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Chapter 1

Bias Optimality



Abstract

The use of the long-run average reward or the gain as an optimality crite-
rion has received considerable attention in the literature. However, for many
practical models the gain has the undesirable property of being underselec-
tive, that is, there may be several gain optimal policies. After finding the
set of policies that achieve the primary objective of maximizing the long-run
average reward one might search for that which maximizes the “short-run” or
transient reward. This reward, called the bias aids in distinguishing among
multiple gain optimal policies. This chapter focuses on the usefulness of the
bias in distinguishing multiple gain optimal policies, its computation, and
the implicit discounting captured by bias on recurrent states.



1.1 Introduction

The use of the long-run average reward or the gain as an optimality criterion
has received considerable attention in the literature. However, for many prac-
tical models the gain has the undesirable property of being underselective,
that is, there may be several gain optimal policies. Since gain optimality is
only concerned with the long-run behavior of the system there is the possibil-
ity of many gain optimal policies. Often, this leads decision-makers to seek
more sensitive optimality criteria that take into account short-term system
behavior.

Suppose the new manager of a warehouse has decided through market
studies and a bit of analysis that when long-run average cost is the optimality
criterion an “(s, S)” ordering policy is optimal. That is to say that past
demand patterns suggest it is optimal to reorder when the inventory falls
below the level s and that it should be increased to S units when orders are
made. Furthermore, suppose that there are many such limits that achieve
long-run average optimality. With this in mind, the manager has arbitrarily
chosen the long-run average optimal policy (s',S’). In fact, in this example
the manager could choose any ordering policy for any (finite) amount of
time, and then start using any one of the optimal average cost policies and
still achieve the optimal average cost. However, the decision-maker should
be able to discern which of the optimal average cost policies is best from a
management perspective and use that policy for all time. The use of the
transient reward or the bias can assist in making such decisions.

In essence, after finding the set of policies that achieve the primary ob-
jective of maximizing the long-run average reward we search for that which
maximizes the transient reward. This reward, called the bias is the obvious
next step among optimality criterion since it appears as the second term of
the Laurent series expansion of the discount reward function. In very simple
models with a single absorbing state and multiple policies to choose from
on transient states the concept of bias optimality is easy to understand. In
these models all policies are average optimal and the bias optimal policy is
the one which maximizes the expected total reward before reaching the ab-
sorbing state. However, in models in which all states are recurrent or models
in which different policies have different recurrent classes, the meaning of
bias optimality is not as transparent. It is one of our main objectives in this
chapter to provide some insight on this point by developing a “transient”
analysis for recurrent models based on relative value functions. We present



an algorithmic and a probabilistic analysis of bias optimality and motivate
the criterion with numerous examples. The reader of this chapter should
keep the following questions in mind:

e How is bias related to average, total, and discounted rewards?

e How do we compute the bias?

How are bias and gain computation related?

In a particular problem, what intuition is available to identify bias
optimal policies?

e Can we use sample path arguments to identify bias optimal policies?

e How is bias related to the timing of rewards?

What does bias really mean in recurrent models?

1.2 Historical references

Most Markov Decision Process (MDP) research has regarded bias as a theo-
retical concept. It was viewed as one of many optimality criteria that is more
sensitive than long-run average optimality, but its application has received
little attention. In many applications when there are multiple gain optimal
policies there is only one bias optimal policy. Hence, the bias based decision-
make.r need not look any further to deci%el absetg)g%e:zga%_%ﬁ%up of_ gain op.tir?lal
policies. Recently, Haviv and Puterman [4] showed 1n a queueing admission
control model, with one server and a holding cost, that one can distinguish
between two average optimal soh%tlié)ﬂes: %)%razsq)pealing to their bias. Their work
was extended by Lewis, et. al ﬁ_’m—amcapacity, multi-class system with

the DOs &l%]%let)g ioafsﬁnultiple gain optimal policies. Further, Lewis and Puter-
I i showed

man hat in the Haviv-Puterman model, the timing of rewards
impacts bias optimality. Whereas the Haviv-Puterman paper showed that
when rewards are received upon admitting a customer and there are two con-
secutive gain optimal control limits, say L and L+1, only L+1 is bias optimal,
the Lewis-Puterman paper showed that if the rewards are received upon de-

parture, only control limit L is bias optimal. This suggests th t bjgfer_%fligss
implicitly discount rewards received later. Lewis and Puterman l(% present



a new approach to compute the bias directly from the average optimality
equations. This leads to sample path arguments that provide alternative
derivations of the ligve entioped, Tes Its. In addition to the previously
mentioned papers ([4], 9], [I1]), the use of bias to distinguish between gain
optimal policies haE lgnl_%rb:g%‘[%ndiscussed in a short section of an expository

chapter by Veinott . Methods of computing optimal Bi&sl g%r:%ggglsid%g%dezvein nodisc

for the finite state and action space case by Denardo [3] z}ng.viamott 1L7]
rticle:mann

and on countable state and compact action spaces by Mann ; e exten-
sion of bias to general state spaces has not received much at elgﬁ(:)geyi{gsahe
exception of section 10.3 of Hernandez-Lerma and Lasserre /( where under
certain assumptions it is shown to be equivalent to other sensitive optimality
criterion.

Discount and average optimality have been considered extensively in the
literatul‘re, ther'efore we will not provide a complete review h'ere. For A.COUL ira et al
prehensive review refer to them%%f\b/ggkpgﬁeﬁ)q%{{ Arapostathis et. al [I] or
Chapters 8 and 9 of Puterman [I5]. Howard [8] infroduced a policy iteration
algorithm to solve the average reward model in the finite state space case.
This has been considerably exte%(;ifgl.e :Egll“r Xal%l_}l_)g?ﬁles_fne thei dgg(z%%% ;‘ﬁ’faréﬁ{()f
Herndndez-Lerma and Lasserre [6] or Meyn [I4]. Blackwell’s [2] classic paper
showed the existence of stationary optimal policies in the discounted finite
state case and introduced a more sensitive optimality criterion now called
Blackwell optimality. In essence, Blackwell optimal policies are discount op-
timal for all discount rates close to 1. It turns out that Blackwell optimality
implies bias optimality, so that we have the existence of bias optimal policies
in the finite state and action space case as well. There is also a vast lit-
erature Brrlt’sleclilgi;c‘ilggn?g’lcisrglality that indirectly addresses bias optimality (cf.
Veinott [I8]). However, none of these works give an intuitive explanation for
which policy the bias based decision-maker prefers and why.

1.3 Definitions

Assume that both the state space, X, and the action space, A, are finite. We
offer several definitions of the bias of a stationary policy, the first of which
leads to the interpretation of bias as the transient reward. Since the bias and
the gain are so closely related a definition of the gain is included as well.

Definition 1 The long-run average reward or gain of a policy © given that



the system starts in state © € X, denoted w(z,n), is given by

N-1
w(z, ™) = ]\}I_IECI)OEW ( ZT T, Oy, ) ) (1.1)

n=0

where the expectation is conditioned on the state at time zero and taken with
respect to the probability measure generated by w. Furthermore, a policy, 7,
15 called gain optimal if

w(z, ) > w(z,7) for all x € X, for all 7 € 1L

Denote the set of stationary, deterministic (nonrandomized) policies by
D> and a particular element of that set by d*°. We now formalize the
definition of bias.

Definition 2 Suppose the Markov chain generated by a stationary, deter-
manistic policy d*° is aperiodic. The bias of d*° given that the system started
in state x, denoted h(x,d>), is defined to be

o0

h(z,d®) = Y E&[r(zn, d(zn)) — w(zn, d)). (1.2)

n=0

Stmilarly, if the Markov chain generated by d* is periodic, we define the bias
to be

h(z,d®) = lim —ZEd”Z (zy,d(z)) — w(zy, d®)].  (1.3)

N—oo N
t=0

We say that a policy, (d*)*° is bias optimal if it is gain optimal, and in
addition

h(z, (d*)®) > h(x,d™®) for all z € X, for all d* € T1°.

Note that although we have only defined the bias for stationary policies, when
the state and action spaces are finite, this class of policies is large enough to
guarantee existence of a policy that maximizes the transient reward. This

def:biasi

def:bias2

will be discussed further momentarily. erfthermore since we have assu efi ain
that the state space is finite the limit in (II.T) éxists. As we will soon see, ( : [)

allows for an interpretation of bias as the total reward for a slightly modified
process. This requires another definition.

4



Definition 3 For a particular stationary policy d*° and x € X let
e(z,d*) = r(z,d(z))— w(z,d™) (1.4)
be called the excess reward of d*°.

Assume for now that the Markov chain generated by a policy d*° is aperiodic.
We will adopt the convention of using subscripts or superscripts when writing
vectors or matrices corresponding to particular policies. Let v} denote the
vector of total expected rewards over the first NV periods when using the
policy d* so that

N

vy = Y Pilrg (1.5)

t=1

def:biasi
From ( ?2), s
N [e'e}
b = YR lra-Nugt 3 (B =P (19

t=1 t=N+1

where P; = lim,_, % Z?:_()l Pj is the limiting matriz of the Markov ¢ %irr}5 otern
generated by d*. Note wg = P;ry. Since hy is finite, the third term in (I
approaches zero as N — oo. Hence, we may write,

v = Nwg+hg+o(1) (1.7)

where o(1) denotes a vector with components that approach zero as N —
oo. In component notation, we write v} (z) = v"(z,d®). As N becomes
large, vV (z, d*°) approaches a line with slope w(z, d*°) and intercept h(z, d*).
Thus, for the process generated by the stationary policy d* we have an
interpretation of the gain as the asymptotic rate of increase relative to the
horizon length of the total reward and the bias as the intercept or initial
level. .

An alternative interpretation can be realized from (Ei%f)&#%lle defines a
new system in which for each stationary policy, the reward function is re-
placed with the excess reward function. The bias is then the expected (finite)
total reward in the modified system. Alternatively, the bias represents the
expected difference in total reward under policy d*° between two different



initial conditions; when the process begins in state s and when the pro-
cess begins with the state selected according to the probability distribution
defined by the s row of P}. If we assume that the process under d* is
unichain, this initial distribution is the stationary distribution of the chain.
When the process is multichain, the distributions specified by the rows of P}
may vary with the initial state. Under either scenario, it is well-known that
the convergence to steady state occurs exponentially fast so that we can view
bias as the total transient reward.

The interpretation of the bias as the total reward while correct, also has
its limitations and can be misleading. In economic applications financial
rewards received earlier, rather than later, are more valuable. In fact, earlier
rewards translate into decision-making flexibility regardless of the volatility
of the industry. Consider the discounted reward function where S is the
discount rate,

v(z,m B) = EI

T

> B (@, an)] : (1.8)

n=0
Definition 4 We say that a policy 7 is n-discount optimal for some
integer n > —1 if

lirgTilnf(l - B) "w(z, 7", ) —v(z,m,B8)] > 0 (1.9)

for all x € X and m € 11.

Since the state and action space are finite, we know that there exists sta-

tionary, determinist cdngéioiﬁgollll%lt optimal policies for all n (see Theorem
5 ). Fu th

10.1.5 of Puterman . rthermore, for stationary policies, 0—discount
optimal policies also maximize the bias among ginbggﬁi:n%%l policies so that
the two criterion are equivalent (see Puterman %’ﬁﬁ“’h_egrfem 10.1.6). Thus,
it suffices to find a policy 7* € II° such that

1ir[131Tilnf[v(ac, 7, 8)—v(z,7,B)] > 0 (1.10)
for all z € X and 7 € II°. With this close relationship to discounting, it
stands to reason that the bias retains some of the attributes of discounting.
We will elaborate more on this subject later in the chapter.

The next definition that we present does not add intuition to the meaning
of the bias. However, it does hint at the similarities between the computation

6
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of the gain and the bias. Let Hp = (I — P+ P*)"!(I — P*) be the deviation
matrix of P.

def :bias_alt] Definition 5 (Alternative definition of the bias) The bias of a stationary,

policy d*° is
h(z,d*) = (Hp,rq)(z) (1.11)

. . . L. def :bias
If w £xpand (z{ﬁ P;+ P;)~! in a power series the equivalence of Definitions 2
and % becomes clear. Recall that if P is the stationary distribution of the
Markov chain generated by the policy d*° the gain may be computed

Weo = Pjry. (1.12) ‘compute:gain

Hence, the deviation matrix replaces the stationary distribution when com-
puting the bias. This begs the question, can the bias be computed using
some of the methods available in the vast literature on the long-run average
reward problem? This is the subject of the next section.

A final interpretation of bias is available as the second term in the Laurent

series expansion g)g_ t%l_g discount value function. The following appears in
Puterman [15 , Theorem 8.2.3. Let p= (1 — 8)/B be the interest rate.

Theorem 6 Assume that S is finite. Let v denote the nonzero eigenvalue
of I — Py with the smallest modulus. Then, for 0 < p < |v|,

> p”yz] (1.13)

n=-—1

v(d>,B) = (1+4p)

where y*, = wa, y§ = ha, and yd = (=1)"Hprq.

As was alluded to earlier, the bias appears as the second term in the Laurent
series expansion of the total expected discounted reward function. The above
observations lead to interpretations of the bias of a stationary policy as:

1. the intercept of the asymptotic total reward process (in the aperiodic
case),

2. the total difference between the process beginning in a particular state
and that which begins in stationarity,

3. the second term of the Laurent series expansion

We now turn to methods for computing the bias.

7



tion:compute_bias‘

1.4 Computing the Bias from the Evaluation
Equations

In most practical examples, computation of the bias directly from the above
definitions is not feasible. We discuss some practical methods for the com-
putation of the bias of a fixed stationary policy d*°. These methods also lead
to an intuitive understanding of bias. The gain and the bias of d* may be
computed by solving the following system of linear equations:

w = Pyw, (1.14)
h:rd—w-l—Pdh, (115)

and
k=—h+ Pk (1.16)

%r Vectiors e,q fmd k. Specifically, the gain and the bias of d*° satisfy
I4) an }gll éb and there exists some vector £ which together with the bias
satlsﬁes (IT. o see this, note that if we multiply (II. y P; we have

Pih = Pjrq— Pjw+ Pjh,
thus,
Piw = Pjry. (1.17)

aineqil
However, by repeated application of (i.llZIn)

1

w = N[w+Pdw+---+PéV_1w].

Taking limits as N — oo we have w = P} Ws Corlnblmggltgus with ( 7)
yields w = Prrg. To show that hq satisfies (L. lb), aﬁd Ll 16) With w = Wy,

thitd
multiply (l [6) éy P; to get P;h = 0. Hence, from (|

h—Pdh—f—P;h = Tg— Wq
= Td—P;’f‘d.

thirdeq

[ainent



Since I — P;+ Pj is invertible we get h = (I — Py+ P;) (I — P;)rq = Hp,rq
as desired. Moreover, t%; crain1 and1 the biPS are the unique vectors with this
afheq biaseq

property. We re%gig%q '%ge%?d (ll{t%{

) raase;che average evaluation equations
(AEE) and to (I.14), (II.I5), anﬂ%gﬁégi as the bias evaluation equations
(BEE). If we restrict attention to (

.I4) and (Il.lbje%lnly, the gain is uniquely
determined and the bias is determined up to m additive constants, where m
is the number of closed, recurrent classes for the Markov chain generated by
d*. Furthermore, each of the equations can be written in the form

(I — Pyu =. (1.18)

It would be nice if I — P; was invertible. Of course it is not. However, Hp, is
often called the Drazen inverse of Py (denoted (I — P;)#) and exhibits many
desirable properties of matrix inverses. Namely,

H} Hp H}, = H} | HpH} = H} Hp,, and HpH} Hp, = Hp, (1.19)

The Drazen inverse is used to derive the chain structure of a Markov clﬁFaJn.book_ -

For more information on the Drazen inverse see Appendix A of Puterman )
In the following example we compute the bias using the BEE and the Drazen
inverse of I — P,.

Example 1

Let X = {z1, 2,23} and suppose the Markov chain generated by the policy
d* has transition structure

[O 1 O-I
P, = 00 1]. (1.20)
[ 10 OJ
It is not hard to show that
1/3 1/3 1/3
P;=1|1/3 1/3 1/3 (1.21)
1/3 1/3 1/3
and
1/3 0 -1/3
Hp, = -1/3 1/3 0 (1.22)
0 -1/3 1/3



If v, = {1,—1,0} we get,

o

Wq =

and

1/3
ha= | —2/3
1/3

Furthermore, the BEE are satisfied since

1/3 = 1-0-2/3
—2/3 = —1-0+1/3
1/3 = 0—0+1/3.

and
k(xe) = 2/3+ k(x3)
k(zs) = —1/3+k(z1)

has the solution, k(z1) = 0, k(z2) = 1/3, and k(z3) = —1/3. Similar tq the
bias and the AEE, the vector k is not the unique vector that satisfies (I.16).
Since the model consists of one recurrent class, (k + cl, hy) is also a solution
to (chfl’()_)_f%r any constant ¢, where 1 denotes a vector with all components
equal to 1. As we will see, a similar result can be used to simplify the
computation of the bias of Markov decision processes.

1.4.1 Bias and total reward

In this section we describe some models in which the bias is equivalent to the
expected total reward. This is important because the expected total reward
criterion has received considerable attention in the reinforcement learning
literature. This also gives us insight for alternative methods for computing
the bias sample pathwise. Let a™ = max{a,0} be the positive part and

10



a~ = max{—a,0} be the negative part of a real number a. Suppose we
define

vy(mx) = ]E;{ZT‘L(a:n,yn)}, (1.23)
n=0

and

v_(mz) = EI {Zr‘(xn,yn)}. (1.24)
n=0
del del
If either ( OZSlzioore { eﬁﬁiolseﬁnite for all x € X, then hfno%’ﬁ%’d Un ([%XlStS dﬁ

meg _mo
both are ﬁnlte then 80 is limy_,0o vY. Furthermore, if (|1 23) and (II.24) are

finite for all 7 EheE =0 for al dﬂbeH see Proposition 10.4.1, part
(c) of Puterman é ). Usmcr Definition 2, it s ands to reason that if the total

reward is finite, the two criterion should COlIlClde. This is precisely the case.

prop:zero_gain‘ Proposition 7 Let d*° € D* and suppose vy (d*®,z) and v_(d*™, z) are fi-

nite for all ¥ € X, then imy_y00 v} = Vgoo = hgoo .

The importance of this result is that in models with expected total reward
criterion whenever v, and v_ are finite, methods developed for determining
bias optimal policies apply to compute optimal policies. This avoids many of
the complexities that have developed in the theory of models with expected

total reward criterion; e ec&lﬂ ‘t}%l% need to distinguish positive and negative
models. See Puterman E% , especially Chapter 7, for more on this issue.

1.4.2 Unichain Markov decision processes

Given the previous discussion, one might conjecture that if there is but one
recurrent class, we could replace the reward with the excess reward function
and compute the bias of the transient states as the total reward until reaching
the recurrent class. After all, this has the effect of treating the recurrent class
as a single state with zero reward and confining the transient analysis to the
transient states. The following example shows that this is not the case.

entry| Example 2

Let X = {1,2,3}. Suppose A4; = {a,b}, Ay = {a} and A3 = {a}, such
that P(2|1,a) = P(3|1,b) = 1 and P(3|2,a) = P(2|3,a) = 1. Furthermore,

11



(a,1)

Figure 1.1: A deterministic example with finite gain, where the bias differs

from the total reward until absorption into a recurrent class.

assume that r(1,a) = r(1,b) = r(2,a) = 1 while 7(3,a) = 0. See Figure i
v chooses action a in state 1 and ¢ chooses action b, it is not hard to show
that h, = {3/4,1/4,—1,4} and h; = {1/4,1/4,—1/4}. Hence, despite the
fact that the total rewards until reaching the recurrent class for both policies
are the same, the biases differ. This hints at a point that we make later in
our discussion; the bias based decision-maker distinguishes when during a
recurrent cycle rewards are received.

Except where noted otherwise, assume for now that the process generated
by any stationary policy is unichain; that is, the process has a single ergodic
class and perhaps some transient states. Hence, the following hold

1. w is constant which we express as wl.

i 1 bi 1
2. (i.allzine) 15 redundant and (I.lal 5) becomes
h =rq—wl+ Ph. (1.25)

. biaseq2 . .
3. If (w, h) satisfies (II.25), w = wg~ and h is unique up to a constant.

bi 2
4. If (w, K77 satisfies (l.12a55e), and b (a) = 0, " is unique and is
called the relative value function of d* at a.

12



bi 2
5. (wgeo, hgeo ) is the unique solution of (I.IQaBSe) and the additional condition
P*h = 0.

With these observations in mifld we Alave the following definition which was
cle:bias

originally introduced in II(E ;

Definition 8 Let d*° € D% be a fized stationary policy for which Py 1s
unichain. For each solution to the average evaluation equations (wq,h), the
constant difference between h and the bias of d®, hg~, denoted cq(h), is called
the bias constant associated with h.

We now show how to use an arbitrary solution (w, h) of the AEE to compute
the bias constant and therefore the bias. Suppose « is a recurrent state for
the Markov chain generated by d*°. Denote the first time the process enters
the state a by 7,. That is,

To = min{n > 0|X, = a}. (1.26)
Let
hi(s) = Ej (TQ__IWXR, Y,) - wd]) : (1.27)
Note -
Re(s) = ra(s,d(s)) —wg + E (7:2_11[T‘(Xn, Y,) — wy]| Xo = s)

= r4(s,d(s)) — wq + (Pyhl)(s).

Hence, (wq, hl) satisfies (H)%Zagj%%r policy d®. Furthermore, hd(a) = 0. From
point 4 above, hd is the relative value function of the plolic¥ goo at the ref-
erence state a; hl = h:lv(a). In addition, from (e. ) we in erpretate the
relative value function as the expected total excess reward until the system
reaches the recurrent state c.

Since for a fixed policy d*° the relative value functions and the bias satisfy
the AEE they must differ by a constant. Choose positive recurrent state «
and let cg(hy") be the bias constant associated with the relative value

function. Then

ha = B+ cg(hh 1, (1.28)

13
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ex:main

and
Pihg = Pih"® 4 Pieg(h7 N1, (1.29)
However, since Pjhg =0,

PR @ = —Preg(h )1 (1.30)
= —ca(hN)1, (1.31)

where the last equality follows from the fact that the unichain assumption
impli s that the rows of P; are equal. Making the appropriate substitution
into (1.58 yields the following proposition.

Proposition 9 Suppose a finite state and action space Markov decision pro-
cess 1s unichain. Let d* be a stationary(p)olicy. Denote the relative value
ro(o

function of d at a recurrent state o by hy . Let cq = (P;hzv(a))(s) for any
state s € X. Then the bias of d is given by hy = h:lv(a) — cql.

Remark 10 The above result holds in the countable state case provided o is
positive recurrent.

def :bias_alt
Hence, while in Definition %Wpace the stationary distribution in the
computation of the gain by the deviation matrix to compute the bias, we
can instead replace the reward function in w = Pjry4, by the relative value
function to compute the bias, by computing P;h}’. Furthermore, applying
a classic result in renewal theory we have,

CES S by (@)

ha(s) = hy"(s) e

. (1.32)

This expression allows us to compute the bias of a stationary policy sample
pathwise. The following simple example illustrates each of these methods for
computing bias.

Example 3

Suppose X= {Oa 1a 2: 3}5 AO - {aa ba C}, Al - {CL}, AZ = {b}’ and A3 - {C},
r(0,a) = r(2,b) = 1, r(0,b) = r(1,a) = —1, r(0,c) = r(3,¢) = 0 and
p(1]0,a) = p(3]0,¢) = p(2|0,b) = p(3[1,a) = p(3]2,0) = p(0|3,c) = 1. Let
0 be the decision rule that chooses action a in state zero, 7 be the decision

14
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(b,-1) (b,2)

Figure 1.2: A deterministic example with average reward 0.

rule that selects action ¢ and @ be that which chooses action b. Clearly,
this model is unichain and ws = w, = wy = 0. Suppose we arbitrarily
choose {0} as the reference state (so k7' (0) = 0 for each d). Since state
zero is the only state that requires a decision, the relative value function
at « is the same for all po’}gie_sdeg%%ce, we suppress the dependence on d.
By examination of Figure [[:Z we have A™(® (1) = —1, h™®)(2) = 1, and
R™(®)(3) = 0. The stationary distributions, 3 say, are By ={1/2,0,0,1/2},
B ={1/3,1/3,0,1/3}, and B = {1/3,0,1/3,1/3}. The bias constants are
—ﬁj;h”’(a) =0, —B;h™(® =1/3, and —B;‘ph"“(a) = —1/3. Hence, we have

0 1/3 -1/3
! | —2/3 | —4/3
h, = 1 , hs = 43 | and hy = 2/3
0 1/3 -1/3

Note that if we neglect state 2, the transition structure and rewards of the
Markov reward process generated by 6°° are identical to that discussed in

15



prop:sch_fed‘

Ir
Example hnd thus the computed bias vectors (without state 2) are the
same. We will return to this example throughout the rest of this section.

1.4.3 The Average Optimality Equation (Unichain Case)

The definition of bias optimality requires that one know the set of gain opti-
mal policies a prior%’.o t’g]lﬁs is not usually the case, except in the total reward
models of Section T.4.T. In this section we review conditions for gain op-
timality which lead to algorithms for computing bias optimal policies in a
similar way to computing gain optimal policies.

Since the state and action space are finite, computation of average optimal
policies reduces to solving the average optimality equations (AOE)

h = IglEaDX{Td — wl + Pyh} (1.33)

for w and h. Let G(h) be the set of policies that achieve the maximum
ao0e
in (I.33). That is,

d € argmazgep{ra + Pah} = G(h). (1.34)

aose

We refer to (I.34) as the average optimality selection equations (AOSE). To
begin our analysis of the average optimality equ%trit?ln&,egvsecﬁ(_)%lgéder a special
case of a result of Schweitzer and Federgruen [I6]. In essence, the result
states that solutions of the AOE must differ by a constant just as they do
for the AEE.

Proposition 11 Suppose all stationary policies are unichain and let (w1, hy)
and (wg, hy) be solutions to the AOE. Then wy = wy and

h1 = hz + cl (135)
for some constant c. In particular, if hy = h* is the optimal bias, then

We refer to ¢*(hy) as the optimal bias constant associated with hy. Note
that if for (6*)*, hg = h*, the optimal bias constant is the bias constant for
hs~ and h*. Further note that this result does not require that X be finite,

only that the gain is constant. A nice discussion of the average optima gtgok:her_las

equations on Borel spaces can be found in Hernandez-Lerma and Laserre [5].
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It is easy to see that all three policies considered in Example i3 safisfy
the AOSE and thau‘i1 tpe bias of each differs by a constant as indicated by

o rop:sch_fed
Proposition 1,

We now return to the question of whether there are decision rules that
are gain optimal, but do not satisfy the AOSE. When all policies generate
irreducible Markov chains it is known that the average o tirg%ﬁigybggg%tions
are indeed necessary and sufficient (see for Lewis, et. al 9 J. The following
example shows that this need not be the case in unichain models.

Example 4

Suppose X = {1,2}, A; = {a,b} and Ay = {c}, r(1,a) = 2, r(1,b) = 3
r(2,¢) = 1 and p(2|1,a) = p(2|1,b) = p(2]|2,¢) = 1. Let § be the decision
rule that chooses action a in state 1 and let v be the decision rule that
chooses action b in state 1. This model is unichain and ws = w, = 1,

h@(1) = 1, P (1) = 2, B (2) = h5"P(2) = 0. Since h"® and hy'®

op:sch_fed .,

do not differ by a constant, it follows from Proposition IIT, that (ws, hs )
and (w,, hff@)) cannot both satisfy the average optimality equations, even
though both policies are average optimal. "

In the sequel we show that our previous observations lead to simple sam-
ple path arguments as well as algorithmic solution methods for finding the
optimal bias.

1.5 The Bias Optimality Equation

Suppose in addition to satisfying the AOE, there exists a vector k, such that
h satisfies

k= dren(?(%){—h—i-Pdk} (1.37)
and ¢ satisfies
6 € argmazaccn){Pak} (1.38)

The 05;’0 is bias optimal and A is the optimal bias. We refer to the comi’%iglseéi
set (;.37) and the AOE as the bias optimality equations (BOE) and to (1.38)
as the bias optimality selection equations (BOSE).
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rewrite

iteration

We can take advantage of the result of Proposition E‘Ir%'s_c(%fl%i) and
(w, hy) are so]ﬁ]u_etégns to the AOE then hy and h, differ by a constant. Upon
substituting (1.36) into (I.37) for the relative value with reference state «
when (w, h™*(®) satisfies the AOE, we have the following important result.

Theorem 12 Suppose b is a relative value function with r erence state
o such that (w*, h™®) is a solution to the AOE. The BOE (1.37) can be
rewritten

k= maxdec(hm(a)){—h”(a) —cl + Pik}. (1.39)

. boe o
Further, suppose (k*,c*) satisfies (%.39). Then k* is unique up to a constant
and ¢* is the optimal bias constant associated with h™(®).

To see that t e ggcond part of the theorem follows directly gro%m the first,
observe that (I.39) has exactly the same form as the AOE (h_33) That is
to say, setting r4 = —h""(® and w = —cl we have again the AOE. Thus, in
a unichain model, the result is immediate from existing theory on the AOE.
Furthermore, all solution eg%lgds and theory for the AOE apply directly
in this case. In particular, (i.39) can be solved by the same value iteration
or policy iteration algorithms used to find gain optimal poli%i_%s)gin unichain
Markov Decision Processes, however, now we base them on (II.39) .

Example 5

X:main

Consider the model of Example E. Suppose we begin policy iteration with
policy p = y*. Recall (h™@) = {0,—1,1,0}. We must find (co, ko) to
satisfy

ko = —h™O — ¢l + Pk. (1.40)

One can easily show that k{ = {0,1,—1,0} and ¢y = 0 is a solution to this
system. To choose the next policy, we find a policy, p; such that

p1 € argmaz{—h""" + P k}. (1.41)
Since we need only make a decision in state 0, note that

p1(0) = argmazx{0+1,0,0—1} (1.42)
a. (1.43)
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Thus, p; = d. For the second iteration of the algorithm we must solve,

k1(0) = 0—c+ ki (1),
k(1) = 1—c+k(3),
k1(2) = —1—c+k(3),
( )-

k1(3) = 0—c+ k(0

One can verify that k; = {0,1/3,—5/3,—1/3} and ¢ = 1/3 satisfies the above
equations. Furthermore, no further improvements can be made. Notice that
the bias of p; is 1/3 higher than the relative value function. That is, ¢ Xi:smta}ig
bias constant of p;. This agrees with the solution found in Example l3 n

Alternatively, as in the AEE, if (wgq, h) satisfy the AOE and
P;h = 0 (1.44)

where P is the stationary distribution of the chain generated by d, then h
is the optimal bias. Neglecting the trivial case r4 = 0 for all d € D, it is
interesting to note that since P; is positive on the recurrent class generated
by d, the optimal bias must have both positive and negative elements. We
will show in the examples that follow that we can taker%dygntage of this fact.
Suppose that d* is bias optimal. From Proposition

Wt = B — (Ppprve)), (1.45)

In essence, solving for the policy with maximum bias reduces to finding the
policy that achieves the maximum bias constant, say c¢*. That is,

¢l = ma —pPrpr@Yy — — min {PrR@ 1.46
deG(hrﬁa)){ " } deG(W(Q)){ d b (1.46)

where A™(® is any relative value function of a gain optimal policy. Thus,
under the assumption that there exists a state « that is recurrent for all
decision rules in GG (h”’(a)) we can alternatively compute the optimal bias by
solving

¢ = — min (E ZTa_th(a (X, Ao, ))> (1.47)

deG(hrv(@)) ]Ei Ta

where the expectation is taken with respect to the probability transition
function conditioned on starting in state . Since we are minimizing, h"*(®
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can be interpreted as a cost function. Thus, finding a bias optimal policy
corresponds to a minimum average cost problem. Furthermore, one might
notice that given a relative value function we can solve for the gain, by noting
Wq = Tq + Pdhzv(a) — h;v(a). That is, the relative value function can be used
to obtain both the gain and the bias. The crux of the analysis then for
finding gain and bias, lies in understanding the relative value functions. We
emphasize the importance of these observations in the following examples.
Since we will often be interested in the difference in the cost starting in
states s and s + 1, define for a function b on N, Ab(s) = b(s + 1) — b(s).

Example 6

Consider an admission controlled M/M/1/k queueing system with Poisson
arrival rate A and exponential service rate pu. Assume that a holding cost is
accrued at rate f(s) while there are s customers in the system. If admitted
the job enters the queue and the decision-maker immediately receives reward
R. Rejected customers are lost. Assume that the cost is convex and increas-
ing in s and f(0) = 0. Furthermore, assume that we discretize the model by
applying the standard uniformization technique of Lippmanjﬁ%%hout
loss of generality let the uniformization constant A\ 4+ p = 1. Since rejecting
all customers yields w = 0, we assume customers are accepted irllbsfaasteo 2010 ut
This example was previously considered in Haviv and Puterman [4] where 1t
was shown algebraically that bias distinguishes between gain optimal policies.

For this model, the average optimality equations are

h(s) = max{AR—w — f(s) + Ma(s+ 1)+ ph((s —1)"),
—w — f(s) + Ah(s) + ph((s — 1))} (1.48)

Consider the set of policies T that accept customers until the number of
customers in the system reaches some control limit L > 0 and rejects cus-
tomers for all s > L. Denote the stationary policy that uses control limit L
by L. It is known that there exists a Blackwell optimal policy within this
set. The following lemma asserts the intuitive idea that it is better to start
with fewer customers in the system. We will use this result in the sample
path arguments to follow.

Lemma 13 Suppose (w*, h) satisfy the optimality equations. For s € S,
Ah(s) < 0.
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Figure 1.3: We would like to compare control limits L and L + 1.

. pias_opt:hav_put . . L.
Haviv and Puterman [4] show that if there are two gain optimal control limits,

only the higher one is bias optimal. Let L and L + 1 be gain optimal control
limits. Notice that since L. 4+ 1 accepts customers in state L and control limit
L rejects them, the two policies have different recurrent classes. The gain
optimality equations are

AR — g+ Ah(s + 1) + uh(s) s=0
h(s) = AR—g— f(s)+ Ah(s+ 1)+ ph(s—1) 0<s<L (1.49)
—g — f(s) + Ah(s) + ph(s — 1) s>1L

At s = L we have equality in the optimality equations since both L and
L + 1 are gain optimal. Furthermore, note that state L is recurrent for
both policies. Let c; be the bias constant for control limit L. Similarly for
cr+1- Choose o = L as the reference state. Suppose we follow the sample
paths of two processes on the same probability space both starting in state
L. Process 1 uses control limit L and process 2 uses control limit L + 1.
It is easy to see if the first event is a departure, both processes move to
state L — 1. Since the policies are the same on all states below L, the costs
accrued (measured by A™(®) until the retur Jo state L are the same. This is
denoted by the lighter dashed line of Figure [I.5. Further, if the first event is
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an arrival, Process 1 rejects arriving customers and thus, immediately returns
to L accruing cost h™(® (L) = 0 on the cycle. Process 2 accepts the arriving
customer, accrues cost h™(® (L), and moves to state L + 1. The process then
accrues cost h"(® (L 4 1) a geometric number of times (with parameter p)
for false arrivals in the uniformization (recall A + = }2 before returning to
state L. This is denoted by the bold line in Figure l5 Hence, while the total
cost before returning to state L is the same for each policy when a departure
is the first event, when an arrival occurs first, process 2 accrues h”’(a)(L +1)
for each extra decision epoch in the cycle. Let p = /\MT;L be the probability
that the first event is a departure, ¢t be the total expected number of decision
epochs on the cycle given that the first event is a departure, and let M be
the total expected cost accrued on that cycle. We have

oy Eol(ra) (Bg Ym0 (Xn, d(Xn)))
‘L Byt (1a) (B Yoro' hr(@)(Xy, d(Xa)))
EL(ra) (pM + (1= p)(3 + DA™ (L + 1)
E, (7o) (pM + (1 —p) - 0)
(ot + (1= p)) (PM + (1= p)(2 + DA (L + 1))
(pt+ (1 =p)(; +1))pM
(pt+ (1= p)) (PM + (1= p)(2 + DA (L + 1))
(pt + (1 = p))pM + (1 = p) ;pM
Recall, that we have assumed that A+ p =1 so p/pu = 1. Thus,
CL1 Eq (a)pM + (1= p) Eq(7a) (5 + DA™ (L + 1)

_ 1.50
cr EX(ra)pM + (1 — p)M (50
fracti
Using (I.ISaIC)i lvzg 1need only compare (Ta)(% +1)A™@(L+1) and M. From
op:dae,
Lemma r, L+ 1) < h(@)(s) for all s < L. Since M is the total

expected cost given that the first event is a departure, we know M con-
sists only of costs as measured by h™(®(s) for s < L. Hence, we have
EX(1,)h™(® (L + 1) < M; each extra decision epoch in process 2 can only
stand to decrease the average cost. That is to say, c;+1 > cr, and the bias
of control limit L + 1 is larger than that of L. "

The previous example shows that by an astute choice of the reference
state a simple sample path argument can be used to show the usefulness of
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bias in distinguishing between gain optimal policies. This analysis begs the
question, why is the higher control limit preferred? In essence, the choice the
decision-maker must make is whether to add more waiting space. If optimal
gain is the primary objective, it is clear that if adding this server reduces
the gain, it should not be added. On the other hand, if adding the waiting
space, does not change the gain, but decreases the average cost as measured
by A" the decision-maker would prefer to add the space. The question of
why the relative value functions measure cost remains open. However, we can
make the obseryation that with L as the reference state (so R @ (L) = 0),
Lemma [T3 implies that A" (s) < 0 for s > L while h™((s) > 0 for s < L.
Thus, the average cost is decreased by time spent with more than L customers
in the system. The bias based decision-maker prefers negative relative value
functions. ' ex:n/m/1/k

Suppose now we consider Example 6 except that rewards are received
upon service completion insti?ai)%of upon acceptance 1teO:bt1lées System. Using
the bias optimality equation (I.37), the authors [T1] showed that if there are
two gain optimal control limits, it is in fact the lower control limit that is
bias optimal. By formulating this problem as in the previous example it is
not difficult to show that with L as the reference state, h™(®(s) > 0 for
s > L while h™(® O f}) s < L. Using precisely the same sample path
argument as Example . we get that the lower control limit is bias optimal.

This leads us to two conclusions. First, the intuitive idea of the bias as
the total reward is quite restrictive since in total reward models the decision-
maker is indifferent to when rewards are received. And, secondly the inter-
pretation of the bias as an average cost problem is not sufficient either, since
discounting is usually lost in the long-run analysis. In fact, some of the prop-

erties of discounting are retaiﬁedo aéter the limit is taken in the definition of
eq:0-discount,

0—discount optimality (see ( II. . This Iine of discussion is pursued next.

1.5.1 Bias and Implicit Discounting

Implicit discounting in bias allows us to explain why bias prefers control limit
Lor L —I—e]}_(.:m];ELI t/lyote that the decision to accept or reject a customer in
Example % for fée long-run average reward based decision-maker is in essence
based on whether or not the reward offered is higher than the cost of having
the customer in the system. Thus, when the decision-maker is indifferent,
the rewards and costs must balance. When rewards are received at arrivals
the reward is received before the cost of having the customer in the system
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is accrued. On the other hand, when rewards are received upon service
completion the decision-maker must accrue the cost of having a customer in
the system before receiving the reward. The decision-maker only chooses to
increase the amount of waiting space if the reward is received before the cost
and the discounting is apparent. The following theorem explains how the
bias based decision-maker discounts future rewards.

prop:discount‘ Theorem 14 Suppose that o is a gaositive recurrent state for a fixed policy
d® € D™. Further suppose that h;’ ) s the relative value function of d with

W () = 0. Let cq be the bias constant associated with h"® . Then

CEL Y (n+ Dr(Xa) — wd]

«w = R 151) [eardiscont]
d Hgi'ra ( ) q

So

d a—1

‘ a E¢ T, )
a 't
eq:discount
The bias based decision-maker attempts to maximize ( B1j. The factor
“n 4+ 17 discounts the excess rewards received later in the cycle. Thus, if r
exceeds w it is better if it occurs earlier in the cycle when it is multiplied by
a smaller factor.

Example 7

eq:discount

ex:main
Again return to Example b and compute the bias constant using (I

{[r(1) —w]+[r(3) — w]} +{[r(3) — wl]}
3
{[r(0) — w] 4+ 2[r(1) — w] + 3[r(3) — w]}
3
= {1+2-(-1)+3-(0)}/3=1/3.

Similarly,

¢y = —(—1+2-(1)+3-(0)/3=—-1/3
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Notice that when the excess reward is received earlier it is worth more (—1
compared to —2), and when the cost is received earlier, it is more costly than
later (1 compared to 2 - 1). Suppose we write “d; > dy” if the bias based
decision-maker prefers d; to dy. In this example, § > ~ since the decision-
maker chooses to receive the immediate reward and accrue the later cost.
Similarly, ¢/ > +; the decision-maker prefers not to accrue the immediate
cost, despite the fact that there is a reward to be received later. Finally,
comparing 1 to ¢ yields the following relation § > ¢ > ~.

Precisely the same logic can be applied to the prior queueing example.
When the reward is received upon acceptance, the decison-maker is willing
to accept the arriving customer and L + 1 > L. On the other hand, when
the reward is received upon service completion and therefore discounted,
the decision-maker chooses not to accept the customer and the relation is
reversed.

1.6 Conclusions and future research

When we began our study of bias we presented a sequence of questions.
The relationship of bias to the total reward problem was considered on two
levels. First, if there is but one recurrent state, on which the reward is zero,
the gain is clearly zero, and the bias is equivalent to the total reward until
entering the recurrent state. Suppose now that there is a single recurrent
class, but there is more than one state in this class. One might immediately
conjecture that we need only subtract the gain from each of the rewards
on the transient states, and again compute the total reward until entering
the recurrent class. While this leads to a function which satisfies the AEE,
the relative value function, it does not equal the bias. The reason this is
so, is that the bias includes implicit discounting. Hence, instead of simply
computing total reward, we must consider when these rewards are received.

Computationally, we have shown that in the unichain case the bias can be
computed by any of the methods used to compute the gain. By noticing that
the form of the BOE is exactly the same as that of the AOE, we need not
introduce any new methods for computation. This also leads to sample path
methods which illuminate the fact that the bias based decision-maker prefers
policies that spend more time in states with negative relative values on the
recurrent class. The interpretation of this fact is open. However, since this
also leads to implicit discounting we may shed a little light on the subject.
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Since the relative value function is zero on the chosen reference state, if a
state entered after leaving the reference state has a negative relative value,
an equivalent, positive excess reward must have previously been received in
order to balance the rewards and the gain on the cycle. On the other hand,
if a state entered before returning to the reference state has positive relative
value, a reward less than the gain must be earned prior to entering that state.
This is the crucial point of our analysis of implicit discounting and implies
that higher rewards received earlier in the cycle are preferred.

We have restricted ourselves to the unichain finite state and action space
case. We feel that it is clear that there is a need to extend each of these ideas
to multichain, countable, and general state space cases. It is also important
to notice that the discounting bias captures, is only captured on the recurrent
states. For discounting on the transient states, one would need to use the
next term in the Laurent series expansion. Why this is so also remains
unanswered.
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