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Abstract

In this paper a discrete-time Markovian model for a financial market is chosen. The
fundamental theorem of asset pricing relates the existence of a martingale measure to the
no-arbitrage condition. It is explained how to prove the theorem by stochastic dynamic
programming via portfolio optimization. The approach singles out certain martingale
measures with additional interesting properties. Furthermore, it is shown how to use
dynamic programming to study the smallest initial wealth zx that allows for super-hedging
a contingent claim by some dynamic portfolio. There, a joint property of the set of policies
in a Markov decision model and the set of martingale measures is exploited. The approach
extends to dynamic options which are introduced here and are generalizations of American
options.

1 Introduction and Summary

In discrete time n = 0,1,..., N a financial market is studied which is free of arbitrage
opportunities but incomplete. In the market 1+ d assets can be traded. One of them with
price process {B,, 0 < n < N} is called the bond or savings account and is assumed to
be nonrisky. The other d assets are called stocks and are described by the d-dimensional
price process {Sp,, 0 < n < N}. An investor is considered whose attitude towards risk
is specified in terms of a utility function U. A dynamic portfolio is specified by a policy
¢. The investor’s objective is to maximize the expected utility of the discounted terminal
wealth X;{’, (z) when starting with an initial wealth z .

Utility optimization is now a classical subject (Bertsekas [1], Hakansson [16]). The present
paper is intended as a bridge between Markov decision processes (MDPs) and modern
concepts of finance. It is assumed the reader knows some basic facts about MDPs, but
knowledge about Mathematical Finance is not needed. In particular, we here are interested
in using the no-arbitrage condition for the construction of a particular martingale measure
by use of the optimal policy ¢*. A condition close to the no-arbitrage condition was
already used by Hakansson [16]. Martingale measures are used for option pricing. The
paper makes use of an approach how to base option pricing on the optimal solution ¢x* to
the portfolio optimization problem. This approach is also explained by Davis [4].

In a one-period model, the construction of a martingale measure by use of an optimization
problem is easily explained. Let us assume d = 1. If the action (portfolio) a € R is chosen
then the discounted terminal wealth of the portfolio has the form x + a - R where R can
be interpreted as a return. If a = ax is optimal then one has OE[U(z + a - R)]/0a =0 =
E[U'(z +a- R) - R] for a = ax. Upon defining a new measure Q by dQ = const - U'(z +
a*-R)dP , one obtains [ R d@Q = Eg[R] = 0 which is the martingale property. Since the
martingale property is a local one both in time and in space, martingale measures can be
constructed by local optimization problems (see Rogers 1994) whereas we will apply global
(dynamic) optimization. This has the advantage that the resulting martingale measures
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have interesting interpretations. The case where the utility function U is only defined for
positive values is treated in [38], [39].

A second interesting problem concerns values x for the initial wealth that allow for super-
hedging discounted contingent claims X by some policy ¢, i.e. X]d\’,(ac) > X. The smallest
value z* coincides with the maximal expectation of X under (equivalent) martingale mea-
sures. The proof can make use of dynamic programming by exploiting an analogy between
the set of all policies in a stochastic dynamic programming model and the set of martingale
measures. A similar problem can be considered for American options where an optimal
stopping time has to be chosen. It is well-known that an optimal stopping problem can be
considered as a special stochastic dynamic programming problem. Therefore it is natural
from the point of view of Markov decision theory to generalize the concept of an American
option. This is done in the present paper and the generalization is called a dynamic option
which has interesting applications.

2 The financial market

On the market an investor can observe the prices of 1 + d securities at the dates n =
0,1,..., N where N is the time horizon. One of the securities is a bond (or savings account)
with interest rates r,, 1 < n < N. It is essential for the theory that the interest rates for
borrowing and lending are assumed to be the same. The bond price process is defined by
(2.1) Bp:=(147r1) .- (1+7,),0<n<N, where By = 1.

Here we assume that {B,} is a deterministic process. If {B,} is given as the initial term
structure, then the interest rates r, can be computed by (2.1). We will have r, > 0, but
we only need that 1+ r,, > 0. The other d securities are called stocks. The evolution of
the stock prices will be modeled by a d-dimensional stochastic process {S,, n =0,1,..., N}
where S is deterministic. There the components S¥ of S,,, 1 < k < d, are assumed to be
positive. One may also think of a foreign exchange market where S¥ is the exchange rate
for a foreign currency. Besides the savings account, the investor has d accounts for different
foreign exchanges. The value of these accounts as well as that of the savings account may
be negative which can be interpreted as a loan.

The information about the market at time n including the observed stock prices will be
represented by a Markov chain (7,,,0 < n < N) on some probability space (2, P) where I,
takes on values in some space E,, 0 < n < N, where Iy = i( is a given constant and hence
Ey = {ip}. In order to avoid integrability and measurability problems we assume here:
(2.2) E, is finite, 1 <n < N, hence (w.l.0.g.)Q2 is finite and P[{w}] > 0, w € Q.

For any vector-valued process {Z,}, we define the backward increment by AZ, = Z, —
Zn—1. Further, we write ¢ T - ¢ for the inner product of £, ¢ € RY.

The representation often becomes easier (see (2.6) below) if one considers the discounted
stock price process Sy, = (S}, ..., §%) defined by

(2.3) S¥:=8%/ B,  k=1,...,d,n=0,...,N.

The relative risk process {R,, = (R}, ..., R%) ;1 < n < N} (Karatzas & Kou [22]) is defined
by

(2.4) 1+ RE =14+ ASk/SE | = {1+ ASk/ Sk _}

where {ASk/SF |1 <n < N} is the return process corresponding to {S¥ 0 < n < N}
(Pliska [31]83.2). Then we get

(2.5) Sk=8%  .(14+RF)=8k-(1+RF)-...-(1+ RF).
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Since the investor can observe S,, and R,,, it is natural to assume that S,, and R,, are known
if the history Iy, ..., I, is known [i.e. that S,, and R,, are adapted in the sense explained
in section 3]. In order to get a Markovian structure, we assume that R,, is a function
R, = pn(In—1,1,) for some function p, on F,,_; x E,. Important examples are I, = Sy,
or I, = R,. The latter example I,, = R, is sometimes convenient for a model where
Ry, ..., Ry are independent random variables as in many papers on portfolio optimization.
An example for independent random variables R, ..., Ry is the so-called Binomial model;
there one has d = 1 and r, = r (independent of n). It is defined by two numbers § and u
such that 0 < 0 < 1+7r<wand S, =(1+7r)-(1+ R,) - Sp—1 is either equal to u - S,
or 0 - Sp_1. If we choose I,, = Ry, then we get E,, = {¢/(1+r) —1; ¢+ = ,u} (which
is independent of n). However, sometimes [when considering so-called contingent claims
X = f(Sn) in section 3] one should choose I,, = S,, and then E,, = {u-i,i € E,,_1}U{0 -1,
i € E,,—1} . This example shows that it is useful to let F,, depend on n.
At each time n, the investor will obtain the market information I,, = ¢ and observe the
discounted value z,, of his portfolio. Then he will decide about the amount ¢F invested
in stock k during (n,n + 1], i.e. , ¢¥/S¥ denotes the number of shares the investor holds
during (n,n+1]. The decision may depend on the present information (i,, x,). A dynamic
portfolio is here described by a (Markov) policy ¢ which is given by a sequence of functions
¢ = {pn, 0 < n < N} where ¢, is a mapping from F, x R to R%. In particular, one
allows for negative amounts ¢%, i.e. one allows for short selling of stocks. In the case of a
foreign exchange market one can think of a negative ¢* as a loan. Given the initial wealth
x, the amount 7, invested in the bond in [n,n + 1) is then specified by ¢ according to
the following budget equation where we write fl\, for the d-dimensional vector with every
component equal to 1.
(2.6) no+¢g -1, =,

Mo+ b L =1 (L) + 320 0k - SE/SE_,

=1 +rn) -1+ ¢p1-(L+Ra), 1<n <N
The investor can choose any new portfolio ¢,, at time n for the stocks. This decision is
then compensated by the savings account. In particular, this means that no funds are
added to or withdrawn from the wealth of the portfolio at any time. All changes in wealth
are due to capital gains (appreciation of stocks and interest from the bond). Then the
policy is called self-financing.
Again it is convenient to work with the discounted wealth of the portfolio in place of the
wealth itself. The discounted wealth process {X2(x)} is given through

(2.7) X2(x) =+ ¢ -11/Bpn =1+ ) 1-(L+Rp)] / Buo1, 0<n <N,

X% (@) = [nv-1+ 51 - (L+Rn)] / By-1 -
At time N there is no rebalancing of the portfolio. Obviously we have
(2.8) X2 (x) = X0 _y(2) + ¢1_y - R -
It is also usual to describe a portfolio by the numbers 57’2 = anL / Sfb of shares the investor
holds. In the case where the wealth is positive it can be useful to describe a portfolio by
the proportions mF := ¢k /X#(x) of the wealth which are invested in the stocks. But here
it will be convenient to use the description of a portfolio by the amounts ¢F.
In the present approach we have E,, X R as state space of the underlying Markov decision
process and we tried to explain why it is useful to let F,, depend on n. It is well-known
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that one can transform the present non-stationary Markovian model to a stationary model
by including the time-parameter in the state (Feinberg [9]); but we will stick to the non-
stationary setting. The action space is R? and all actions a € R? are admissible at
each time and state. Given the initial wealth z, the history Iy, ..., I, and the decisions
}0, -+, Prn_1, we know the discounted value X2(x) = z, of the portfolio. Therefore, one
could dispense with x,, as part of the state. However, the present choice (i,,x,) of the
state makes the model Markovian. In the case (mostly considered in the literature) when
R,, = I, and the R4, ..., Ry are independent, one can even dispense with %,, as part of the
state and just choose z,, as the state at time n.

As underlying basic process we choose the process {I,,} representing the informations about
the market. There are transition probabilities p;;(n), i € E,_1, j € Ey, where p;;(n)
specifies the conditional probability P[I,, 1 = j|I,, = i| given the present value I,, = i [and
the past (ig, ..., in—1)]. It is a particular feature that the probability measure P describing
the dynamics does not depend on the policy. This will be important when considering
other artificial probability measures Q on 2 in the next section. As explained above, the
state process for the Markov decision process is {(In, X?(z))}. The distribution of the
state process does depend on the policy as usual. Therefore, the measure P describing the
dynamics of {I,} is here more appropriate than the policy depending (strategic) measure
describing the dynamics of {(I,, X2(x))} on the canonical space of trajectories of length
N. If {I,,} is a non-Markovian process, it can be transformed to the present non-stationary
Markovian model by choosing the history space Ey X ... X E,, as new space E,.

3 No-arbitrage and martingale measures

In order to use the important concept of martingales w.r.t. to the given information

structure , we have to use conditional expectations ((i1, ..., n) := E[Z|I1 = i1, ..., I, = in]

defined on Fy X ... X E,, and FE[Z|o(I4,...,I,)] defined on 2 for a random variable Z. As

usual, we use the convention that E[Z|o(I1, ..., I,)](w) := ((I1(w), ..., In(w)), w € Q.

Then a real-valued stochastic process {Z,, 0 < n < N} is a martingale if Z,, is adapted to

the information structure, i.e., Z, is a function of (I, ..., I;,) where Zj is a constant and if
E[AZTL‘O'(Il, ---aIn—l)] == 0, 1 S n S N.

It is necessary to consider further probability measures @ on €2 which are equivalent (to the

given physical probability measure P); i.e., Q[{w}] > 0,w € Q. We write Eg[Z] = [ Z dQ

for the expectation of the random variable Z under @) whereas E[Z] is the expectation of

the random variable Z under P as usual.

Definition 1. Q is called o martingale measure iff {S,} forms a martingale under Q,

i.e.,

(3.1a) Eg[ASE|o(Iy,....In_1)]=0,1<k<d 1<n<N.

Obviously (3.1a) is equivalent to

(3.1b) Eg[RE|o(I1, ..., I,-1)] =0 ,1<k<d, 1<n<N.

Then we set

(3.2) Q :={Q; Q is an equivalent martingale measure}.

Equivalent martingale measures are used for the valuation of contingent claims (Harrison

& Kreps [16]). A contingent claim is a random variable X that represents the time N

payoff from a ’seller’ to a ’buyer’. In most instances the random variable X can be taken

to be some function of an underlying stock price, and so contingent claims are examples
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of what are called derivative securities. In the present framework, it is natural to assume
that X is a function of I and we recall that we may choose I,, = S,, as an example.
A typical example is given by a Furopean call option. At time n = 0 the buyer signs a
contract which gives him the option to buy, at a specified time N (called the maturity date
or expiration date), one share of stock 1 at a specified price yx, called the ezercise price. At
maturity, if the price S}, of stock 1 is below the exercise price, the contract is worthless to
the buyer; on the other hand, if S}, > x, the buyer can exercise his option (i.e., buy one
share at the preassigned price x) and then sell the share immediately in the market for S3,.
This contract is thus equivalent to a payment of X = (Sk — x)T (the contingent claim)
at maturity. Given the price dynamics of the securities, one tries to determine the prices
of such a contingent claim X. A classical answer in the sense of Huygens and Bernoulli
to the question of a fair price m for the option would rely on the concept of a fair game
and would then be m = E[X/Bp|. There is a different answer in the present situation
where the seller can hedge X by investing in the stocks For example if S} is high, then
the buyer’s and the seller’s gain is high.
A contingent claim X is said to be attainable if there exists a policy ¢ and some x € R such
that X = Xf\’,(x) for X := X /Bn. The corresponding policy ¢ is said to replicate X, since
the (nondiscounted) wealth By - X% () of the dynamic portfolio ¢ at time N replicates X.
This is the case if x =0, i.e. X = S}, in the example above; then one can choose x = S§
and ¢l = St ¢k =0, k # 1, for all n. It is clear that for attainable contingent claims
with X = Xf, (x) a fair price is . The buyer and the seller could instead have invested
the wealth = in such a way as to replicate the payoff of the contingent claim. Now from
the martingale property one immediately gets
(3.3) Eg|X%(x)] =z for Q € Q.
Since a price system should be a linear functional on the space of all contingent claims X,
i.e. of all random variables X on Q (Harrison & Kreps [16]), it becomes clear that
(3.4) mo(X) := Eg[X] for Q € Q
is a candidate for a fair price. The market is said to be complete if each contingent claim
is attainable. An example is the Binomial model for the case d = 1. For complete markets
option pricing is no problem. However, there are only very few examples of complete
discrete-time markets (Harrison & Pliska [17], Jacod & Shiryaev [20]). In continuous time,
the Black-Scholes model is an important example of a complete market. The question
of the existence of some ) € (@ is strongly connected with the following no-arbitrage
condition:
(NA) for 1 <n < N and any portfolio ¢, 1 depending on (Iy,..., I, 1) :

¢ R, >0 implies ¢ ;- R, =0.
There (NA) means that if there is a chance that ¢, ;- R,, > 0, then there is also a chance
that ¢, ;- R, < 0. A portfolio ¢,,_1 with “¢ ;- R, > 0” and “¢, ;- R, > 0 for some w”
is called an arbitrage opportunity. This definition of arbitrage is standard in the literature
where we here need not care about null sets. Such an arbitrage opportunity represents a
riskless source of generating profit, strictly greater than the profit from the bond. In order
to present (NA) in full generality, we used a non-Markovian dynamic portfolio ¢. Now we
can present one of the most important results for financial markets:

Fundamental Theorem of Asset Pricing. There erists an equivalent martingale mea-
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sure, i.e., Q is not empty, if and only if the no-arbitrage condition (NA) holds.

Proofs for general spaces € can be found in Dalang et al [3], Schachermayer [35], Rogers
[32], Jacod & Shiryaev [20]. It is easy to see that (NA) is necessary for the existence of
some ) € Q; therefore we can give the proof here: Let be Q € Q. From ¢, ;- R, > 0
we conclude that ¢, _; - R, =0 Q — a.s. since Eg[¢,_; - R,] = 0. As Q is equivalent we
have ¢, _, - R, = 0 everywhere. In this paper it will be proved in §6 by use of dynamic
programming that (NA) is also sufficient for the existence of some @ € (). Since the
martingale property is a local one both in time and in space, martingale measures can also
be constructed by local optimization problems. This was done by Rogers [32] whereas we
will apply global (dynamic) optimization. From now on we use the following assumption:
Assumption 1. (NA) holds.

Since in discrete time the assumption of completeness is a severe restriction, we are forced
to consider general incomplete markets. From the so-called second fundamental theorem of
asset pricing it is known (Harrison & Pliska [17], Jacod & Shiryaev [20]) that in incomplete
markets with the (NA)-condition one has several choices of equivalent martingale measures
(from the convex set ). Thus in incomplete markets, no preference independent pricing
of contingent claims is possible. The approach of this paper, which makes use of dynamic
programming, has another interesting consequence about identifying a certain price. There
option pricing is based on an optimal solution to the portfolio optimization problem. This
approach is also explained by Davis [4]. Suppose a utility function U on R x E is given
where U(x,1i) is strictly concave and differentiable in z with partial derivative U’(z, ).
The investor’s objective is to maximize the expected utility of terminal wealth and the
maximum utility is given by

(3.5) Vo(z) = sup,, E[U (X (2), In)] = E[U (XY («), Iv)]

where ¢x* is a solution to the optimization problem. In §6 it will be explained that it may
be useful to let the utility depend on Iy. Consider a contingent claim X made available
for trading with purchase price 7. One can ask the question whether the maximum utility
in (3.5) can be increased by the purchase (or short-selling) of an option described by X. In
order to find a fair price 7 for X one can use the following argument: 7 is a fair price for
the contingent claim if diverting a little of the investor’s initital wealth into the option at
time zero has a neutral effect on the investor’s achievable utility. For N = 1 this concept
was also explained by Merton [27]§7.7). More precisely, consider the discounted terminal
wealth at time N of an investor who follows the dynamic portfolio ¢+ which is optimal for
his initial wealth z and who then diverts the amount £ € R to purchase £/m shares of the
option with price m and discounted contingent claim X=X /Bn :

Xﬁ*(x—£)+.§r-)?:x—§+X1‘<’,*(O)+§T-X:XJ‘<’,*(x)+£-{.71T)v(—1} .
Then the expected utility is
(3:6) 9(¢. &, m,2) = BU(XE (@) +€- {5 X — 1}, 1)
where supy g(¢,0, 7, z) = Vo(x) = g(¢*,0,7,x). Then one obtains
(3:7) S 4(6r&m,0) emo = EU(XE (o), ) - (1% — 13].

Further, g(¢*,&, m, x) is concave in & and strictly concave except for the less interesting
case where X agrees with m and hence X is attainable.
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Now choose m = # such that g—gg(qﬁ*,ﬁ, T, x)}gzo = 0 and g(¢*,&, T, x) is hence maximal

for £ = 0. Thus 7 is not too high otherwise the investor would like to sell short the option;
and 7 is not too low otherwise the investor would like to purchase the option. This leads
to the formula

(3.8) & = BIU'(XY (2), In) - X] / BIU"(X$"(2), In)] = [ XdQY .

The relation (3.8) leads to the interesting result that in our situation the option pricing
formula of Davis is given by the martingale measure QU which is constructed in §5. A
similar result was found by Karatzas & Kou [22] Theorem 7.4, who studied a diffusion
model extensively. The case where U is defined only for positive values is treated in [38],
[39].

Again consider an option with discounted contingent claim X := X /BN . In the second
part of the paper we are interested in

(3.9) zx := inf{x € R; Xﬁ(m) > X for some ¢}.

Thus we look for values x of the initial wealth that allow for super-hedging X by some
dynamic portfolio ¢. Then a duality result holds: The smallest value z* will be shown to
coincide with the maximal expectation of X under equivalent martingale measures.
Theorem 2. zx = supgeq Eo[X].

The quantity xx is called upper price, hedging price, upper bound for the fair price, selling
price, or arbitrage upper bound. Tt is known (see e.g. [37] 1.16) that Eg[X] < x* for
each Q € Q unless X is attainable. In view of Theorem 2, a price 7 = Eg[X] (for some
@ € Q) thus offers no arbitrage opportunity to the seller in the sense that Xﬁ,(w) > X,
Xﬁ(w) #* X for some o.

A quantity similar to xx will also be considered for American options (Karatzas [21])
where an optimal stopping time can be chosen by the buyer. Moreover, a generalization
of American options is introduced here which is called dynamic option. This is a natural
generalization from the point of stochastic dynamic programming where it is known how
to imbed an optimal stopping problem in a Markov decision problem.

4 The one-period model
In this section we will study the case N = 1. We write R := R; and
(4.1) > :={R(w); w € Q}
for the support of R. Furthermore, £ is the smallest linear space in R? containing Y, i.e.
L is the smallest linear space L in R? such that P[R € L] = 1. Then it is easy to show
that (NA) is equivalent to :
(NA), foralla € L\ {0}:Pla™-R<0]>0.
We start from a utility function U(z, i) depending on two variables and we use the following
properties:
Assumption 3. U € Fy where

F, :={f: R x E, — R such that z — f(x,1%) is strictly concave and differentiable
with derivative f’(z,%); furthermore, f’(—oc,4) > 0 and f'(+o00,) < 0}.
(From the concavity we know that U’(z,4) is decreasing in z. In a one-period model, a
policy ¢ specifies just one portfolio a € R%. We obtain from (2.6) and (2.7) that then

(4.2) X?(z):=z+a" -R .
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We want to maximize the expected utility:
(4.3) v(z,a) := E[U(z +a' - R, I)] for a € R%;
V(z) := sup,era v(z, a) for z € R4
Lemma 4. (a) IfT' denotes the orthogonal projection on L , then a” - R = (T'a) T - R;
(b) (z,a) — v(z,a) is continuous;
(¢) for each x € R, a = v(x,a) attains the maxrimum on RY where the maximum point
can be chosen in L .
Proof. The parts (a) and (b) are obvious. For part (¢) one can use the methods of Leland
[26], Bertsekas [1] or Rogers [32]. By (a) we can restrict attention to a € £ . We have

1
N CERORRI)
=E[ D\ a" - R,z,I1) - 14, T.rs0y) + E[D(A,a” - R, z,I1) - 1, T.g<o})-
1
where D(\, y, x,1) := v {U(x+ Xy,i) —U(z,i)} is decreasing in A both for y > 0 and for

y < 0 because of the concavity of U(-,4). Further
D(o0,y,x,1) := limyeo D(A,y,2,7) < 0 for y > 0 and D(o0,y,z,i) < 0 for y > 0 by our
assumption on U. Now, we get by use of the monotone convergence theorem:

limk_ooi— [o(@, A a) — v(z,0)]

= E[ D(00,a” - Rz, 1) - 144 T.g>0})] + E[D(00,a™ - R, 2, I1) - 1{4 T .r<o})-
By (NA) we have for a € £\ {0} : Pla” - R < 0] > 0 and thus:

limp i— o(@, A~ a) — o(z,0)] < 0 for a € £\ {0}

In particular, we have limy,o v(z,A-a) = —oo for a € L\ {0}. Now the result follows (see
Rockafellar [33] Theorems 27.1, 27.3, Bertsekas [1] Proposition 1, Rogers [32] Proposition
2.2). ]
Lemma 5. (a) v(z,a) is strictly concave in z for fized a;
(b) V(z) is strictly concave in x and the mazimum point of a — v(z,a) in L is unique.
Proof. Part (a) is obvious. For the proof of (b) choose z,Z € R and A, A > 0 such that
A+X = 1. Further choose a € £ such that V() = v(z, a) and similarly & for Z. We consider
the cases (i) £ > x and (ii) Z = v and @ # a@. Then P[z+a'-R # Z+a'-R]] > 0 ; otherwise
(@—a)" - R = & — x which contradicts (NA) in case (i) and contradicts a —a € £\ {0}
in case (ii). Now we obtain from the strict concavity of U(-,4) : A- V(z) + X - V(Z) =
Av(xz,a)+ X v(Z,a) <vh-z+A-Z, A-a+X-a) <V(A-z+A-Z) . In case (ii) we have
a contradiction. []
Lemma 6. For a € R%, v(z,a) is differentiable in z with derivative

v'(xz,a) = E[U'(x +a' - R, I)].
The proof is obvious since €2 is finite.

Theorem 7. V(z) is differentiable in x and V'(x) = v'(x, ax) where a* = a * () is the
mazximum point in L of the function R%a — v(z,a) .

Proof. From Lemmata 4 and 5 we know that a unique maximum point a* exists in £ .
Now V(z+.) =V () > v(z+., ax) —v(z, ax). Hence v/, (z,ax) < V] (z) < V! (z) < v’ (z,ax)
where VJ (z) and v/, (x, ax) denote the right and left derivatives, respectively. Now Lemma
6 applies. []
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Lemma 8. For x > 0, v(x,a) is partially differentiable in a € R® with partial derivatives
Opv(z,a) = E[U'(x +a' - R, I) - R¥] .
Again, the proof is obvious since {2 is finite.

Theorem 9. Let be v € R, then E[U'(x+ax*" ‘R, I) - R¥] = 0 for 1 < k < d where a* is
the unique maximum point in L of the function R%a — v(x,a) .

Proof. The function a — v(z,a) is partially differentiable by Lemma 8. Therefore we
know for the maximum point a* that dgv(z,ax) =0for 1 <k < d. []

Corollary 10. IfU'(z,i) > 0 for all z and i or more generally if U'(zx +ax*' -R, I;) > 0
on €2, then

the probability measure Q defined by dQ = const-U'(z+ax*" -R, I)dP is an equivalent
martingale measure.

5 The multi-period model
We remind the reader that R,, = p,(I,—1,1,) for some function p,. Now we need the
support of R,, given I,,_; = i defined by Y _(¢) := {pn(¢,5); j € En, pij(n) >0}, i € E,_q,
n > 1. L, (i) is the smallest linear space in R?% containing Y, (), i.e. L, (i) is the smallest
linear space L in R such that P[ R,, € L|I,,_1 = i] = 1. Then for }_ and £ as defined in
84 we have > =) (ip) and L = L1(ip).
We may assume (w.l.0.g.) that the no-arbitrage condition also holds locally (see Dalang et
al. [3] Lemma 2.3 , Pliska [31](3.22), Schil [37]§2) , i.e.,
(NA)x “aT -0 > 0Vo € Y (i)” implies “a’ -0 =0Vo €Y (i) ,i€ E,_1 ,a € R%
The condition (NA)* just means:

“Pla’ - R, > 0|I,_; = i] = 1” implies “P[a’ - R, =0|I,_1 =i =1" ,i € E,_1
a € R
As in §4, we will use the assumption U € Fy for the utility function U. We recall that by
(2.8): X(z) = X2(x) + XN _ 6% 1 Ry and we now define:

(5.1) vn(2,8,8) = E[U(x + Xpp i1 s - B s IN) T =i ],

Vn(xa Z) = Supy Un(ma i, ¢) ’

on (2,1, ¢) = Vn(z,i) = Uz, i) for all ¢.
There vy, (z,1,)[Va(x,1)] is the [mazimal]| expected utility of the terminal wealth given
the market information ¢ and the discounted wealth z at time n. Since Iy = i is fixed, we
can set:
(5.2) ’U()(JI, ¢) = ’Uo(.??, io, ¢), V()(LC) = V()(LC, Zo)
Obviously we have an N-stage Markov decision model with no running costs and terminal
reward U. Let us now introduce the well-known reward operator:
(5.3) T2f(x,i) == E[f(x+a’ - Rpy1 , Iny1)|In =i] forany f: R x E,.1 — R, a € RY,
1€ E,.
We can express T2 f(x,1) in (5.3) by the transition matrix (p;;(n)) according to
(5.4) T21(2,1) = Yyep,, pign) - (@ +a" - pasalivg).5)
Thus for fixed i, T} f(x, 7) can be expressed by an ordinary expectation and we can use the

results of §4. The following equation is sometimes called fundamental equation (Dynkin &
Yushkevich [6]) and follows from Fubini’s theorem (Hinderer [18] Lemma 11.1).

(5.5) vn(z,4,0) = T Dy 1 (2,4,0) , n>0 .
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Now we can give the well-known optimality equation (see Hinderer 1970, Theorems 14.4,
18.4):
(5.6) Viu(z,4) = sup,era Iy Vat1(2,4) = supuer, ,, (i) Try Vat1(2, 1) , n > 0.

Proposition 11. Let be f € F,11 and 0 < n < N. Then:
(a) (z,a) = T2f(x,i) is continuous;
(b) there erists a unique measurable function § : R x E, — R? such that

0(z,1) € Ly41(7) and

Tg(x’i)f(x, i) = max,er T2 f(x,1) =: F(z,1);
(¢) F(x,1i) is strictly concave in x.
Proof. Part (a) and part (b) follow from Lemma 4. The remaining properties follow from
Lemma 5. []
Finally, we will use another assumption which will be discussed in §6 for special cases.
Assumption 12. ForV,(z,i) = 0V, (z,1)/0z we have: V,(—00,i) > 0 and V,}(+00,7) <0
,0<n<N.
The existence of V,!(z, ) follows from:
Lemma 13. (a) V,,(z,1) is differentiable in x with derivative V,}(x,1).
(b) Vou(z, i) € Fyy for 0 <n < N.
Proof. Part (a) can be proved as Theorem 7. By assumption we know that Vp = U
is in F. Upon using the optimality equation (5.6), this statement follows by backward
induction from Assumption 12 and Proposition 11c. []
Now we obtain from (5.5), (5.6), Proposition 11, and Lemma 13 by the usual arguments
of dynamic programing (Feinberg [9]) :
Theorem 14. There exists a unique policy ¢* = (¢3,) such that for 0 <n < N :

| | tcol

Ok (@,7) € Loj1(i) and !
* (1. . .

T, 1 (w,1) = maxgens TV (2,3) = Va (o, ),

Un (2,1, px) = Vi (2, 9).
Proof. We just have to define ¢, = ¢ as in Proposition 11b where f = Vj,11. [|

Proposition 15. For some x > 0, let ¢* be the optimal policy of Theorem 14. Then
Vo(w) = E[U(X$ (), ).
Proof. By induction we are going to prove
(5.7) Vi(@) = BIVy(X$* (@), In)] , 1 < n < .
For n =1 we have
Vo(z) = max,ez, (io) E[Vi(z + a7 - Ry, I1)] where ¢g(2, ig) is a maximum point.
In view of Lemma 13, Vi (z, ¢) satisfies the Assumption 3 for U(z, i) (for N = 1). With the
help of Lemma 6 and Theorem 7, we can conclude:
Vo (@) = vy (=, ¢(@,10)) = E[V{(z + ¢{j(,i0) T - Ry, I1)] tcol
— BV{(X{* (@), 1)] -
Hence (5.7) holds for n = 1. Now assume that (5.7) holds for n — 1. For fixed i € E,,_; we
have
Vao1(z,4) = max,ez, (i) E[Va(z + a’ Ry, )| Ih_1 =1
where ¢} _1(,4) is a maximum point. In view of Lemma 13, V,(z, 1) satisfies the Assump-
tion 3 for U(z,7) (for N = n). As above we obtain:

tcol
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Vi_i(z,i) = E[Va(z+ ¢} —1(2,9) T - Ry, In)|In—1 = 1].
Then by (2.8) : X2*(z) = X¢*1(x) +¢xT,-R
Since X?* | (z) is a function of (I3, ...J,_1), it follows that
(5.8) Vii_1(X3%1(2), In1)
= E[Vf(X‘f’*1 + % _1(2,0)T - R, In)|o(I1y ooy Ine1))]
= E[V!(X%*, I,,))|o(I1, ..., In_1)] -
By assumptlon We get

Vo(@) = E[V, 4( ) In-1)] = E[EVa (X2, L) lo (I, ooy In-1)]] = E[V;(X2*(2)), 1)}

and (5.7) follows NOW We can use (5.7) for n = N and finally obtain the result. []

Theorem 16. Assume that U’ is positive or more generally that U’(X]‘(’,* (), In) is positive
where ¢x is the optimal policy of Theorem 14. Define for some x the process {Z,, 0 < n <
N} by

Zy =V (X9*(x), I,) , in particular Zo = V{(x), Zy = U' (X %" (x), In), then:
(a) One obtains an equivalent martingale measure QY on Q by

1
Q7 {wll =1 (@) ) Zn(W)P[{w}] = (Zn(w)/Zo) P[{w}].
(b) {Zn/Zy, 0 < 91 < N} is a martingale under P and is called the density process of
dQV /dP .
(¢) If we write EV]...] for the expectation under QY , then for any function f,

E;][fn(Ily ceny In)|0-(11; ceny In—l)] == E[fn(Ily ceny In) . Zn‘O'(Il, ceny In—l)] / Zn—l-
Proof. If U'(X$*(x), Ix) is positive then we know from Proposition 15 that QU is indeed
a probability measure which is equivalent to P. Now part (b) immediately follows from
(5.8) and part (c) is a consequence of Bayes’ rule. From Theorem 9 we conclude that
(5.9) E[V’(a:+¢n 1(z, )T - R, I) - RE|I,_, =i]=0for 1 <k <d
since ¢} _1(z,1) is the unique maximum point in £,,(7) of the function
Rla — E[V!(x+aT - Ry, I,)|I,_1 = i] . ;From (5.9) we obviously obtain as in proof of
(5-8):

E[RF - Znlo(Iy, ..., In_1)] =0, 1 < k < d.
Finally from (c) we get
(5.10) EV[RE|o (11, ..., I,_1)] =0 ,1<n < N, 1<k <d.l

6 Applications

In this section we will show that all assumptions are satisfied for the case where

(6.1) U(x,i) = —e~7* - L(i) for some v > 0 and some function L : Ex — (0, 00).

A classical example is U(z,i) = —’?e_”z (or U(z,i) = ’1?(1 — e 77)). If one wants to
consider the utility of the terminal wealth itself rather that than the discounted terminal
wealth, then one can choose Up(x,i) := U(By - x,4) which has the same form (6.1). A
further interesting example was studied by Grandits & Rheinldnder [15]. They look for a
policy ¢° such that

V) (0] .
(6.2) Eleap{y- (X — X (2))}] = inf, .
Instead of super-hedging the contingent claim X one tries to choose ¢° for the given initial

Y Q
wealth z such that the expected loss is minimized. There the positive values of X — Xﬁ (z)
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are given more weight than the negative values. Of course, this is the view of the seller. If
one chooses Iy = Sy and X = f(Sy) as in the case of a European call option, then this

problem is included in the framework of (6.1) by choosing L(i) := };exp{'y - f(4)}. There

are some recent papers treating the problem E[£({X —X]qf,o (z)} )] = infy (see Runggaldier
& Zaccaria [34] for further references and an approach via dynamic programming in the
case of transaction costs).
For convenience, we only will consider the case v = 1.
Lemma 17. In the situation (6.1) with v = 1, one has:
(a) Assumption 3 is satisfied and U’ (z,i) = e~ - L(i) is positive;
(b) Vi (x,4) = —e~* - L, (i) for some function L,, : E, — (0, 00);
(¢) for the optimal policy ¢* of Theorem 14, ¢ (x,4) does not depend on x;
(d) Assumption 12 is satisfied.
Proof. Part (a) is obvious and part (d) follows from part (b). Part (b) is obvious for
n = N. Now assume that (b) holds for n 4+ 1. Then according to Theorem 14
Va(2, 1) = maXees, 1 () = 2jem,, Pid(n) exp{—r—aT pny1(i,§)} - Lnt1(j) = —e~- L (i)
where the maximum point ¢,,(7) is indeed independent of 2 and
(6.3) Ln(i) = minger, 1 () 2ojep,, Pid () exp{—a’ - pns1(65)} - Lasa(5)- []
Consider the case where Rj,..., Ry are independent and I,, = R,,. Then both p;;(n) and
pn+1(i, 7) are independent of . From the proof of Lemma 17 we conclude that in that case
¢¥ (x,1) =: ¢} neither depends on z nor on 4.
Definition 18. In the situation (6.1) with v = 1, let ¢x be the optimal policy of Theorem 14
which is independent of the initial wealth x according to Lemma 17. Then X3 = X2*(0)
,n=20,...,N is called the optimal wealth process.
Lemma 19. In the situation (6.1) with v = 1, the density process of Theorem 16 is given
by

Zn/|Zo = exp{—X}} - Ln(In)/Lo(i0), 0 < n < N, where Zn/Zy = exp{—X} -
L(In)/Lo(ig)-
Proof. We have Z,, = V,, (v + X} , I) = e™® -exp{—=X}} - Ln(In) , thus Zy = e™® - Lo (i)
and Zy = e~7 - exp{—XN} - L(In)- []
Now we obtain from Theorem 16 the following result:
Theorem 20. Let {X}} be the optimal wealth process in the situation (6.1) with v = 1
and let L, be defined by (6.3) where Ly = L. Then QU defined by

QU{w}] := exp{— XN (W)} L(In(w))/Lo(io) P[{w}] is a martingale measure.

Upon choosing L(i) = 1, for example, we obtain the existence of a special martingale
measure and the Fundamental Theorem of §3 is proved where (NA) was used in the proof
of Lemma 4c. Then the resulting martingale measure Q¥ has the form:

(6.4) QF[{w}] = const - exp{—X}"v(w)}P[{w}] .

There Q¥ is the unique solution of the minimum problem where the relative entropy
I(Q, P) of Q w.r.t. P has to be minimized (Fritelli [13], Grandits [14]). Q¥ may also be
considered as a multi-stage Esscher transform of P whereas in Biithlmann et al. [2] the
Esscher transform is used locally for each time and each history in order to construct a
martingale measure.
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Another important example is the following:
(6.5) U(z,i) = LOG) + 2 LO(G) - — LA (4) - 22

for some function L*) : Exy — R, k = 0,1, 2 where L is positive.
An interesting special case is the best hedging policy for hedging the contingent claim X.
One looks for a policy ¢° such that
(6.6) E[{X — X% (2)}2] = infy .
Thus, instead of super-hedging X one tries to choose ¢° for the given initial wealth z such
that the expected quadratic loss is minimized. Now, in contrast to (6.2), the positive values
of X —X]qf[o (z) have the same weight as the negative values. This is fair both from the point
of view of the seller and the buyer. If one again chooses Iy = Sy and X=7 (Sn), then this
problem is included in the framework of (6.5) by choosing L (i) = f(3)2, LM (%) = f(3),
and L®)(4) := 1.
Now, one can look for that initial wealth Z such
(6.7) infy E[{X — X% (£)}?] = min, inf, E[{X — X% (2)}?] .
The optimal value 7 is called fair hedging price in [36] and approzimation price by Schweizer
[40] for the contingent claim X. Whereas [36] relies on stochastic dynamic programming,
Schweizer [40] uses martingale methods.
Lemma 21. In the situation (6.5) one has:
(a) Assumption 3 is satisfied ;
(b) Valw,i) = L (6) +2 L (6) - o — L2 () - o2

for some function L,S ). E,—R,k=0,1,2, where Lg) 18 positive;
(¢) Assumption 12 is satisfied.

Proof. Part (a) is obvious and part (c) follows from part (b). Part (b) is obvious for n = N.
Now assume that (b) holds for n + 1. Then according to Theorem 14

. 0 ..
Vo (w,4) = maXoera Xjep, ,, Pig(n+ DL () +2 L1 () - {z + 0T - pnsa (i, )}
2 .
—LEL () +aT - para (i)} A

= LO(§) + 20D (i)x — L®) (3)2? + L * (v,4) — L(w, 1)
where L) (5) := >.ipij(n+ 1)Lgi21(]) k=0,1,2,

Lo (a,) 1= = mingema 32 pis (1) L ({0 )/ La () =2 =aT - pua (0, )}

s 2 1 2

L(a.1) = 55, o+ DELGHESL (/221 6) — o
Now L has the desired form. This is also true for Lx as follows from [36] Proposition 7.3
for the case d = 1 and is easily extended to the case d > 1. ]
The problem with this example (6.5) is that U’(z, i) = 2 L) (4) =2 LA (i) -z is not positive
everywhere and also U’ (Xff,* (), In) need not to be positive everywhere. Therefore the
measure QU is in general only a signed measure and is called signed martingale measure
because it has all other properties of a martingale measure. In Schweizer [40], [41] the
relations to the mean-variance frontier, the variance-optimal and the minimal martingale
measures are explained. Schweizer [41] also considers the general d-dimensional case in a
general semi-martingale framework which includes the discrete-time case as special case.
Motoczynski [28] studies the discrete-time d-dimensional setting. Grandits [14] constructs
the p-optimal martingale measure as a generalization of the variance-optimal martingale
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measure by replacing L? by LP for some p > 1. For the construction Grandits also uses
methods of dynamic programming similar to those explained in § 5.
Example. The multi-dimensional Binomial model.
For convenience we assume 7' = 1 and write RF := R’f, 1 < k < d. We consider the model
where

RF takes on values in {—a¥, 8¥} where o, 8% > 0.
We assume w.l.o.g. that Iy = Ry = R. For d = 1 the model is complete and is also called
Cox-Ross- Rubinstein model. The unique martingale measure Px is given by P x [R! =
i] = ¢ (i) where

g (—ak) = B /(a* + B*) , ¢} (B*) == oF /(o + BF).
For d > 1, the model is no longer complete since R takes on 2¢ values where 2¢ > 1 4 d
(Jacod & Shiryaev [20]). It is easy to see that Q * [R = (%, ...,i%)] = H%Zlq"];(ik) defines a
martingale measure for d > 1 which seems to be a natural one if the components R of R
are independent under P. Infact in that case this measure coincides with Q¥ as defined in
(6.4) but is different from the so-called minimal martingale measure which is obtained by
the (discrete-time) Girsanov transformation and which coincides with the variance-optimal
martingale measure for T = 1 (Schweizer [40]). @Q* also differs from the martingale measure
obtained by the so-called numéraire portfolio (Korn & Schél [23]). We want to prove:

Q* = QF if the components R* of R are independent under P.
We first observe that Px = Qx = Q¥ if d = 1 since then there is only one martingale
measure. Hence for inf,er Elezp{a - R*}] = Elexp{a}, - R*}] =: Ay we know that ¢ (i) =
exp{az -3}/ Ag. Now inf,cra Elexp{z + a” R}] = €® - inf,cra I1¢_, E[exp{a® - RF}]
= e - 1I¢_, inf,cr Elexp{a- R*}] = e - 1I_, A; by independence. Therefore we obtain

QFI(, i} / PH(, i} = exp{e + X5y af - iF}/(e® - TIE_, Ay)

=1¢_, exp{a"]; cikF}) Ag = szqu(ik).
The result immediately extends to T' > 1 if one assumes that R},..., RY, ..., RL ...  R% are
independent. Motoczynski & Stettner [29] consider super-hedging (see next sections) in
the multi- dimensional multi-period Cox-Ross-Rubinstein model. ]
7 Super-hedging, the one-period model.
In this section we restrict attention to the case N = 1 and study values x for the initial
wealth that allow for super-hedging a given discounted contingent claims X by some policy
¢ such that de\’,(x) > X. As in §4 we set R := Ry. Then we have to solve the problem:
(7.1) zx =inf{z € R; Ja € R¥s.th. z+aT - R(w) > X(w) , w € Q} .
Since w € €2 is finite, one obtains a linear program by introducing:
(7.2) V:={(z,a) e R**% 1 -2+ >, a* - RF(w) > X(w),weQl
Then (7.1) can be written as the linear program:
(P) min{z; (z,a) € V}.
Then the dual program is:
(D) max{}" cqq(w)- X (w); g € Q1} where
(7.3) Q1 :={ge R g(w) > 0,w e, ¥ qw) =1, qw) - R¥w) = 0,1 < k < d}.
Q1 can be identified with set of martingale measures in the case N = 1. A useful charac-
terization is given in Pliska [31] p. 59. The set of equivalent martingale measures is
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(7.4) Q1 :={q€Q;qw)>0,weQ}

Obviously, V is not empty; one only has to choose z large enough. From the Fundamen-
tal Theorem in §3 we know that (); and hence Ql is not empty under the no-arbitrage
condition.

Now the duality theorem of linear programming applies and we obtain (Pliska [31] p. 27):

Proposition 21. z+ = min{z € R; Ja € R4s.th. z +a" - R(w) > X (w) , w € Q}

= maxge ()1 Y wend(w) - X(w) = SUPye, Y wen d(w) - X(w) =:8UD,cq, Eq[X].

The latter equality holds because () is dense in Ql. This is theorem 2 in the case N = 1.
An immediate consequence is:

tcol

Corollary 22. Eq[X'] < O0Vq € Q1 if and only if there exists some a € R? such that
a' -R> X .
8 Super-hedging, the multi-period model.
In this section we consider the general case N > 1 and we may assume (NA)* as in §5. It
will be convenient to work with a canonical probability space:
(8.1) Q:=Qp where Q,, := Ey X ... X Ey,,

I,(w) =i , Wy = (0, ..., 0n) for w = (ig, ..., in) € Q.
We need the following characterization of Q([33], Korn & Schal [23]).
Proposition 23. Q) € ) if and only if
(8.2) Q{w}] = go(io;%1) - q1(%0,%1;82) - .. - qN—1(WN -1} %N)

where @ (wn;+) € Qn(in) for w= (ig,...,in) and
(8.3) Qu(i) == {qg; ¢ : Eny1 = (0,1); ZjeEnJrl q(j) =1, ZjeEn+1 q(j) - p(i, j) = 0},
1€ By,
There is now an interesting relation to dynamic programming. One can look upon @, (%)
as a set of actions available at time n given the information ¢ about the market at time
n. Moreover, a function ¢, can be considered as a function which selects for each given
history w,, an action ¢, (wp;-) € Qn(in). Then a policy is given by (qo, q1,..-,gn—1) and
defines a martingale measure through (8.2). In models with a more general space €2, the
situation is more complicated. But even then the set @) enjoys a property ([37] Lemma
1.8) which is known for the set of policies in dynamic programming and is called “to admit
needle-like variation” by Fakeev [8], “stability” by Hinderer [18], and “product property”
by Hordijk ]19]. This relation to dynamic programming was used by El Karoui & Quenez
[7] for diffusion models and by Naik & Uppal [30].
As mentioned above, it is natural from the point of view of Markov decision theory to
generalize the concept of an American option. We call the generalization a dynamic option
which has interesting applications. The buyer has to pay a premium z to the seller and
then he can choose any policy § according to a certain dynamic program. Then the policy
§ implies some (non- discounted) cost or claim X% := By - X% : Q — R which the seller
has to pay to the buyer at N. On the other side, the seller can invest according to a policy
¢ in the market, i.e. the seller is the investor. Now, we look for some initial wealth = such
that
(8.4) for each policy ¢ of the buyer there is some policy ¢(4) of the seller such that

Xﬁ(d)(x) > X% on Q,
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i.e. such that X° can be super-hedged by z and ¢(9). In particular, we are again interested

in the smallest value z* such that (8.4) holds for z = z x.

We obtain the usual European option if there exists only one policy for the buyer. One

obtains an American call option if the buyer may choose a stopping time 7 : Q — {0, ..., N}

and may exercise his option at time 7 . Such a contract is equivalent to a payment
= (S! — x)*. Then one is interested in finding some initial wealth z and some policy

¢ such that for the discounted claim:

(8.5) X2(x) > X7 = (.Sv'i —x/B;)T = (S} — x)*/B; for all stopping times 7.

We can write X?(z) = Xf\’,(T)(a:) where ¢, (7) := ¢, for n < 7 and ¢,(7) := 0 for n > 7.

There, first the buyer decides to stop and then the seller decides to stop investing. Thus,

the American option fits into the framework of a dynamic option and the investment policy

of the seller indeed depends on 7 which is not clear from (8.5) at first glance.

A necessary condition for (8.4) can be deduced from (3.3) (i.e. Eg[X%(z)] = « for any

Q € Q). We obtain:

(8.6) 7 :=supg ; Eq[X?] < z := inf{z; (8.4) holds }.

Now our goal is to show that

(8.7) V634(6) such that X5 (z) > X,

Then Z = x* and the infimum in the definition of z* is attained.

First we describe a dynamic program for the buyer by the usual set up. Here it is useful

to choose a model with no running costs and a terminal reward (claim) X which depends

on the whole history at time N. [In such a framework one can model restrictions on the

admissible actions by the choice of the terminal reward.] In order to describe general

stopping times of the buyer by policies of the buyer we have to allow for non-Markovian

policies.

(1) A’ is the action space of the buyer;
(2) Hy, := Ep x A X ... X Ey, is the space of histories of the buyer up to epoch n;
(3) a polzcy 0= (50, ...;0n—1) of the buyer is given by functions d,, : 2, — é;@ :
(4) X : Hy — R is a discounted claim function where we write X°(w) := X (h3 (w))

and hd (wy) := (40, 00(i0), 1, +s Orn_1(Wn_1), in) € Hp.
At each time n the buyer can choose an action a, according to some policy § and the seller
will immediately be informed about the choice of a., at time n. The claim of the dynamic
option is executed at time N; at the end the seller has to pay the amount By - X%(w) to
the buyer.
For an American call option, one will have A/ := {0,1} where "1’ means ’to stop’ and
'0’ stands for 'to do nothing’. Moreover, one can choose X'(z'o, Ay 01y ey @y _1,08) = (37 —
x)" /B, where
7 := inf{n; a,, = 1} with inf( = N. One can imagine that the claim (i, — x)™ at time 7
is invested in the savings account up to time N; at N the amount (i, — x)* - By/B; is
paid to the buyer including interest for the time between 7 and N. Discounting then leads
to (ir — x)T/B;. Thus the American option can also be described by a claim executed at
time N.
We will present another example.
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Example from the bond market. Assume that at time n = 0 the buyer gives some
capital yo to the seller. In that situation, an action a’ consists in taking back the amount
a’. Then

Al =0, a,) for some @, > 0 and for n > 0.
Actually admissible actions a], at time n are only those with a], < «,, where

ap:=ap, AN(yo—aj —...—a,_;),n < N.
This can be modeled by either defining X (9, ag, i1, ..., aly_1,in) = —o0 if some a], is not
admissible or by setting )?(io, a0y 81, -y Ay _1,IN) = (zo, ag A\, 1, .. @y AAN_1,iN).

In the later case the actions a], and a!, A «,, are identified. ]

A further modern example is provided by a passport option (see Delbaen & Yor [5], Shreve
& Vecer [42] which allows the buyer to take (long or short) positions in a stock. If at N the
buyer makes a benefit, he can keep it. Otherwise he does not have to pay for the losses.
The idea of our approach consists in writing T := supg 5 Eq [X?] as value of a dynamic
program in a super-model with a super-player combining the buyer choosing § (controlling
the claim) and the market choosing the martingale measure @ (controlling the law of
motion).

As before, the initial state 7o is fixed. The data are

(1) An =4, x{g: Bnp1 = (0,1), Yiep,,, 2() =1}, n 2 0,

( ):A;l XQn(Zn) fOI‘nZO7

((5 Q) where 6 = (do, ..., 0n-1), @ = (g0, ---, qN-1),
X X, X% := X9,
(5) the law of motion is given through @ as in Proposition 23.
A policy 0 is called admissible at h,, = (ig, ag, .-, in) if Iy, (30, ... ) = a,, for m < n. Then
the value functions of the super- model are given by
(8.8) Vi (hn) := sup{Eq[X |1 = io, ..., In = in); 6 is admissible at h,, Q € Q},
for h,, = (g, ag, .-, in) € Hy.
Then Vo(io) = Z.
An important tool will be the optimality equation (Hinderer [18], Theorem 14.4):
(8'9) Va ( ) = sup ’EA’ ZiEEn+1 q(i)Vn+1(h’m ala i)’

which implies: X X

Lemma 24. ZieEn+1 (1) [Vas1(hn, a',3) = Vi (hy)] < OVa' € A7, g € Qu(wn).

Now we can use the results for the one-period model by use of the standard reduction
method of Hinderer [18] p. 24. The idea consists in treating time n as new origin for fixed
(hpn,a’). Then Q,(iy,) is the set of equivalent martingale measures for the new one-period
model. Now Corollary 22 applies and we obtain:

D>
°">|Ih>

) 2
3)
{1)

J4EQn (in)

Proposition 25. For fived (hy,,a’) = (ig,al, ...,in, a') there exists some ¢p(hy,a’) such
that B
Vn—l—l(hn; a/’ Z) - Vn(hn) S ¢n(hn; aI)T : pn—i—l(in; Z)VZ € En—i—l-

One can interpret ¢, (hy,a’) as the decision of the seller at time n about the investment
in the market after the buyer chose action a’. Therefore the super-model can be looked
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upon as a stochastic game with complete information in the sense of Kiienle [25]. Now we
can construct the desired investment policy, which will be non-Markovian, as follows:
(8-10) ¢ (wy,) := ¢p(hS (wn), 6n(wn)), n > 0, where hd(wo) = wp = io-
There h? (wy,) is defined above. Then one has by Proposition 24:
(8.11) Vn-l—l(hg(wn): On(Wn), In+1) — Vn(hg(wn)) < @ (wn) T - Pt (in, int)-
Now we can prove our goal (8.7):
Theorem 26. Xﬁ(‘s)(a_:) > X0 where ¢(6) = (¢9).
Proof. Choose some h = hy = (i1,a},...,iy) with histories h, = (i1,a},...,%n), w =
(41, .-y iN), Wp = (%1, ..., %). Then by Proposition 25
VN(h) - VO(iO) = Zgz_ol [Vn+1(hn+1) —Va (hn)]

< Yo @nllin; @) - pnsa(ing ins1) where

Vi (h) = X(h), Vo(io) = Z by (8.6) and (8.8).
Thus we have

X(h) <&+ Y020 balhn,al)T - puia(in, inga) for h € Hy
which implies
(8.12) X0(w) <7+ YN 98 (wn) T - prsi(in, ins1) = X (@). []
Lemma 24 can be looked upon as a supermartingale property under each martingale mea-
sure which was derived by means of dynamic programming in the same sense as in El
Karoui & Quenez [7]. One can write (8.12) as

(8.13) X°(w) = Xﬁ(é)(a’c) + Z;V:l ¢ where

Cén+1 = [Vn+1(hg+1(wn+1)) — Vo (B, (wn))] = @9 (wn) T - prt1(in, ing1) > 0.
Then ¢ can be interpreted as a possible consumption at time n when hedging X.
Theorem 26 can be imbedded in the framework of a general optional decomposition theorem
for supermartingales under each martingale measure. (Follmer & Kabanov [10], Féllmer
& Kramkov [11], Kramkov [24], Schél [37]).
The analogy between the set of all policies in Markov decision model and the set of martin-
gale measures can also be used to show that Markovian martingale measures are sufficient
in the same sense as Markovian policies are sufficient in a Markovian environment ([37]).
Acknowledgement. I would like to thank the referee for very useful remarks. Morover, it
is a pleasure to acknowledge the influence of my teacher Karl Hinderer who laid much of the
foundation of the general non-Markovian theory of dynamic programming. Modern finance
is another important area where the non-Markovian setting is natural. In particular,
contingent claims of so-called exotic options provide interesting examples of general history-
dependent reward and cost functions, respectively.
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