*(f>)
v*(f°), and, by lemma 17, v*(¢*) > v*(f*°). Then, by the Laurent ex-

pansion, it follows that ¢(¢g>°) > ¢(f°). n

Algorithm VI (policy iteration; average rewards, multichain case)
1. Start with any deterministic policy f*°.

2. Determine ¢(f*°) and u°(f) as unique (z,y)-part in a solution of the
linear system (4.4).

3. Determine for every i € E : B(i, f) defined in (4.5).

4. If B(i, f) = 0 for every i € E: go to step 6.
Otherwise: take any g # f such that, if g(i) # f(i),g(¢) € B(3, f).

5. f = ¢ and go to step 2.

6. f° is an average optimal policy.

The unichain case

In the unichain case, since the average reward vectors are constant, the set
B(i, f) can be simplified to

B(i, f) = {a € A@)lri(a) + Sjpig(a)uj > 6(f) +w(f)}  (47)
The following result can be shown.

Theorem 38 The linear system x - e + [I — P(f)]y = r(f) with y1 =0, has
a unique solution © = ¢(f*) and y = u°(f) — u{(f).

Algorithm VII (policy iteration; average rewards, unichain case)
1. Start with any deterministic policy f*°.

2. Determine ¢(f°°) and u°(f) as unique solution of the linear system
z-e+ [l —P(f)ly=r(f) with y =0.
3. Determine for every i € E : B(i, f) defined in (4.7).
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4. If B(i, f) = 0 for every i € E: go to step 6.
Otherwise: take any g # f such that, if g(i) # f(i), g(i) € B(3, f)-

5. f = ¢ and go to step 2.

6. f*° is an average optimal policy.

The concept of policy iteration is originated by Howard Hlffg] who considered
the first two parts of the system (4.4). However, in that case, t}%%nvergence
is not always guaranteed and cycling can occur. Blackwell has given
a convergent version by imposing on y the constraint P*(f)y = 0. In
order to compute P*(f) the chain structure of the transition matrix P(f)
has to be analysed. . Ihe formulation with system (4.4) was proposed by
Miller and Veinott ﬁgﬂﬁ] Other anti-cycling rules, which avoid the an bﬁ% b
of the chain structure, TFS introduced in Schweitzer and Federgruen EZTB’?

Federgruen and Spreen , and Spreen |. Various treatments of the
policy 1te?at10n m.etho pul t1}§e unich 1 Gase ('or other special ases) can
be found £S§ E}wveltzer , Denardo , Haviv and Puterman , and
Lasserre [[I52].

1.4.4 Linear programming

A vector v € RY is said to be average-superharmonic if there exists a vector
u € RY such that the pair (u,v) satisfies

{ v; > ¥ pij(a)v; for every (i,a) € E x A (4.8)

vi +u; > ri(a) + X;pij(a)u; for every (i,a) € Ex A

Theorem 39 The value vector ¢ is the (componentwise) smallest average-
superharmonic vector.

Proof. Let f§° be a Blackwell optimal policy. From theorem 34 it fol-
lows that ¢; > X;pij(a)¢),(i,a) € E x A, and ¢; + ud(fo) > ri(a) +
Ejpij(a)u?(fo) for every i € E and a € A(i,¢), where A(i,¢) = {a €
AG) | 6 = Typig(a)es}. Let A%(i) = {a € AG) | 6 +u(fo) < rila) +
Yjpij(a)u)(fo)},i € B, and siq = ¢ — % pij(a)dj, tia = ¢i+u)(fo) —ri(a) +
%jpij(a)ui(fo), a € A(i), i € E. Define M = min{ss/tiq | a € A*(i), i € E}
(M = 0if Ujeg A*(i) = 0) and u = u°(fy) — M - ¢. For a € A(i, ¢), we have
¢i = Tjpiajd; and ¢ +u; = ¢ +u)(fo) — M - ¢; > ri(a) + Zjpij(a)[uf(fo) —
M - ¢;] = ri(a) + Zjpij(a)uj. For a € A*(i) or a & A(i,¢) U A*(i), we
can derive: ¢; > X;pij(a)p; and ¢; + u; > ri(a) + X;pij(a)uj. Hence, ¢

is average-superharmonic. Suppose that y is also average-superharmonic
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with corresponding x. Then, y > P(fo)y, implying that y > P*(fo)y >
P*(fo){r(fo) + [P(fo) — Ilz} = P*(fo)r(fo) = ¢(f§°) = ¢, i.e. ¢ is the

smallest average-superharmonic vector. "

The multichain case

Corollary 40 Let (u,v) be an optimal solution of the linear program

min {Ej,@jvj

X [(5ij —pij(a)vj] >0 ,(i,a) e Ex A
Ui+ Zj [5” —pij(a)uj-] > Tz‘(a) ,(’i,a) € FE x A} (4.9)

where 3; > 0, j € E, is arbitrarily chosen, then u = ¢.

The dual program of (4.9) is

Yialbij — pij(a)]Tia =0 ,jeE
max Ei,ari(a)l'ia Eaﬂija + Zi,a [(5” — Dij (a')yia = /Bj ,J € E (410)
TiasYia > 0, (i,a) € Ex A

For any feasible solution (z,y) of (4.10) we denote by E,

E,={j € E|Xqzj, >0} (4.11)
Theorem 41 Let (x,y) be an extreme optimal solution of (4.10). Then, any
. ity >0 if 1€ E
olicy f such that{ ~ 7 R v
policy f {yif(i)>0 if 1¢E;
Proof. We will give an outline of the proof. First, we show that f*> is well
defined, because for every j € E, x4 + ZaVYja = ZiaPij(@)yia + B; > 0.
Since z;5(;y > 0, ¢ € Ey and y;5(;) > 0, 1 € Ey, it follows from the complemen-
tary slackness of linear programming that ¢; + X;[0;; — pi; (f(¢))]u; = ri(f),
i € Ey and X;[0;; — pij(f(i))]¢; = 0, ¢ &€ Ey. Program (4.9) implies that
Ej[éij —pij(a)]qﬁj >0,7€ FE, a € E. Suppose that Y, [(51” —pkj(f(k))]¢j >0
for some k € E,. Since Tfk) > 0, Ej[dkj - pkj(f(k))]¢j “Trfk) > 0. Fur-
thermore, Ej [51_7 — pij(a)]¢j cZTig 2> 0, (z',a) € FE x xA. Hence, Ei,azj [(5” —
pij(a)¢j - Tia > 0.
On the other hand, this result is contradictory to the constraints of program
(4.10) because X,Xj[6;; — pij(a)]d; - wia = Tj{[Eia[0i; — pij(a)zia]}d; = 0.
Thus, we have shown that 3;[0;; — pi;(f(7))]¢; = 0 for every i € E, i.e.
¢ = P(f)¢, and consequently ¢ = P*(f)¢. Next, it can easily be shown

is an average optimal policy.
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that E; is closed under P(f), i.e. p;;(f(i)) =0 fori € E;, j € E;. Then, we
can prove that the states of E\ E, are transient in the Markov chain induced
by P(f) (therefore we use the property that the columns corresponding to
the basic variables of a basic solution of an LP are linear independent).
This implies that the columns of E\E, in P*(f) are zero. Now, we can
finish the proof as follows. For every k € E, we can write,

ok () = [P*(f)r()le = ZilP*()leirs(f) = Tier, [P* (/)]riri(f) =

Sien, [P* (Pl 664-E500—pig (F)ug} = [P (D I6+{(T—P(F)u}le = x.

Hence, f* is an average optimal policy. "

Algorithm VIII (linear programming; average rewards, multichain
case)

1. Take any @ with 3; > 0,7 € E, and compute extreme optimal solu-
tions (u,v) and (z,y) of the dual pair linear programs (4.9) and (4.10)
respectively.

2. Choose f> such that z;p;) > 0if ¢ € Ey and yp) > 0if @ € Ej.
Then, f*° is an average optimal policy and v is the value vector ¢.

In the average reward case there is no one-to-one correspondence between
the feasible solutions of the dual program (4.10) and the stationary policies.
However, there are interesting relations. For a feasible solution (z,y) of
(4.10) we define a stationary policy 7*°(z,y) by

Tia/XaTia 0 € A(i), i € Ey

Tial2,y) = { Yia/Savia a € Ai), i ¢ By (4.12)

Conversely, consider a stationary policy 7°, and define (z(7),y(7)) by

{mia(ﬂ') = [Zkﬂkplt;z(ﬂ-)] * Tia ac A(Z)v el

Yia(T) = [SkBrdri () + Spyps; (7)) - Tia a € A(i), i€ E (4.13)

with Ye = mal’ieEj{—Zkﬂkdki(ﬂ')/zkpzi(ﬂ')}, ke Ej, where Ej is the j—th
ergodic set of the transition matrix P(w), and v, = 0 for k tygpsient state.
Then, the following results can be derived (see Kallenberg

Theorem 42 (i) (xz(7),y(w)) is feasible for (4.10) and for a deterministic
policy £ (z(f),y(f)) is an extreme point of (4.10); (ii) if T is an average
optimal policy, then (x(m),y(mw)) is an optimal solution of (4.10) and vice-
versa.
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Remarks

— As mentioned before, the only available methods for MDPs with constraints
are based on linear programming. In the multichain case, there is no opti-
mal stationary policy, in general. The variables z;, of program (4.10) can,
analogously to the discounted case, be interpreted as average state-action
frequencies, but the analysis is much m gg_lcoomplex. For the unichain case,

this analysis can be found i oDr fnan ; the multichain case is treated
by Hordijk and Kallenberg . An interpretation of the second type
of variables, the variables y;, alf ot obvious. They are related to the
deviation matrix (Kallenberg and lag interpreted as biased de-
viation measures (Altman and Spieksmaj%%?—Other ontributions in this

iﬁ%’%and Ross and

area, based n the sample path appro ghﬁsgre Ross
Varadarajan . Beutler and Ross %Tﬁscuss twe sopstrained MDP
by a Lagrangean approach. In Altman and Shwartz e sensitivity of
constrained MDPs is investigated.

— MDPs with multi-objectives can be treated S ¢ gstrained MDPs. For this
topic we refer to Ho ﬁlxuk and Kallenberg , and to Durinovics, Lee,
Katehakis and Filar )%6‘5]

—Only expected values can be insufficient for a decision maker. It may be
desirable to consider also the variability. The last fifteen yeags dogsils

of papers on this ﬁ&’%e?ct are Eglégbgglﬁggg\fe mention Sobel 1, 1,

Kawai and Katoh [12 hﬁ’é@&it? 1283], 284] and ; Filar, Kallenperg and
Lee , Chung 8] and [39], Bayal-Gursoy and Ross , and Huang

st

and Kallenberg

Open problem

For MDPs with constraints, an interesting question is find the best policy
in the class of stationary policies 7 or in the class of deterministic policies
f°°. In the multichain case, no satisfactory algorithm is known for these
problems. For the problem in stationary policies, the natural candidate
7 (,y) with (z, y) the optimal solution of (4.10) with additional constraints
does not satisty (see Kallenberg

The unichain case

Since ¢ is a vector with identical components, in the unichain case the
property average-superharmonic is equivalent to the existence of a scalar
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v and a vector u such that v 4+ u; > ri(a) + X;pij(a)u; for every (i,a) €
ExA. Hence, the LP-problem for the smallest average-superharmonic vector
becomes

min{v | v+ X;[6;; — pij(a)]uj > ri(a) for every (i,a) € E x A} (4.14)
with dual program

Yialdij — pij(a)] e =0, jEE
maz { ;i o7i(a)Tig | LiaTia =1 (4.15)
ZTia >0, (i,a) eEFExA

Algorithm IX (linear programming; average rewards, unichain
case)

1. Compute extreme optimal solutions (u,v) and z of the dual pair LPs
(4.14) and (4.15) respectively.

2. Choose f* such that z;f;) > 0 if i € E; and f(i) arbitrary if i ¢ Fy.
Then, f*° is an average optimal policy and v - e is the value vector ¢.

Remarks

1. In the irreducible case any feasible solution of (4.14) satisfies ¥,x;, > 0,
i € E. Furthermore, the mapping z;, — 7°°(x) with 7 (z) = X/ TaTiq 18
a one-to-one mapping of the feasible solutions of (4.14) onto the stationary
policies with as inverse mapping 7 — z;,(m), where z;o(7) = p}(7) - Tiq
with p*(7) the equilibrium distribution. The set of deterministic policies
corresponds to the set of extreme solutions of (4.14). In this case, similar to
the discounted reward criterion, it can be shown that the linear program-
ming method is equivalent to policy iteration. For the relation between
the discounted linear program and the undiscounted line%rz program in the
irredicuble case, we refer also to Nazareth and Kulkarni .

2. In the unichain case, also a suboptimality test can be implemented, in
the policy iter tiox}6 method as gyg s in the linear programming method
(cf. Hastings and Lasserre . Furthermore, in the unichain case,
problems with constraints have a sulution in the set of stationary policies:
if (z,y) is the optimal solution of the LP-problem with constraints, then
7 (@, y) with Tio(2,y) = Tia/TaTia, a € A(i), @ € E; (and arhitrary deci-
sions in F\E,) is a stationary optimal policy (see Derman l58 ).

The pi na%%r'&g work in solvin ] ]2(}35 by linear programming was made by
Manne [T65] and De Ghellinck , who considered the irreducible case. The
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ﬁrst n ldy in the ge er% multichain case was described in Denardo and

ﬁ%ﬁ%m Dena , who proposed a sequential procedure. Hordijk
and Kallenbergm have shovvn that also in the multichain case one linear
program suffices. Many res) lts about the linear programming method can
be found in Kallenberg

1.4.5 Value iteration

It seems natural to investigate for value iteration the formula of the dis-
counted rewards with discount factor a =1, i.e.

{ vt = maxa{ri(a) + jpii(a)f}, i€ E, n>0 (4.16)

7
? arbitrary, i € B

with corresponding policies f§°, f°,... such that v" ™! =r(f,) + P(fn)v",
n > 0.

This approach, however, causes difficulties: in general, there is no conver-
gence of the sequences {v" | n > 0} or {v® — v" ! |n > 1}. Since v"
corresponds to total rewards during n periods, the sequence {v" | n > 0}
is in general unbounded and grows linearly in n. Therefore, it is plausible
to consider the seguence {v" — n-¢|n = 0} The next lemma, which ap-
peared in Brown [F.Z[g’r»shows that this sequence is bounded. The behaviour
of this sequence is also studied by Lanery .

Lemma 43 The sequence {v" —n-¢ | n > 0} is bounded.

Proof. Let f° be a Blackwell optimal policy. From the proof of theorem
39 it follows that (v, u) with v = ¢(f>) = ¢ and u = u°(f,) — M -¢(f>), for
the choice of M see the proof of theorem 39, satisfies the superharmonicity
inequalities, i.e. ¢ > P(f)¢ and ¢ + u > P(f)u + r(f) with equality for
f = f«. It is sufficient to show that the sequence {€"” = v"—n-¢p—u|n > 0}
is bounded. For n > 1, we have,

P(fo)e" 1 = P(f)v" ' = (n—=1)¢—P(fi)u <" —r(f) = (n—1)o+r(f)—
¢—u=1v"—n-¢—u=-e" implying that P"(f,)e’ < e". Furthermore,
Plfa1)e™™ > P(fy )" = (n= 1)+ [r(fo1) — 6] = 0" — - $—u =
e". Hence, P"(f.)e® < e™ < P(fn_1)P(fn_2) -+ P(fo)e’, and consequently
[min; €9] - e < " < [max; €] - e,n > 0. .

Corollary 44 (i) ¢ = limy_,c 20™; (ii) ¢ = limp_,0e 2X7_; (VF — 0*7 1),

Although corollary 44 shows that ¢ can be approximated by the sequence
{v™ | n > 1}, this result does not provide sufficient information for the
computation of an e-optimal policy or an e-approximation of ¢. Therefore,
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we need stronger results, e.g. the convergence of the sequence {v" —n-¢}>° .
In general, however, this sequence may fail to converge if some of the transi-
tion matrices P(f) are periodic. Fortunately, periodicity c n be avoided by
the following datac‘% sformation, proposed by Schweitzer EZTU?Schweitzer
and Federgruen VFZTS?have given necessary and sufficient conditions which
guarantee the convergence of the sequence {v" —n - ¢} .

Consider for an arbitrary A € (0,1) the modified transition probabilities
pg\j(a) = Aij + (1 — N)pij(a),i,j € E and a € A(i) (4.17)

Since pi(f) > A > 0, the transition matrix P*(f) is aperiodic. Let ¢*(f)
be the average reward of policy f> with respect to the transitions (4.17),
then the next lemma shows that ¢*(f™®) = ¢(f>). Hence, we may assume
that for every f°° the Markov chain with transition matrix P(f) is aperiodic,
in which case P*(f) = limy_y0o P™(f). The next lemma can be shown by
the properties of the stationary and the deviation matrix as mentioned in
theorem 28.

Lemma 45 ¢*(f*®) = ¢(f*) for every deterministic policy f.

To show that, under the aperiodicity assumption, the sequence {e™}52 is
convergent, we need the following theorem.

Theorem 46 Let b, = 7i(a) — ¢; + X pij(a)uj — w;; m; = liminf, o e,
i € E; M; =limsup,_,, e}, i € E and A, (i) = {a € A(i)|¢s = X;pij(a)d;},
i € E. Then, maX,ca, (5){bia + X;jpij(@)m;} < m; < M; < maxeea, (i) {bia +
Zipij(a)M;}-

Let Fo = {f*®|P(f)¢ = ¢ and r(f) + P(f)u = ¢ + u}, where u is the vector
mentioned in the proof of theorem 43.

Theorem 47 Assume that the aperiodicity assumption holds. Then, the
sequence {e"|n > 0} is convergent.

Proof. Let a and 8 be two limit vectors of the sequence {e"}°,, and
suppose that ny and my, satisfy a; = limg_, e;-Lk and 3; = limy_,0o egn’“,

Jj € E. Choose for every k an integer h(k) such that ry = mypp) — ng > k.
From theorem 43(i), we obtain et = "kt > [P(f)]"*e™*, k € N Hence,
for any policy f* € Fy, f = limg_o0 €™r®) > limg_,oo[P(f)]™* - €™t >
limp oo [P(f))F - €™ = P*(f)a

Similarly we obtain « > P*(f)f3. Since a« > P*(f)8 > P*(f)a, we have for
every recurrent state j, oj = [P*(f)al; and similarly 8; = [P*(f)03];-
Therefore, m; = o > [P*(f)B); = B; = M, for every recurrent state j, i.e.
mj = M; for every state which is recurrent under P(f) for some f* € Fj.
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Let f. such that f.(i) € A.(7), i € E, and b(f,) + P(f«)M = maxgxa, {b+
PM}. By theorem 46, b(f.) + P(f«)M > M, implying P*(f.)b(f«) > 0.
Since (¢,u) is superharmonic, b(f.) < 0, i.e. bj(f«) = 0 for j recurrent
under f,. Take f* equal to f° on the states which are recurrent under
f+, and equal to a policy f3° € Fp on the transient states. Then, the states
which are recurrent under f, are a subset of the states which are recurrent
under f, i.e. m; = M; for the states j recurrent under f,. By theorem 46,
we obtain b(f,)+P(fi)m <m < M < b(fs)+P(fs)M,ie. P(fs)(M—m)>
M —m > 0, and consequently, P*(f,)(M —m) > M—m > 0. Since m; = M;
for the states j recurrent under f,, P*(f.)(M — m) = 0, implying that by
M =m. ]

Lemma 48 Assume that the sequence {v" —n - ¢}°°, converges. Then, (i)
[ is average optimal for n sufficiently large; (ii) ¢ = limp_y00 (V"1 — v™).
Proof. (i) Let v* = lim,,o[v" — - @], Le. v* =0 —n- ¢+ O(1). Hence,
V" = (f)+ P(fu)[v* +n-¢+0O(1)]. On the other hand, v" ! = v*+ (n+
1)¢+O(1). From 7(fn)+ P(fo)v* +n-P(fn)¢+O(1) = v*+ (n+1)¢ for all
n, we have for n sufficiently large, P(f,)¢ = ¢ and r(f,,)+ P(fn)v* = v*+ ¢,
which implies that ¢ = P*(fu)é = P*(fa)[r(fa) + PUfu)0" — v°] = 6(f).

(ii) ¢ = (V"1 — ™) — (" — e"). Since the sequence {e"}°, converges,
¢ = limy, 00 (V™ —07). "

The multichain case

Since, for large n, ¢ ~ v — o™ || v — o™ || and span(v™t! —v™) do not
provide a valid stopping criterion. If ¢ is constant, no stopping c i'%%l;; , are
available. Therefore, another approach is necessary. Schweitzer Hem—
ploys a hierarchical decomposition of the MDP into a ef. ofsgommumcating
MDPs. Th'scgg g)bmposition was proposed by Bather [TT]. Schweitzer and
Federgruen ST7T hrave shown that this decomposition is unique.

Open problem
Formulate a value iteration algorithm (without a hierarchical decomposition
of the MDP and without chain analysis) for multichain undiscounted MDPs.

Fundamental research of value iteration for undiscounted multichain ]Q}E 9
was made by Schweitzer and Federgruen. In Schweitzer and Federgruen p [y

it is shown, without any assumptions about the periodicity or the chain
structure, that if the sequence {v"™ —n-¢}5° , is convergent, the convergence
rate is geometric. This is surprising because the operator of the mapping
(4.16) is, in general, no contraction or a J-step contraction with respect to
any norm or the seminorm span. Conditions, other than g‘rr'%dicity, for%}%ﬁ@
convergence of {v" —n - ¢}5°, are given by Schweitzer , Denardo
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ath73a A A A A A
and Bather [TO].  Surveys on value iteration for I}:(R’ unted multichain
MDPs can be f%#in hyeitzer and Federgruen ZISC and in Federgruen

and Schweitzer and .
The unichain case

In this section we assume that the value vector is constant, i.e. ¢ = ¢g - e,
where ¢¢ € R. This assumption is more general than the unichain assump-
tion. Furthermore, we assume aperiodicity, which implies (cf. lemma 48)
that ¢ = lim,_, (v — v™). We will formulate an algorithm to compute
an e-optimal policy.

Theorem 49 Let [, = min; (v — v 1) and u, = max;(v] — v '), n € N.
Then, (7') ln T @0 and uy | ¢o; (“’) lne§¢( g.il) <¢o-e<up-en=>Ll

Proof. (i) Since ¢ = limy, 0 (v —v™), it is sufficient to show that I, 41 >
In and up 41 < up. We have, v — o™ > [r(fo1) + P(fro1)v™] = [r(fao1) +
P(fnfl)vnil] = P(fnfl)(vn - 'Unil) > P(fnfl) : mini(vn - Unil)i e=lp-e,
ie. lp41 > I, Similarly, it can be shown that up11 < up.

(ii) From part (i), we have u,, > ¢g, n > 1. Furthermore, we can write
O(fr21) = P*(fa-1)r(fa1) = P*(fa1)[v" = P(fa-1)v" "] = P*(fa1)[v" —

v > P*(fu_1) - min; (v — 0" Y ce =1, e "

By the results of theorem 49 an algorithm can be formulated. Since v™ grows
linearly in n, a direct application of (4.15) may cause numerical difficulties.
Therefore, we use the following transformation.

Let wj = vi —vy, 1€ B, n>0; g" = vy — vjrffl, n > 1. Then, we have
wit = [e] + ng + w;) — [ef +no +un] = [} — e} + [ui — un], which is a

bounded sequence, and g" = [}, +n¢+un]—[eh '+ (n—1)p+un] = [e} —
e’]ifl] + ¢, which is also bounded. Furthermore, the relations become g"+! =
VR = ok = maxgea) {7n (@) + Zjpn (@) [off —vR]} = maxeeany {rv (@) +
Sipnj(a)w]}, and witt = oft — o = max,e 45y {ri(a) + Z;pij(a) - [v] —
o]} + [y — o] = maxge aq) {ri(a) + Sjpg (@)} — gt i € E.

_ : n n—1y _ : n
For the bounds I, and u,, we have [, = min;(v} — v} ") = min;(w} —

w1 + g and u, = max;(vP — ') = max;(w? — wl ) + g™

Algorithm X (relative value iteration; average rewards; aperiodic;
constant value vector)

1. Choose € > 0, and take v € RY arbitrarily.
2. Compute:

a. Siq = ri(a) + X pij(a)vj, (i,a) € E X zA;
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b. g = max,ca(N) SNa;
C. w; = MaXeeA() Sia — 95 ¢ € E and take f such that w = r(f) +
P(f)v—g;

d. v = max;(w; — v;); | = min;(w; — v;);

3. Ifu—I < e: f*isan e-optimal policy and (u+1)/2is a %e—approxiation
of the value ¢y (STOP);

Otherwise: v = w and go to step 2.

One may ask whether exclusion of suboptimal actions can be implemented
for the average reward criterion. Similar to formula (3.7) of the discounted
rewards, it can be shown that an action a € A(7) is suboptimal if

¢+ u; > 1y (a) + Ejpij (G)Uj, (4.18)

where (¢, u) is a solution of the optimality equation of theorem 35. Since
such a solution is unknown in advance, in order to apply (4.17) in an al-
gorithm, we need bounds for ¢ and u. Theorem 49 provides bounds for ¢;
however, bounds for u are unknown. One may well apply a suboptimality
test in one iteration of formula (4.16). In fact, v™ is the total reward over a

horizon of n stages. glscgsssuboptimality tests for fi ellts@c _}jlorizon mod lgb(; n
be used (see Hastings , Hastings and Van Nunen gg , and Hﬁbner%l'%%.

Bounds o ag:]'Fl value vector as formulated in t eorem, 449 can be fou% in
Hastings %E]TOdo '0&7%]?,5 Hordijk and Tijms [I19], and Platzman [I78].
Hordijk and Tijms [TZ2I] have proposed an approximation method with a
sequence of discounted value iteratio Shiv%itel% discount factors tending to 1.
Algorithm X is established by White%@cenﬂ% a new value iteration
algorithm was proposed by Bertsekas , under the assumption that all
policies are unichain and that there exists a state that is recurrent under all
policies. This method is inspired by a relation with an associated stochastic
shortest path problem.

1.4.6 Modified policy iteration

As in the discounted reward case, modified policy iteration can be applied.
However, we assume in this section the strong aperiodicity assumption, i.e.
for some 0 < A < 1, pii(a) > A > 0 for all i € E, a € A(i). As shown
in section 4.5 by Schweitzer’s aperiodicity transformation, any MDP can be
transformed to an equivalent MDP with the strong aperiodicity property.
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Furthermore, we assume that the value vector ¢ is a constant vector: ¢ =
d)() s €.

Let U and Lj be the operators as defined in (3.2) and (3.5), repectively,
with o = 1.

Lemma 50 Let I, = min;(Uz™ — z");, n € N. Then, the sequence {l,}°° 4
18 monotonically nondecreasing.

Proof. Uz" — 2" > Ly, 2" —z" = L’;:’_llzv”_l - L’}n_lxn_l = Pk(f,_1)
Ly, a1 —a" 1) = PF(f_)[Uz™ 1 — 2" > PF(fri)lp1-e = lp_1-e.
Hence, 1, > 1,,_1. "
Remark

Let u, = max;(Uz™ — z™);, n € N. Then the sequence {u, | n € N} is
in general not monotonically nonincreasing, unless £ = 1 (for & = 1, see
theorem 49).

Without proof we present the following result.

Theorem 51 (i) The sequences {l, | n € N} and {u, | n € N} both
converge to the value ¢g; (ii) the convergence of span(Uz™ — x™) to zero
is geometrically fast; (iii) algorithm XI (see below) terminates with an e-
optimal policy f, and %[un +1,] is an %e—approa:imatz’on of ¢o-

Algorithm XI (modified policy iteration; average rewards; aperi-
odic; constant value vector)

1. Choose z € RN and € > 0 arbitrarily.

2. a. Choose k with 1 < k < o0;
b. Determine f such that Ljr = Uxz;
c. Let I = min;(Uz — z); and v = max;(Uz — z);.

3. Ifu—l <e: f*isan e-optimal policy and (u+1)/2 is a %e—approxiation
of the value ¢y (STOP);

otherwise: = = L’;a: and go to step 2.

Remark

If £ = 1 the method becomes the standard value iteration (without White’s
relative values). We will also make it plausible that, in the unichain case,
policy iteration corresponds to k = co. By theorem 28, we have ¢(f*°) +

[T = P(N)]u(f) =r(f), L§ a" = L§ [u(fa)] + P*(fn)l2"™ — u(fu)] = u(fn) +

n

k- o(f) + PE(fn)[z™ — u(fas1)]- If k tends to infinity, P*(f,) converges
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to P*(fy), a matrix with equal rows, i.e. P*(f,)[z"™ — u(f,)] converges to
a constant vector. Since, ¢(f5°) is also a constant vector, the difference
between L’}n z™ and u(f,) converges to a constant vector. In the policy iter-
ation algorithm VII with best improving actions, a new policy corresponds
to maximization of r;(a) + X;p;;(a)u;(fn), which is the same as U[L’}na)"].
Hence, both methods are very similar.

The modified i);'cy itera;uig method was first mentioned by Morton ﬁglg%O]
Vander Wal and has analysed this method extensively under
various chain structure assumptions (irreducible case, unichain case, com-
municating case and simply connected case).

1.5 MORE SENSITIVE OPTIMALITY CRITE-
RIA
1.5.1 Introduction

In section 1.3 the concepts of an n-discount optimal and an n-average optimal
policy R,, for n =—1,0,1,..., are introduced, respectively by

11%1(1 —a) "v*(Ry) — 0] =0 (5.1)
and 1
lim inf —[v™7(R,) — v™"(R)] > 0 for every policy R, (5.2)
T—oo 1
where

t
ntro | V(R) for n =—1
vV R) = { ¥t " b¥(R) for n=0,1,...

Without proof we state that for both criteria optimal deterministic policies
exist.

Theorem 52 The criteria (-1)-discount optimal and (-1)-average optimal
are equivalent, and also equivalent to average optimal.

Proof. From corollary 31 it follows that lima1(1 — @)v*(f*®) = ¢(f*)
for every deterministic policy. Hence, using a Blackwell optimal policy, we
obtain limgqq (1 — a)v® = ¢. Therefore, if f2° is (-1)-discount optimal, then
we have 0 = limg1 (1 — a)[v*(f°) — v*] = @(f°) — ¢, i.e. f° is average
optimal.

(-1)-average optimality means that lmp_e #[v7(f,) — o7 (f)] > 0, ie.
lim7_, 0 %[ZthlPt_l(f*)r(f*) — XL, P f)r(f)] > 0 for every policy f.
Since limp_, %EtT:lPtfl(f)r(f) = ¢(f*°) for every policy f°°, an average
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optimal policy is also (-1)-average optimal. Finally, let f° be (-1)-average
optimal and let f§° be a Blackwell optimal policy. Then, by the Laurent ex-
pansion, 0 > limgt1 (1—a) [v®(f°) —v*] = limap (1—a)[v*(f°)—v (f8°)] =
B(f°) — B(f§°) = imp oo 7 (ST P (f)r(fe) — S, P 1(fo) (fo)] =

ie. f2° (-1)-discount optimal. ]

Theorem 53 The criteria 0-discount optimal and 0-average optimal are
equivalent (such policy is called a bias optimal policy).

Proof. Suppose that f2° is a 0-optimal policy, and let f5° be Blackwell
optimal. Using the properties of the stationary and the deviation matrix,
it can be shown that Z’;:lPs’l(f)r(f) = tp(f°) +ul(f) — PY(f)D(f)r(f).
Therefore, 0 < liminfr_,o 7 S AP f)r(fe) = P fo)r(fo)} =
lim inf7 00 757, {[t6(£° )+u (f*) PH(f)D(fu)r (] [te(f5°) +u’(fo) -
P(fo)D(fo)r(fo)]} = lm infrooo [ 3T+ 1){B(f%) — 8} + {ud (f.) ~uO(fo)} -
35T {PUF)D(f)r(f.) — PY(fo) D{fo)r(fo)}]. Since limy o0 251 P1(f)
D(f) = P*(f)D(f) = 0 and ¢(f°) — ¢ < 0, we have ¢(f°) = ¢ = ¢(f§°)
and u®(f,) — u®(fo) > 0.

Hence, we obtain, by the Laurent expansion, 0 > limg [v®(f°) — v?] =
limgp [0 (%) — v ()] = limapa{(1 — @) [$(F) — $(F5)] + [WO(£.) —
uw9(fo)]} = u®(fs) — u®(fo) > 0. On the other hand, suppose that limgsq [v®
(f*) —v*] = 0. For any f*°, also by the Laurent expansion, ¢(f°) >
() and if ¢;(f>) = ¢i(f*), then ud(fi) > ud(f). Hence, we obtain
timinf o0 51, S (PP (Fr(F) = PU () = Timinfr o 3(7 +
D{(f2°) = &(f*)} + {u0(fs) = u® ()} + 3 ZL{PY(fo) D(f)r(f) — P'(fo)
D{fo)r(fo)}] = 0. -

In Blackwell %the concept of bias optimality was introduced. Veinottﬁzz%lg%
present de X olicy iteration algorithm for finding a bias optimal policy. In
Veinott is also shown that an average overtaking deterministic optimal
policy is bias optimal, and conjectured that the reverse statement is also
true A policy R, is average overtaking optimal if lim infr_,c 757, [v'(R4)—
>0 f% every po 1(: R. The conjecture was proved by Denardo and
Mlller %ﬁn_mppman ] showed the equivalence for general (possibly
nonstationary) policies. t%;r-r bg‘%lons the computation oﬁgai bias
optimal policy are Denardo RKQ]_F and Kallenberg hTBI]‘We
refer also t eR}&gier s chapter in this book on blas optimality. Denardo and
Rothblum ave studied the stronger criterion of overtaking optimality.
A policy R, is overtaking optimal if lim infr_,o, X7_[v!(R,)—v'(R)] > 0 for
every policy R. ThlS criterion may have no et' al policy, as already was
shown in Brown “Denardo and Rothblum provided conditions under
which a stationary overtaking optimal policy exists. The n-discount opti-
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mality criterion was proposed in Veinott T8 Sladky TZZZI] has introduced
the concept of n-average optimality; furthermore, he showed the equivalence
between this criterion and the n-discount optimality.

1.5.2 Lexicographic ordering of Laurent series

Instead of the discount factor o we can also use the interest rate p, where
the relations between a and p are given by p = (1 — a)/a. From theorem
30 it follows that the total discounted reward v®(f>°) can be written as the
Laurent series v*(f*®) = (1 + p)X_,p*u*(f) for 0 < p <|| D(f) ||*. Let

HP(f) = (L+p){P*(f) + Z3Lo (1) D)} for 0 < p <|| D(f) |1
(5.3)

Theorem 54 (i) HO(f) = p[I—(1+p)*P(f)|™Y; (id) H(f)r(f) = pv?(f*);

(iii) p[v?(f*) — z] = H?()lr(f) + (1 +p) 'P(f)z —z].

Proof. The proof is based on the properties of the stationary and deviation

matrix as stated in theorem 28. n

Define the sets LS7 and LSy of Laurent series by

LSy = {u(p)lu(p) = T2, pFu’; oF e RN k> —1;

limsupy o || 0 Vo< o0} O
and
=14+ p)x2 _pfak b e RN k> 1
LSy = { p) ‘ hmsuPlc—)oo H zk ||1/Ic< 00 (5'5)

Lemma 55 LSl = LSQ

Proof. The proof can be given by showing that any u(p) € LS satisﬁes
u(p) = B2 pMuf = (1+ p)[BR0(—p) 182 pfu* = (1 + p)Zp2_ pbat
where 2% = ¥%__|(—1)FJu/. Hence, u(p) is also an element of LSj. S1m1—
larly, the reverse statement can be shown. "

Corollary 56. The sets LSy and LS» are the same, and will be denoted by
LS.

Notice that LS is a linear vector space. We define a lexicographic order-
ing on LS by: u(p) is nonnegative (positive) if the first nonzero vector of

(u=1,u0,...) is nonnegative (positive), i.e.

{ u(p) >¢ 0 if liminf,o p~*u(p) >0 for k= —1,0,1,... (5.6)

u(p) >¢ 0 ifu(p) >, 0 and u(p) # 0.
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Let Lp LS — LS be defined by

Lia(p) = r(f) + (1 + o)~ P(f)z(p)- (5.7)

The Laurent expansion of Lﬁx(p)—x(p) for z(p) = (1+p) S _, pFa* satisfies

Lhx(p) —=z(p) —T(f)+(1+p)‘1P(f)(1+p)E°° Pt (1+p)2k—_1p z*
(f)+2°i_1pkp(f):r —E°° Y —22" ot 2t~ = p~H[P(f)a™! - _1]+
)+ P(f)z® — 20 — + X P(f)z* — 2% — 2F=1], which implies

[r( k= 1/0

L’;:B( ) € LS. From theorem 11, we obtain

LA (£°) = 0P(f) = 0. (5.8)

For x € RY let y = maxgya[r+Pz], ie. y; = MaX,eA(i) [ri(a)+3;pij(a)z;],
i € E, and argmaxgxa[r + Pz] = {f|maxgxalr + Pz] = r(f) + P(f)z}.

Consider the mapping B : LS — LS where, for z(p) = (1 + p)5%°_, pFak,
Bx(p) is given by

Bx(p) = 52 1p* B (2,2, 2¥) (5.90)
with
B (z71) = max[Pz! — 27
ExA (5 9b)
A (271 = argmax[Pz~! — 27 1] .
ExA
BO(z7120) = max [r+Pa®— 20—z
ExA-1(z-1) 5.90)
AO(z71 29 = argmax [r4 Pz®— 2% — 2] (5.9¢
ExA-1(z—1)
B(k)(x—l’xo’ k) = max [Pzk — gk — zF1]
 ExAR (o0, k) 5.9d)
AR (=1 20 k) = argmax [Pk — ok — gb=1] (5.
ExAk=1(z=1,20,... k)
Because
PPt — a1 [r(f) 4 P(F)a — ¥ — 2] 4 D pH(P(f)a — ok

1] = T(f)+2k—_1ﬂ P(f)z*—(1+p)5¢2 _s pFa* (f)+(1+P) LP(f)z(p)—
z(p) = L?SL‘( ) — z(p), Bx(p) € LS, which is the result of lexicographically
maximizing r(f) + (1 + p) ' P(f)z(p) — z(p), i.e. Bx(p) = lexmaxy[r(f)+
L+ p)" P(f)z(p) — 2(p)] = lexmazs[Ljz(p) — x(p)]

Since Lj[vP(g™)] — v*(g>°) = 0, we have for every g

v
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Bv(g*°) = 1eXI;1aX[L§«v” (9%°) —vP(¢%)] 2¢ LjvP (™) —vF(9™) = 0. (5.10)

HP(f)[u(p)] 2¢0 when u(p)e >0
HP(f)[u(p)] >¢ 0 when u(p), >0

Then, the following results can be proven.
Theorem 57 (i) F(g)[r(9)+ (1+p)™ P(9)o?(£) —e? (/)] = plv?(9) -
vP(f)); (i) HP(f) is a positive operator.

Theorem 58 (i) Bz = 0 has in LS a unique solution x = vP(f§°), where f§°
is Blackwell optimal; (ii) If g satisfies Bx = r(g) + (14 p) "1 P(9)x — x = 0,
then g* is a Blackwell optimal policy.

HP(f) is a positive operator if { (5.11)

The representation of the expe teld discounted rewards as a Laurent series is
provided by Miller and Veinott ]. They also introduced the lexicographic
ordering. The appr ao(:r}é of the mapping B on the set LS is developed by
Hordijk and Dekl‘:erof[ll_fi!]a

1.5.3 n-Discount optimality and policy iteration

In this section we derive a policy iteration algorithm to compute a policy that
lexicographically maximizes the vector (u=t(f),u’(f),... ,u™(f)) over all
deterministic policies, i.e. an n-discount optimal policy, forn = —1,0,1,....
For n = —1 an average optimal policy and for n = 0 a bias optimal policy is
obtained. Furthermore, we will show that for all n > N — 1 an n-discount
optimal policy is a Blackwell optimal policy. The algorithm is as follows.

Algorithm XII (policy iteration; n-discount optimality)

1. Take an arbitrary policy f.

2. Determine (u=1(f),u(f),... ,u"1(f)) as unique solution of the linear
system

71— P(f)z~! =0
et + 1= P(f)la®  =r(f)
k Ly [I—P(f)lzF =01<k<n+1; P(flz""1 =0

a Ifmaxgya[Pu'(f)—u 1(f)] > 0, then ACV = argmaxg, 4[Pu ' (f)—
uw~1(f)], choose g from A=V and go to step 5.
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b If maxpg, 4n[r + Pul(f) — u®(f) —uw™(f)] > 0, then

AO = argmax, 4ulr + Pud(f) — u(f) — u1(f)], choose g from
A© and go to step 5.

¢ For k = 0 until n do:
If max g, 40 [PuFH(f) — ub T (f) — u*(f)] > 0, then

A®TD = argmax ., 40 [PufT(f) — u*T1(f) — uF(f)], choose g from
A®+1) and go to step 5.

4. f* is n-discount optimal (STOP);
5. f(i) = g(i), i € E, and go to step 2.

Theorem 59 The linear system

1= P(f)lz~! =0
a +[I-P(f)]  =r(f)
P4 [T - P(f)lzF =01 <k <n+1; P(flz"t' =0

has the unique solution (u™1(f),u’(f),... ,u"(f)).
Proof. Suppose that (z71,2°,... ,2""!) is a solution. Then, z~! = P(f)z~!
implies that z=! = P*(f)z~!. From z° + [I — P(f)]z! = 0 we obtain

P*(f)z’ = 0.
Hence, 37 = P*(f)a~! = P*(f){r(f) — [[ - P(f)la"} = P*(f)r(f)
2 = f(f)r(f (1= P(f)+P*(f)]a®

u'(f) and r(f) = 27 +[I-P(f)] )+
2’ = [I-P(f)+P*(f) - P*(f)r D()+P* (P~ P*(F)lr(f) =
u°(f). By induction on k, we obtain = u*=1(f), P*(f)z* =0 and 0
V[T = P(f)]a* = w1 (f) + [T = P(f)+P*(f)la® = (=1)*'D*(f)r(f)+
[ = P(f) + P*(f)]a" ie.

= [D(f) + P*(NIDFDR(f)r(f) = (FDM*(f)r(f) = u*(f), & > La
Remarks
1. Instead of P*(f)z" ™! = 0, we can also consider z" 1 +[I—P(f)]z""2 = 0,

since multiplication with P*(f) gives P*(f)z"*! = 0.
2. For n = —1 the algorithm is equivalent to algorithm VI.

(f
(

k-1 _

In order to show that algorithm XII determines an n-discount optimal policy,
we use the following notation and lemma (which is stated without proof).

v Uf9) =Plgut(f)—u" (f)
Wo(f,9)  =r(9) + P(g)u(f) —u (f) —u ' (f) (5.12)
VE(f,g) = Pgub(f) —u*(f) —u*1(f), k=1



Lemma 60 For every f°, ¢*° and every m € N, we have av*(¢*®) =
=L ok (0 () + 52,0t P (g)gh(f, )} + S ot P (g)um1(f).

Theorem 61 Let f*° and g™ be subsequent policies in algorithm XII, then
vP(g>®) > vP(f*°) for p sufficiently small.

Proof. From theorem 59 it follows that ¥*(f, f) = 0 for k = —1,0,.
Hence, by lemma 60 with n = m + 2, v?(¢*°) —v?(f*°) = (1 + p){ZZi’l_lp
(2210 P Hg)yh (f, )] + p" 25, o [P7H(f) — PP H(g)]u™*1(f)}. Since
| 25 0l [P — PR (f) (IS 021 — o)t || P(S) —
Plg) [ | w1 (F) 1< 2071+ p) | wi(f) |, Tamgyo(1 + p)p™*?
Y2, [P f) — P L(g)]u™ T (f) = 0 for n > 0. On the other hand, since
f*° and ¢g*® are subsequent policies, 9*(f,g) = 0,—1 < k < m — 1 and
Y™ (f,g) > 0 for some —1 < m < n+ 1. Hence, if we define 1/*(f, g) = 0 for
k > n+2, we have 2 p*9F(f, g) € LS and 200 _1PPYF(f, g) >4 0. Since,
by theorem 57 (ii), H?(g) = p[I—(1+p)~' P(g)]~! is a positive operator, [I—
(1+p)~1P(g)]~ ! is also positive, i.e. [I—(1+p)"1P(g)]~[B_, pFyk(f,9)] >
0. Since [T—(1+p) 'P(g)] *[ZR2_1 0" (f,9)] = T2yt 1P (g )[E"":_lpk
V(f,9)] = TR PN T pFYR(fg) = oS pFER 0
PY ) (f,9)]} = (1 + p){ZiFL, pF 252, 0t P (g)0k (£, )]}, it follows
that v/(g°) — v?(f*) = (1 + p){ZpE! P[22, P (g)0F (£, 9)]} + (1 +
PP PRl - [PH(f) — P (@) (f)} >¢ 01 0P (%) > vP(£°) for p
sufficiently small. "

Theorem 62 Algorithm XII terminates in a finite number of iterations with
an n-discount optimal policy.
Proof. From theorem 61 it follows that algorithm XII produces a sequence
of different deterministic policies. Since the set of deterministic policies is
finite, the algorithm terminates after a finite number of iterations. Let f*°
be the last policy We obtain by applying lemma 60, v?(¢g>®°) — v?(f>) =
(1+ p){ZIEL pH[SE, 0t P () (£ )] + o252, l [P (f) — P11 (g)
u™1(f)}. Since the algorithm terminates, X2, pFy(f,g) <, 0, where
Y*(f,g) = 0 for k > n+2. This implies that (14 p){Z71! | pF[E22, 0l P (g)
Y*(f,9)] <¢ 0 and || p" 2220t [PP7(f) — PH(g) T (f) II< 20" (1 +
p) || w"H(f) ||. Hence, lim,jo p~"[v?(f*°) — v (g*)] > 0 for every policy
g, i.e. f%° is an n-discount optimal policy. "

Finally, we show that an n-discount optimal policy is a Blackwell optimal
policy if n > N — 1.
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Lemma 63 If *(f,g) = 0 for 1 < k < N, then also ¥*(f,g) = 0 for all
k>N+1.

Proof. Let L = {z € RY|[P(f) — P(g)]x = 0}. Since, for k > 1, ¥*(f, g) =
PlgJu(f) — u*(F) — u*L(f) = Pg)u(f) — (~DFD(f) — [IDF(f)r(f) =
P(g)u* () — (~DFIP(N) D) — P (DIDH(f)r(f) = Plg)uk () — PPk ()
ie. uf(f) € L for k=1,2,...,N. Since L is a linear vector space in RV,
the N + 1 vectors u*( f), 1 <k < N +1, are linear dependent. Because
uk(f) = B*zq for o = ' (f) and B = —D(f), the set {wo,B:co, . BN:co}
is dependent, i.e. for some 1 < k < N, we have Bfzy = E 1)\ Bz for
some scalars A\;, 1 < j <k —1,ie. BFzo € L. Hence we have Bk"'l:no =
Ef;é)\jBﬂ'lxo, which is a linear combination of the elements Bzy, ... , B¥zq
from L, so B¥lzy € L. Similarly, by induction, it can be shown that
uk(f) = Bkzy € L for every k > 1, implying that v*(f,g) =0for k> 1. =

Theorem 64 If algorithm XII is used to determine an (N — 1)-discount
optimal policy f°° then f*° is also a Blackwell optimal policy.

Proof. If the algorithm terminates with f°, we have £ | pF9*(f,g) <, 0
for every policy g*, i.e. either Efcv__lpkz/)k(f, g) <¢0or Zk__lpkzpk(f, g) =
0. In the first case, v°(g*>°) < v?(f*) for p sufficiently small; in the sec-
ond case ¥*(f,g) = 0, 1 < k < N. From lemma 63 it follows that
YE(f,g) = 0, k > 1. Then, by lemma 60 with m — oo, av®(g™®) =
21?3:—1916{”16( ) + 32, P g)y (f, 9)} = Elgo:—lpkuk(f) = aw®(f*°) for
all a € [0,1). Hence, f*° is Blackwell optimal. n

The policy iteration et]hod of this section was proposed in Veinott Wand
in Miller and Veinott ]. They have also shown that Blackweklzslg%lmahty
is the same as n-discount optimality for n > N ods LHI)n Veinott refined
results are given. In Federgruen and Schweitzer 7§ a value iteration method
is suggested for solving nested functional equations. These equations arise
e.g. when more sensitive discount optimal policies are found. In particular,
a method is given to find the optimal bias vector and a bias-optimal policy.

1.5.4 Blackwell optimality and linear programming

In this section we show how linear programming in the space of the ratio-
nal functions can be developed to compute optimal policies over the entire
range of the discount factor. Especially, a procedure is presented for the
computation of a Blackwell optimal policy.

Let R be the ordered field of the real numbers with the usual ordering
denoted by >. By P(R) we denote the set of all polynomials with real
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coeflicients:

PR) = {p(z)|p(z) = ap+ a1z + -+ -+ apz™,a; e R,1 <i<n}. (5.13)

By po and p; we denote the polynomials pg(z) = 0 and p;(z) = 1 for every x.
The field F(R) of rational functions with real coefficients consists of the ele-

ments E ; , where p and ¢ are from P(R) and q # po. The polynomial p(z) is

considered as identical to the rational function If’ (2) . T'wo rational functions
£ and { are considered identical, denoted 2 =, £, if p(z)s(z) = q(z)r(z).

s
The operatlons + and - are the natural addition and multiplication, i.e.
p(z) T _ p(w)s z)JrT(w)q(ﬂﬂ) and p(w) Lr@) o p(@)r(z)

(h (5 s@ —t q@)s@)”
The polynomlals po and p; are the i 1 entltles with respect to the operations
addition and multiplication. A complete ordereing in F'(R) is obtained by
p >, pp if and only if d(p)d(q) > 0. If p >, po, then the rational function %
1s called positive. 5 >, po means that elther p=y poort >g po- F(R) is a
non-Archimedean ordered field. The continuity of polynomlals implies that
the rational function 2 ¢ is positive if and only if z Emg > 0 for all = sufficiently

close to 0. Hence, we obtain the following result.

Theorem 65 The rational function % is positive if and only if there exists

an zo > 0 such that E y >0 for every x € (0, o).

The total expected discounted reward v*(f) for a deterministic policy f™
is the unique solution of the linear system [(1 4 p)I — P(f)]m = (14 p)r(f).
Solving this equation by Cramer’s rule shows that v/(f*), ¢ € E, is an
element of F(R), say q, where the degree of the polynomlals p and q is
at most N. It is well known (theorem 29) that the interval [0,1) of the
discount factor can be divided into a finite number of intervals, say [0 =
Qm,Qm—1),--- , |0, a—1 = 1), in such a way that there exist policies f°,
0 < i < m, where f is a-optimal for all a € [o;, a;—1). Hence, on any of
these intervals the components of the value vector v” are elements of F(R).

Furthermore, the optimality equation (3.2) implies that (1 + p)vf > (1 +
p)ri(a) + X;pij(a )v , (1,a) € E x A, p > 0. Therefore, in the ordered field
F(R), we have (1 +p) > (1 +p)rz( ) + Z]pw(a)vj, (i,a) € Ex A. In
general, v/ is not an element of F'(R), but there are elements of F(R) which
coincide piecewise with vf.

An N-vector w(p) with components in F(R) is called superharmonic if
(1+ phwi(p) > (1 + p)ri(a) + Sypig(@)w;(p), (,a) € B x A. Hence, v
is superharmonic. The concept of superharmonicity is useful to derive lin-
ear programs for MDP’s.
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Lemma 66 v° is the smallest superharmonic vector with components in
F(R), i.e. for any superharmonic vector w(p), wi(p) >4 vf, i € E.

Proof. Let w(p) be a superharmonic vector. Because there are only a finite
number of states and actions, there exists a pg > 0 such that (1+ p)w;(p) >
(1 + p)ri(a) + Xjpij(@)w;i(p), (i,a) € E x A, p € (0,po]. Therefore, by the
results of discounted rewards, w;(p) > v, i € E, for every p € (0, po], i.e.
wi(p) >¢f,i € E. .

Lemma 66 implies that the value vector v on the interval (0, pg] can be
found as optimal solution of the following linear program in F'(R):

min{S;u;(0) %31+ )855 —Piagli (p) ¢ (1+p)ria, (is0) € Ex A}. (5.14)
Consider also the following linear program in F(R), called the dual program:

Yial(1+ p) 5 — pij(a)]-
max § 3; o(1 + p)ri(a) - zie(p) Zia(p) =¢m, j € E » (5.15)
Tia ZZ Po, (iaa) eExA

For a fixed real value of p, the linear programs (5.14) and (5.15) are the
linear programs (3.14) and (3.15) respectively. Also from section 3.3 4 it is
known that there is a one-to-one correspondence between the extreme points
of (5.15) and the set of deterministic policies.

As in the simplex method, we will rewrite the equalities of (5.15) such that
at each iteration there is precisely one positive z(p) component in each state.
The main difference with the usual simplex method for a fixed value of p is
that, instead of real numbers, the elements are rational functions. During
any iteration, the set of constraints is written in the special form

rp =B le— B 'Azy (5.16)

where e is the vector with the right-hand-side of (5.15) as components, i.e.
p1; xp and xpy are the basis and nonbasis variables, B is the basic matrix
and A consists of the remaining (nonbasis) columns of (5.15).

We solve the dual program (5.15) in such a way that the optimality of
some basic solution, or equivalently some policy f°, is shown on a certain
interval for the value of p. This is possible, because for every fixed p in
that interval the corresponding simplex tableau is an optimal one. At any
iteration of the simplex tableau there is a feasible solution z(p) of (5.15)
and a corresponding ”trial solution” w(p) of (5.14), i.e. w(p) satisfies the
complementary slackness conditions

zia(p)-{55[(1+p)0ij —pij(a)]wj (p) = (1+p)ri(a)} = 0, (i,a) € ExA (5.17)

57



for all p in the interval which is considered. Since any basic solution corre-
sponds to a policy f°°, in each state ¢ there is exactly one action, namely
f(i), such that ;z(;(p) > 0 for all p in the actual interval. Hence, by (5.17),

(1 +p) = P(flw(p) = (1 + p)r(f), Le. w(p) = (). (5.18)

The organization of the special simplex method with elements rational func-
tions is based on the following theorem.

Theorem 67 (i) The elements of the simplex tableau can be written as
rational functions with a common denominator, which is the product of all
previous pivot elements; (1i) The numerator and denominator of the rational
functions are polynomials with degree N at most, except for the reduced
costs where the numerator may have degree N + 15 (iii) For p sufficiently
large, the optimal solution z(p) is given by the basic variables x;s;)(p), where
f@@) is such that r;(f(i)) = max,r;i(a), i« € E. (i) The pivot operations
in the simplex tableau are as follows (n(p) is the common denominator):
(a) the numerator of the pivot becomes the next common denominator, and
the last common denominator becomes the new numerator of the pivot; (b)
the numerators of the other elements in the pivot row are unchanged and
the numerators of the other elements in the pivot column are multiplied

by -1; (c) for the other elements, say numerator p(p), we replace p(p) by

p(p)t(p)—r(p)s(p)
n(p

pivot and r(p) is the numerator of the pivot row which is in the same column
as p(p), and s(p) is the numerator in the pivot column which is in the same

row as p(p).

, which is a polynomial where t(p) is the numerator of the last

Starting with the artificial variables z;(p), j € E, as basic variables, we can
compute the optimal simplex tableau for p = oo by exchanging z;f(;) with
21, Taf(z) With z9,... ,Tnpv) With 2y, where f(i) is such that r;(f(i)) =
maxgri(a), 1 < ¢ < N. This tableau is optimal for p > p;, where p; is
the smallest value such that the reduced costs are nonnegative. To compute
p1 we have to determine the zeroes of some polynomials. The column that
determines p; becomes the next pivot column. After a pivot transformation
the next tableau is optimal for [p2, p1) for some pgo. In this way we continue
until the last interval [p,, = 0, p—1).

If we are only interested in computing a Blackwell optimal policy, and not
in the computation of the intervals with corresponding optimal policies, the
method can be described as follows:

1. Start with any policy f*>° and compute the corresponding tableau.
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2. If every reduced cost is nonnegative with respect to the ordering in
F(R), i.e. the dominating coefficient of the numerator of any reduced
cost is nonnegative, then the corresponding policy is Blackwell optimal.

Otherwise: take any column with a negative reduced cost as pivot
column and execute a pivot transformation.

3. Go to step 2.

Remarks

1. Since in any tranformation the value of the objective function increases,
none of the basis can return and therefore the method is finite.

2. The complexity of one pivot transformation is as follows: multiplication
and division of the polynomials in the tableaux is O(N?2). Hence, the com-
putation of a new element is of order N2, i.e. the computation of a new
column is of order N3. Since there are ZZN 1#A(%) columns, the complexity
of one transformation is of order N3[EX | #A(3)).

8
Hordijk, Dekker and Kallenberg [T47 have developed the simplex method
for rational functions for the computation of discounted optimal policies
over the whole range of the discount factors, including t e ¢ mputatio ,glgoa
129]

Blackwell optiﬁoalls%cH!iocl% E{elated works are Smallwood , Jeroslow

and Holzbaur

1.6 A VARIETY OF OTHER TOPICS

1.6.1 Mean-variance trade-offs

The standard criteria for MDPs based on average or (sensitive) discounted
rewards are not always satisfactory. In this section we consider another
approach. This approach is especially suitable for a decision maker who
prefers to use a criterion which also considers the wariability induced by
a given policy. How do we measure this variability? We want to have
a variability measure which is sensible, mathematically tractable, and for
which an optimality concept can be used. It turns out that optimality for
all starting states simulaneously is a too strong requirement. Therefore, we
will consider the criterion for a fixed initial distribution 8. Then, as mean
of the rewards for a given policy R, we use

9(8, F) = liminf ST By alrx (V) (61)

59



If a policy R satisfies ¢(0, R) = X;5;¢i, where ¢ is the value vector, then R
is called a (-average-optimal policy.

As variance of the rewards for a given policy R, we use the definition

i 1

v(B, R) =limsup -3 B, rlrx, (Vi) — ¢(8, R)I} (6.2)
T—o0 T

The quantities ¢(3, R) and v(8, R) can be expressed in the so called state-

action frequencies. For any policy R, any T" € N, and any initial distribution

B, we denote the expected state-action frequencies in the first T periods by

the z'(R), i.e.

1 : .
zja(R) = =S Par[Xs =, Yi=adl, (o) eExA  (63)

For a stationary policy 7°°, we have

1
27, (1) = fthﬂEzﬂi - P (m)ijmja, (i,0) € Ex A (6.4)
By X(R) we denote the limit points of the vectors {z”(R), T = 1,2,...}.
Since 0 < 2T (R) < e for every T € N, X(R) # 0. Any z(R) satisfies
ija:v]Ta(R) =1 and therefore ¥; ,x4(R) = 1 for every z(R) € X(R). For a
stationary policy 7°°, we can write

Jim 5, (7%°) = 2if3; « [P (m)]ijmja, (i,0) € B x A (6.5)
i.e. X(m) consists of the unique element z(7°°). Furthermore, ¥; 47j42q
(7%°) = Zif; - ¢i(7°);. We introduce the notation L, L(M), L(S) and L(D)
for the elements of X (R) corresponding to general, Markov, stationary and
deterministic policies, respectively. For policies R with #X(R) = 1, e.g.
stationary policies, we denote the unique element of X (R) by z(R). For
such policies the variance satisfies

v(B,R) = Zj,a:cja(R)TJz(a) — [Ej,axja(R)rj(a)]2 (6.6)

Let X be the projection of the feasible solutions (z,y) of the linear program
(4.10) on the z-space, i.e.

Yi,al0ij — PijlTia =0, j€E
X =1z| XZaTjo+ ialbij —pij(@)]yia = Bj, Jj€E forsomey ,» (6.7)
Tia; Yia = 0, (t,a) e Ex A

Then, the next theorem can be shown.
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Theorem 68 L(D) = L(S) = L(M) = L = X, where S is the closed convex
hull of a set S.

There are several sensible formulations for the mean-variance problem. We
consider the following three formulations.

(1) Mazimal mean-variance ratio with lower bound on the mean

[6(8, R
max {—U( SRR > 1 } (6.8)

This problem can equivalently be written as

{ _Zj,axja(R)TgZ(a)
max

5 ata (B ()P YiaZja(R)j(a) > L} (6.9)

For this problem we consider the mathematical programming problem

—Sjezj0r2(a) | ze X
_— 6.10
ma"{ Tatsar2@] | Siatiari(a) > L (6.10)

(2) Minimal variance with lower bound on the mean
min{v(3, R)|¢(8, R) > L} (6.11)
This problem can be rewritten as
max {—Ej,aacja(R)rJQ- (@)+[2jexja(R)r; (a)]2 | ¥jatja(R)rj(a)>L } (6.12)

with as mathematical programming formulation

eX
max { —X: 4 ZiaT2(a) + (X g iari(a)]? L } 6.13
{Simari@ + Basn@P| 365 b )

(8) Variance-penalized formulation
max{¢(83, R) — A -v(B, R)} for some penalty A > 0 (6.14)

This problem is equivalent to

max{3ja2ja(R)rj(a) — A+ [S,a25a(R)rj(a) — (Sjazja(R)rj(a))?]} (6.15)
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which yields the mathematical program
max {%,25ar(a) = X - {j02jar5 () — [Zjzjar;(a)’} |z € X} (6.16)

The mathematical programs (6.10), (6.13) and (6.16) are special cases of the
following unifying program

z€e X

Ej aBjaiL‘ja }
ZiaBiaTia , s g 6.17
max{ (Fjaftjatia) L <YjoRjewja <U (6.17)

D(Z;.aRjaja)
with (a) C is a convex function; (b) if D is not a constant, then (i) D
is positive, convex and nondecreasing, (ii) C is nondecreasing and (iii)
Y aBjarje <0 for every x € X.

In order to solve (6.17), we consider a parametric version of (4.10) with
B, + IR, instead of 7;(a), (i,a) € E x zA, i.e.

b [ pz]]xw =0, JEFE
nax 2i,al'ia[Bia + ﬂRia] z]amja + Ez a[ézg Dij (a)]yia = ﬂja .7 €E (618)
Tia, Yia = 0, (,)EEXA

with ¢ € (—o0,+00) as the parameter. It is well known that the optimal
solution (1) is a piecewise constant function of 9 with values being extreme
points of X, and the optimal value is a piecewise linear, convex function of
1. Thus, there exist g = —co < % < --- < V1 < ¥y, = +00 such that
z(¥) =z for ¥ € [Uy—1,Y,], 1 <n < m, with 2" an extreme point of X.

Let k+1 and j + 1 be respectively the smallest integers among 0, 1,... ,m
such that ¥; ,Ri,zk > U and £ 4 Rigal, " > L. Furthermore, let a € (0,1]
and B € [0,1) be such that Y = az*+(1—a)z**! and ¥ = B2/ +(1- )2/ !
satisfy Zi,aRmx% =U and Ei,aRiaxﬁl = L.

Let G(2) = jaBjatja, 9(%) = BjaRjatja and V(z) = 528 + Clg(x))
for z € X, and let G, = G(2"), gp, = g(z") andV"—V( "),1<n<m.

Furthermore, define Vot = max{max;1<n<k V", V(2 DY, v(zY)}.
Theorem 69 (i) Program (6.17) is feasible if and only if g(z™) > L and
g(x') < U; (ii) If program (6.17) is feasible, then Vopt is the optimal value
of (6.17), and the mazimizing x is the optimal solution Z opt-

If there are no bounds L and U for ¥;,R;e%jq, then Vopt = V(z™) for

some extreme point " of X. Theorem 69 provides a way to find an optimal
solution for the program (6.17). But it does not provide a procedure to
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construct an optimal policy for the corresponding Markov decision chain.
The next two theorems give the answer.

Theorem 70 If (z,y) is an extreme optimal solution for (6.18) for all ¥ in
an open interval, then any deterministic policy f>° with x;7;) > 0 if LaTia >
0 and Yi) >0 if XaZia = 0AXayia > 0 has a state-action frequency vector
x(f*) satisfying i o BiaTia () = Li o BiaTia, YiaRiaTia(f°) = Xi,aRiaia
and V(z(f*)) =V (z).

Theorem 71 If program (6.17) is feasible, then either Topt = x" for some
7+1 < n <k and there exists an optimal deterministic policy, or Topt = zl
(or V) and an initial randomization of two deterministic policies is optimal

for the mean-variance trade-off problem. These policies can be determined
analogously to the policy in theorem 70.

Corollary 72 For an unconstrained mean-variance trade-off problem, i.e.
without the constraint L < X; oRiqTiq = U, there exists a deterministic
optimal policy.

Remarks

1. The discounted and the average-unichain case can be treated in the same
way as above. In fact, these cases are more simple. In the discounted case,
there is a one-to-one correspondence between the deterministic policies and
the extreme solutions. In the unichain case the initial distribution has no
influence and the parametric linear program is more simple.

2. The optimal policy R, is also Pareto-optimal with respect to the pair
(¢(R),—V(R)), i.e. there doesn’t exist a policy R such that ¢(R) > &(R.)
and —V(R) > —V(R,), with a strict inequality holding for at least one of
the two inequalities.

State-action frequencies for the unichain case aﬁls'l%r%scussed in Derman »FS%{TO
The cl,lrléi?,hain case is analysed in Kallenberg and Hordijk en Kallen-
berg , who have shown theorem 68. State-action frequencies play also
an important role in multiple-objective MDP and for MDPs with addi-

tional ¢ Eaints. (i%l%ributio S, ég E;chis area are made by ]c'_))s%r an and
Veinott QIAS ] Rossrtfl'g'ﬁ% ass, nd Varadarajan , Altman
and Shwartz and by Liu and Ohno [I57]. The eapi-variance formél,la—
tions (6.8), (6.11) and (6.14), were proposed by Sobel ], Kawai
Filar, Kallenberg and ec | respe Evelg Othgg co Erlbgﬂlons in tLus
awai_and Katoh [144], Wmlﬁ‘}iﬁsﬁ K’zgﬁ—c W%%FL
and , Bayal-Gursoy and Ross and Sgbel . The un1fy1ng frame-
work is proposed by Huang and Kallenberg | Who also have shown the
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theorems 69, 70 and 71. Another model with a different criterion is an MDP
in which a (weighted) sum of a number of discounting rewards, each with
a different discount factor, has to be maximized. This model is studied in
Feinberg and Shwartz H

1.6.2 Optimal stopping

Optimal stopping problems were introduced in section 1.1.4. In an optimal
stopping problem there are two actions in each state. The first action is
the stopping action and the second action corresponds with continue. If the
stopping action is chosen in state 4, then a final reward r; is earned and the
process terminates. If the second action is chosen in state ¢, then a cost ¢;
is incurred and the probability of being in state j at the next time point is
pij- Therefore the MDP model is:

E={1,2,... ,N}; A(i) ={1,2}, i€ E; r;(1) =1, i € E;

TZ'(Q) = —c4, 1 E E; pij(l) = 0, i,j S E; pij(2) = Dij, i,j e FE.
We are interested in finding an optimal stopping rule, i.e. we consider only
transient policies. A policy R is called transient if £°,P; g[X; € X| < o0
for all ¢ € F, i.e. for any starting state i the process terminates in a finite
time with probability 1. As optimality criterion the total expected reward is
considered i.e.

UZ(R) = E?ilzj,a]Pi,R[Xt = j, Y = a] . T'j(a) (619)

For the computation of an optimal trarp%il%% policy, the usual properties of
discounted MDPs hold (cf. Kallenberg chapter 3). Let v be the value
vector, i.e. v = sup{v(R)|R is transient}. Then, similar to the discounted
reward criterion, it can be shown that v is the smallest superharmonic vector,
i.e. the smallest vector that satisfies

Vi > T ,tEFE
. 6.20
{ v; > —c¢; + X;piv; , 1 € E. ( )
Hence, the value vector is the unique solution of the linear program
. v; > Ty 1€ F
Dy v =171 > 6.21
mln{ 7Y v; > —Ci + Xjpijvj 5 1€ E} ( )

As in the discounted case, an optimal policy can be obtained by the dual
program. Therefore, the following algorithm can be used.

Algorithm XIIT (optimal stopping; linear programming)
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1. Determine an optimal solution (x,y) of the dual program

zj + vy — i pijyi =1, jGE}

max {ZZTZLEZ — Ziciyi 5,y Z 0, ] cE

~[1ifz; >0
[e's} J
2. Choose f* such that f(7) { 2if 2, — 0.
Let S = {i € Elr; > —c; + X;pjrj}, i.e. S is the set of states in which
immediate stopping is not worse than continuing for one period and than
choose the stopping action. An optimal stopping problem is monotone if
pij=0forallie S, j&S,ie. §isclosed under P.

Theorem 73 In a monotone optimal stopping problem the policy f°°, where
f@@) =1if and only if i € S, is optimal.

i, 1€8 . .
Proof. Let w be such that w; = { Ti, L€ Then, w is superharmonic,

vi, 1 ¢ S.
namely

1e€eS:w =r;>—c¢+ EjpijTj = —¢; + Zjespijrj = —¢; + Ejpijwj.

P E S wi =0 > —6+ Xpijvj > —¢i + Ejespiir + Xigspijvj

= —¢ + Ejpijwj and w; = v; > ;.

Since v is the smallest superharmonic vector, it follows that w > v. Hence,
i€S: rp=w; >v; >1y, e i =w; =v; and f(¢) =1 is optimal;
i & St <—ci+Xpiyr; < —ci + Xjpijv; < v, le. f(i) =2 is optimal. m
For monotone stopping problems it is sufficient to determine the set S.
The determination of S has complexity of order O(N). For instance, the
house selling problem of section 1.4 is monotone with S = {i € E|c >
Yi>i(d —i)p;} = {i € Eli > iy} where i, = min{ilc > ¥;5; (j — i)p;}, ie.
S consists of the states ¢ for which the expected income above ¢ in the next
week is at most the costs in that week. Furthermore, an optimal policy is
to accept an offer as soon as it is at least i,. Such a policy is said to be a
control-limit policy.

A classical paper on optlma]l stc}gpms Proﬁlélems is Brennan )28 ﬁc‘gl}l&er

papers in this area are Chen [[34], Ross [19%], Yasuda ] and Sonin
We refer also to the chapter ”Optimal stopping: old and new results and
methods” in this book, written by Sonin.

1.6.3 Multi-armed bandit problems

We have introduced this model in section 1.4. At each decision time point the
decision maker has the option to work on exactly one project. Any project
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may be in a finite number of states, say project j in the set Ej, 1 < j < n.
Hence, the state space is the Cartesian product: F = Fq X Ey X -+ X Ej,.
Each state has the same action set {1,2,... ,n}, where action k¥ means that
project k is chosen, 1 < k < n. When project k is chosen, i.e. project k
is the active project, the immediate reward and the transition probabilities
only depend on project k and the state i € Ej. Let r;(k) and p;;(k), j € Ey,
denote these quantities. The states of the inactive projects are frozen. As
utility function the discounted reward is used.

The one-armed bandit stopping problem
Consider the one-armed bandit stopping problem, i.e. in each state there
are two actions: action 1 is the stopping action where we earn a final reward
M and by action 2 the process continues with immediate reward r; and
transition probabilities p;;. Let v®(M) be the value vector of this optimal
stopping problem. In the previous section it was discussed how this vector
v*(M) and an optimal policy can be computed by the linear programming
programs

v; 21+ anpijvj, 1 € E}

min {Zjvj v > M, icE (6.22)

and its dual

Si(6ij — apij) zi+y; =1, j€E
max {mez’ + M - ¥y i(0ij = opij) $;+yy] > O’ ieeE } (6.23)
) J? - U,

Lemma 74 For all i € E, v}*(M) — M is a nonnegative continuous nonin-
creasing function in M.

Proof. The nonnegativity of vy*(M) — M is obvious. By the method of
value iteration v*(M) can be approximated by

v} (M) =M, i€ E; ol (M) = max{M,r; + aXjpivf (M)}, i € E,n > 1.
Substituting w’ = v;' — M for all ¢ and n, we obtain

wj(M) =0, i € B; w}*' (M) = max{0,r; + a%jp;w}(M) — (1 — a)M},
ieE,n>1.

By induction on n, it can be shown that w] (M) is continuous and nonin-
creasing in M. Hence, the limit v{*(M)—M is also a continuous nonincreasing

function in M for all < € E. n
Let M{ = min{M|v}(M) = M}, i € E, called the Gittins indices.

Theorem 75 The policy f°°, which chooses the stopping action in state i if
and only if M¥ < M, is optimal.

Proof. Let (z,y) be an extreme optimal solution of linear program (6.23).
Then in each state ¢ only one of the variables x; or y; is basic and positive.
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When z; > 0 then continuing is optimal; otherwise it is optimal to stop.
Suppose that, M* > M, ie. v¥(M) > M. Then, by the complementary
slackness, y; = 0 and it is optimal to continue. Otherwise, suppose that when
the stopping action is chosen, i.e. M < M, this action is not optimal. This
implies, v¥*(M) = r; + anpijvjo-‘(M) > M and consequently M < M, wich
yields a contradiction. "

For M = M both actions (stop or continue) are optimal in state i. Hence,
an interpretation of the Gittins index M/ is the value of M where both
actions are simultaneously optimal, and therefore M is also called the in-
difference value.

Multi-armed bandits

Next, we assume that there are in each state n + 1 actions: action k, 1 <
k < n, means continue with project k, and action 0 stops the process with a
terminal reward M. Let v®(M) be the value vector, f5? the optimal policy
and T'(M) the stopping time, i.e. the expected time before the process
terminates with the final reward M. Let C = (1 — )~ -max; s |r;(k)|, then
C' is an upper bound of the total discounted rewards (without the terminal
rewards). Hence, if M > C, then immediate stopping is optimal in all states.

The following results are in some sense obvious: v®(M) is nondecreasing in
M and a small change in M will change the value (per unit change) with

the discounted (unit) terminal reward aT (M),

Lemma 76 For alli € E, (i) v{'(M) is a nondecreasing, convez function in
M; (ii) 57 (M) = i e [T D).

The next theorem is the key theorem for the multi-armed bandit problem.
It says that an optimal action in a state ¢ = (i1, 42,... ,iy) is to choose the
project which has, for the given state of the project, the smallest Gittins
index. This is an interesting result. It is surprising that these indices depend
only on the individual project and not on the other projects. Hence, they
can be computed independently for each project. By this property, the
dimensionality of the problem is considerably reduced.

Theorem 77 In state i = (i1,12,... ,in) the optimal policy chooses action
k, where k is such that Mi‘;‘c = max; MZCJY

Alternative interpretation of the Gittins index

Consider the one-armed bandit process with initial state i. If M = M/ the
optimal policy is indifferent between stopping and continuing, so that for
any stopping time T, M > E[discounted reward before T'] + M - E[a’],
with equality for the optimal policy. Hence,
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(1 — a)Mf=maxy>1 E[discounted reward before T]/[{1 — E(a’)}/(1 — )]
=maxr>1 E[discounted reward before T'|/E[discounted time before 717,

where the expectations are conditional on the initial state 4. Thus, another
way to describe the optimal policy in the multi-armed bandit problem is
as follows. For each individual project look for the stopping time 7" whose
ratio of expected discounted reward and expected discounted time prior to
T is maximal. Then work on the project with the largest ratio. In the case
there also is the extra option of stopping, one should stop if all ratios are
smaller than (1 — a)M.

Computation of the Gittins indices by parametric linear programming

We have already seen that for one project the Gittins index is related to the
linear programs (6.22) and (6.23). For M big enough, an optimal solution
(z,y) of (6.23) will satisfy y; > 0, i € E. Decreasing M will give that
some y; becomes 0 for a certain value of M. For this M there is indifference
between stopping and continuing, i.e. this M is the Gittins index in state
i. By further decreasing M one can compute the next Gittins index, and so
on. Hence, by parametric linear programming with parameter M which goes
from 400 to —oo, all Gittins indices can be computed for one project. In the
first tableau the y-variables are the basic variables. Setting up this tableau
is of O(N?). Then, there are N transformations, by each transformation one
Gittins index, is computed and each transformation is of O(N?). Therefore,
the overall complexity is O(N3).

Interpretation as restart-in-k problem
We will derive another interpretation for the Gittins index M} in a fixed
state k. For any terminal value M, we have

v (M) = max{M,r; + aX;p;vj (M)}, i € E (6.24)
and in state k, for M = Mg,
W (M) = ME = g + aZppof (M) (6.25)
Substituting (6.25) in (6.24) gives
v (M) = max{rg + aX;pg;vf (ME'), ri + aXjpivf(Mg)}, i€ E (6.26)

Hence, M;' is the k-th component of the value vector of the MDP where
there are in each state two actions. By the first action the process is restarted
in state k, and the second action continues the process. Since M can be
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found as the k-th component of the value vector of the restart-in-k problem,
it can be computed by the following linear program

%j(0i5 — apij)v; 2 ri, 1 #k } (6.27)

max {Zjvj Zj(éij — ozpkj)vj > Tk, 1€ K

For this restart-in-k problem, one can also characterize the states where it
is optimal to choose action ’continue’.

Theorem 78 Let Cy, = {i| to continue is optimal for the restart-in-k
problem}. Then, C = {i € E|M> > M2}.

Largest remaining index

As in parametric linear programming, also by the result on the largest re-
maining index (see the theorem below) the indices can be computed in a
sequence, starting with the largest index.

Theorem 79 Suppose that, for some k, My > M3 > --- > M, and
Mg > MY for all i > k. Let I, be such that Mﬁ: = max;sy MY (the largest
remaining indez).

I—aP*)~1q]; k pij, J <k
Then, we have (1—a)M}* = max;s W, where [P¥;; = {Ojj PS k.
Proof. vff (M) > ri+aX;p;v$ (M), i € E, with equality for the state Ij.
Since ’Uia(M) = M for M > Mia, U?(Mfz) > Ti-l-aZjSkpijU]O-‘(Mf]:)ﬁ-aMﬁ:[1—
Yj<kpijl, i € E. In vector notation this relation can be written as
v > r+aka+aMﬁ:e—aMliPke = r+aka—(1—a)Ml‘l’ze—|—Mli [I—aP¥e,
ie. [[ —aP*lv>r—(1— a)Mpre+ Myl — aP*)e, and consequently,
v >[I —aPFr—(1 —a) M [I—aPk]e+Ml‘ze. Componentwise for i > k, we
have My} = vi*(M}}) > [(I — aPF)r]; — (1 — )M [(I — aPFel; + Mg, with

[(I—aPk)_l’r]i

[(I—aPF)~T¢;- ™

equality for ¢ = l;. Hence, we obtain (1 — a)Ml": = max;>k

In order to find M;?, we have to invert [J —aP*]. Since successive P* matrices
are similar, this can be done efficiently in a recursive way. The computations
can be done in O(k?). Hence, the overall complexity is &I O(k?) = O(N3).

The basic results on thﬁ 11}31—armed b ndltyé)roblem are originated by Git-

tins (Gittins and Jones and Gittins - Other 1?1}91%5105 the optimality

of th négex rule gan be found in Whittle [2 9] apd [290] , I'sit-
siklis | a L ‘%717[], Katehakis and Veinott %ﬂﬂ? Weber }FZEB'?and Ishikida
and Varalyajﬁ'f&’]. In honour of Gittins, Whittle has introduced the term

Gittins indices. A first lincar programming method of O(N 4) is proposed
by Chen and Kathehakis 535 Kallenberg has improved this method
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to O(N3). The in erp; e,tatlon as restart-in-k problem is made by Kathe-
hakls and Veinott The method of thea%argest remaining index rule
is due to Varaiya, Walrand and Buyokkoc E{Jséo method based on bi-
section was proposed in Ben-Israel and Flam . Extension are m deei é
various directions. Branching bandits were s‘cudied1 e.g. by Weiss
generalized b lidite%Se.g. in Glazebrook and (%‘é‘ﬁ% JisoI and in Glazebrook
and Greatrix r883 . Bertsimas and Nifio-Mora ave proposed a new ap-
proach by generalizing the theory of extended polymat%gidgg 6O‘cher papers

based on this new approach are Glazebrook and Garbe , and Garbe and
Glazebrook r84

1.6.4 Separable Markov decision problems

Separable MDPs have the property that for certain pairs (i,a) of a state ¢
and an action a: (i) the immediate reward is the sum of terms due to the
current state and action, i.e. r;(a) = s;+t(a), (ii) the transition probabilities
depend only on the action and not on the state from which the transition
occurs, i.e. p;i(a) = pj(a).

For separable problems an LP formulation can be given, which involves a
smaller number of variables than in the general LLP formulation. In this sec-
tion we consider the multichain undiscounted case. For the discounted Ise
and the unichain undiscounted case we refer to De Ghellinck and EppenE‘ﬁL
and to Denardo 148 , respectively.

A separable Markov decision problem has the following structure:
(1) In some states, say the states of E; = {1,2,... ,m), there are subsets of
the action sets, say subset A;(7) in state i € Ej, such that:

(i) ri(a) = s;+t(a), i € E1, a € A;i(i);
(ii) pij(a) is independent of 7 : p;;(a) = p;j(a), i € E1, a € Ai(i), j € E.
(2) The action subsets are nested: A;1(1) 2 A1(2) D --- 2 Ai1(m) # 0.

Let By = E\E1, As(i) = A@\A1(i), 1 <i < m, As(i) = AGG), m+1<i<
N, and B(i) = A1(i) —A1(i+1),1 < i <m—1, B(m) = A;(m). Then
A1 (i) = UL, B(j), and the sets B(j) are disjoint. Ex, Ea, As(i) or B(i) may
be empty.

If the system is observed in a state ¢ € E7, and the decision maker will choose
an action from A;(7), the decision process can be considered as follows. First
a reward s; is earned and the systems makes a zero-time transitio n to an
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additional state N + . In this state there are two options: either to take
an action a € B(7) or to take an action from A;(¢) — B(i) = A;(i +1). In
the first case reward ¢(a) is earned and the process moves to state j with
probability p;(a), j € E; in the second case we have the same situation as
in state N + 4+ 1, i.e. a zero-time transition is made from state N + ¢ to
state N + i+ 1.

This formulation can be interpreted as a semi-Markov decision process (see
section 6.5). It can be shown that a linear program, which directly pro-
vides a deterministic average optimal policy, can be formulated. This linear
program is basei g{lsgg'near programming for semi-Markov decision problems
(cf. Kallenberg , chapter 7). It is not a straightforward application,
because there are zero-time transitions which are not allowed in general.

Consider the linear program

minimize E;-V:lgj + X7k, (6.28)
S 165 — pij(a)lg; > 0,1 <i < N, a€ Ay(i); gi —hi >0,1<i<m

—3¥ pi(a)gj +hi >0,1<i<m,a€B(); hi—hiy120,1<i<m-1
gi+ N1 [0ij—pij(a)luj > ri(a), 1 <i < N,a € Ag(i); ui—v; > 5, 1 <i <m
hi—Ejyzlpj(a)uj+vi >ta),l1<i<m,a€ B(i);vi—vj+1 >0,1 <i<m-1

The corresponding dual program is (the dual variables corresponding to the
constraints of (6.28) are yjq, Wi, Zia, Ti, Tiay Nis Wig and p;):
maximize ZfilzaeA(i)ri(a)mm + X5 + B Yae i) t(a)wiq (6.29)
S Bacaw 0 — pij(a)yia + E1 65 —E Bae p(i)Pj)a) Zia
+EaeA(j)$ja: =1,1<j<N
0j — 0j-1+ ZaeB(j)Wja — Hj T XaeB(j)%ja =1, 1 < j<m
S Baean)10i — pij(@)]Tia + B4 635 A — B2 Teep)ps(@)wia = 0,
1<j<N
Pj — Pj-1+ Laep()Wja — Aj = 0,1 < j < mspo = pm = 00 = om = 0;
Tiay Yias Zias Wias Nis Hi, pi; 0 > 0 for all 7 and a.
al9
A proof for the next result can be found in Kallenberg [T37].

Theorem 80 (i) The linear programs (6.28) and (6.29) have finite optimal
solutions; (i) If (g, h,u,v) is an optimal solution of program (6.28), then
g is the wvalue vector; (iii) Let (y, u,z,0,x,\,w,p) be an extreme optimal
solution of program (6.29). Define m; and n; by:

m; = min{j > i | qwjq > 0} and n; = min{j > i | y(wjq + 2j4) > 0},
1€ F.

Take a deterministic policy f* such that in state i : T;p;) > 0 if LoTig > 0;
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Wi, £G) > 0 4f BaTia = 0NN > 05 Yip5) > 0 4f BaTia = 0NN = 0AEgYia > 0;
Wn, 1) > 0 4f BaTia = 0A N = 0AEyia = 0 A Bgwnia > 05 2, 53) > 0 4f
YaTia = 0NN = 0A Xe¥iq = 0N Xqwp,q = 0.

Then, f* is well defined and an average optimal policy.

There are many applications which can be formulated as separ lg MDPs.
060

We mention some of them. Replacement problem (cf. Howard’s | auto-

mobile problem).

The decision maker has two options in each state i: either to continue or to
replace the item by another of a certain state j € {1,2,... ,N}. The linear
program to solve this problem as general Markov decision problem contains
2N (N + 1) variables and 2N constraints. The reduced linear programming
formulation has only 6N variables and 2N + 1 constraints.

Inventory problem

Consider the following inventory model. At the end of each period, the
amount ¢ of inventory is observed, where 0 < ¢ < N. The possible actions
are: either to order nothing or to order a — i items, where it +1 < a < N,
with fixed ordering costs K and cost ¢ for each ordered item. We assume
that the delivery is instantaneous and that there is no backlogging. The
linear program to solve this problem as general Markov decision problem has
(N+1)(N+2) variables and 2(N +1) constraints. In the reduced formulation
of this separable problem, we have 8 N —2 variables and 2(2N +1) constraints.
In the case that the optimal policy is an (s, S)-policy the underlying Markov
chain is unichained. Then a linear program with 3(N —1) variables and N +2
constraints suffices.

Totally separable problem

Suppose that the Markov decision problem has the following structure:
E={1,2,... ,N}; A(W) = {1,2,... ,M}, i € E; ri(a) = s; + t(a), (i,a) €
E x A; pij(a) =pj(a), (i,a) EEx Aand j € %%

Examples of this model can be found in Sobel |. Without exploiting the
structure, the linear program has 2N M variables and 2N constraints. It
can be shown that an optimal myopic solution exists, i.e. the action a, is
optimal in state %, where a, is determined by:

Han) + Sapy(a)sy = max {Ha) + Saps(a)sy) (630

81
This result is a special case of the s:ggghastic game studied in Sobel EZ’S]
and Parthasarathy, Tijs and Vrieze ].
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1.6.5 Further subjects

In this chapter the main topics, but not all, of finite MDPs were discussed.
In this section we shortly mention some other aspects of MDPs without
going into detail.

Semi-Markov decision models

In many applications the times between consecutive decision time points are
not identical but random. Such processes are called semi-Markov decision
processes if the time until the next decision depends only on the present
state ¢ and the action a chosen in state i. We assume that the distribution
function F(t) for the random variable 7;;(a), which is the sojourn time until
the next decision point if decision a is chosen when the system is in state ¢
and the transition is into state j, is known for all 4, j € E and a € A(7).
Semi-Markov decision models are also called Markov renewal programs. The
essential results of MDPs can be ener; lelvzrg to semi—lP\ﬁ/l[}]%)%Ps. The se g—cl\/[n[l)P
model was introduced by Jewell [T30], TT31], Howard ], De Canir%'l'%alﬂ7
Schweitzer . Contributions for discounted rew gdﬁﬁa,re e.g. Denard [g
(contraction property), De Ghellinck and Epperww%jjnd Kallenberg glﬂé

(linear programming), VVesse}lsn oand Van Nunen £1inear programming
and policy iteration), Ohno [I75] and Schweitzer value iteration).

In the average reward case 1£here is a very elegant data transformation,
proposed by Schweitzer , which converts a semi-MDP into an equivalent
MDP. Let 7;(a) be the expected time until the next decision epoch if action
a is chosen when the system is in state i. For 0 < 7 < min; , 73(a), let

71(a) = ri/7i(a) ,i€E, ac A()
{ pij(a) = 0i; — [6ij —pij(a)] - 7/7i(a) , 4,5 € E, a € A(1) (6.31)

Then, ¢(7*°) = 5(7700)_, where ¢(7™°) is the average reward per unit time
of the semi-MDP and ¢(7*°) the average reward of the discrete-time MDP
with rewards 7;(a) and transition probabilities p,;(a) as defined in (6.31).

schw78b
Other papers on average reward MDPs are Sc G\;veitrzeesroand Federgruen [2T7
(optimalit &%gtion), Federgruen and Spreen policy iteration), Denesxgdo
lgi (I

and Fox rﬁfsgogramming and policy iteration), Osaki and Mine c! gwg o

and Kallenberg K glinear programming), Schweit T 911&d Federgruen )
and Schweitzer value iteration). In Denardo %§
mality criteria for semi-MDPs are considered.

more sensitive opti-

MDPs with partial information, partial observation and adaptive
control
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In an MDP with partial information the exact state of the process can
not be observed at decision epochs. The only information available about
the state is a subset of the state space to which the state belongs. For-
mally, an MDP has partial information if the state space is partitioned into
subsets F1, Fo, ..., E,, such that at each decision epoch the only available
information is the subset F} to which the state belongs. In the partial in-
formation case not all decision rules are feasible: in all states of a subset
Ex(l < k < m) the same decision has to be chosen. Such decision rule
is called an admissible decision rule. The objective is to find an optimal ad-
missible policy for some optimality criterion with respect to a given initial
distribution IE@ ers on MDPs with part'%lsjcggormation are e.g. S 01@4 wood
and Sci#%k , Hastings and Sadjani k‘gﬂ,—Hordijk and Loeve , and

].
A related model is an MDP with partial observation. In this model there

is probabilistic information about the state. Using Bayes’ rules this model
can be translated in a model with full information but with a continuous

state space, which incorp rates the comple grl}gstory of thoe%1 process. Papers
in this aqa, gre Spndl 12511, rfﬁ,}%‘éﬁi’ Mynaban 001, Altman and

Loeve

Shwartz [5] and [6], Lovejoy , [161] 2, [162],” Rieder ], S 1
and Magkus [220], White 1T and [275], White ITT and Scherer
and , and White .

In adaptive control models the transition probabilities p;;(a) and the rewards
r;i(a) depend on an unknown parameter ¢ from a parameter space ©. About
these parameters increasing information is obtained when observing the on-
going process. At each decision epoch the decision maker must estimate the
true parameter and then adapt the policy to the estimated value. For a sur-
vey on adaptive control we refer to Katehal%%;hapter in tﬁ};%@?ook. Further
literat e ghout this topic is e.g. Kurano |, Hiibner ) {Ifzrrnandez—
Lerma , Cavazos-Cadena and Burnetas and Katehakis |

Vector-valued MDPs

In vector-valued MDPs, when the system is in state ¢ and action a is cho-
sen, there is not a single reward r;(a), but a vector r¥(a), 1 < k < m,
of rewards. For this model, the concept of optimality is not unambigious.
Given an initial distribution 3, a policy R and a utility function u (e.g.
discounted or average expected rewards), there is an m-vector u(f3, R) of re-
turns, where the k-th component u (3, R) corresponds to the rewards r¥(a).
Optimality is defined with respect to a cone C C R™. Such cone defines

a partial ordering in R™ : ¢ >¢c y iff x —y € C. A policy R* is optimal
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if u(8, R*) >¢ u(B, R) for all policies R. In general, there does not exist
an optimal policy. Therefore, we use the concept of an efficient policy. A
policy R* is efficient if there is not a ’better’ policy, i.e. there is not a policy
R with u(8, R) > u(B, R*). If the cone C' = R, then efficient policies are
also called Pareto-optimal policies. For vector-valued MDPs also the term
multi-objective MDPs is used. ur hite82
Papers glll)iout Vector—valjegls%fDPs are e.g. Furakawa ESZA]% White )

. . . . . u
Henig Kallenberg , Duringvic, Lee, Katehakis apd Fi aksl
Ghogh Liu, Ohno and Nakayama , and Wakuta ) )
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