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1 Introduction

In this chapter we deal with certain aspects of average reward optimality. It
is assumed that the state space X is denumerably infinite, and that for each
x € X, the set A(z) of available actions is finite. It is possible to extend the
theory to compact action sets, but at the expense of increased mathematical
complexity. Finite action sets are sufficient for digitally implemented controls,
and so we restrict our attention to this case.

For initial state z, the quantity W (z) is the best possible limiting expected
average reward per unit time (average reward, for short). This is an appropri-
ate measure of the largest expected reward per unit time that can possibly be
achieved far into the future, neglecting short-term behavior. Many interesting
applications have the property that the average reward is independent of the
initial state, i.e. W (z) is a constant.

This chapter develops a theory to guarantee the existence of a stationary
policy ¢ and finite constant W such that

W(z) =w(z,¢) =W, z e X. (1)

Such a policy is an average reward optimal stationary policy. In this chapter a
stationary policy means a nonrandomized (pure) stationary policy. Implement-
ing such a policy requires the controller to know only the current state x of the
system. Table look-up may then determine the fixed action ¢(z) appropriate in
that state.

The development takes place under the assumption that there exists a non-
negative (finite) constant R such that r(z,a) < R, for all x € X and a € A(z).
In a typical reward maximization setting, it may be possible to incur costs
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as well as earn rewards. Costs can be built into the system as negative re-
wards. For example, to minimize over the set {5, 2,8} of costs, we may calculate
max{—5,—2,—8} = —2, and then the answer is —(—2) = 2. Our framework
allows rewards to be unbounded below, thereby handling the common case of
costs unbounded above. For example, queueing control problems may involve
holding costs that are linear in the number of customers. If the buffers are
unlimited (able to hold all arriving customers), then this would entail costs un-
bounded above. The theory does not allow the controller to earn arbitrarily
large positive rewards. This is not a severe limitation in queueing control prob-
lems and other applications. For example, assume that the controller earns a
unit reward each time a customer is admitted to the system. If the number of
customers that can arrive in any slot is bounded, then the assumption will hold.
If the distribution on customer batch sizes is unbounded, then we may allow
the controller to earn a reward that is a function of the mean batch size.

We may define a new reward structure by subtracting R from the rewards
in the original system. By so doing, the optimal policy will not be affected, and
it will be the case that all rewards are nonpositive. Let us assume that this has
already been done, so that for the rest of the chapter we make the following
assumption.

Assumption A We have r(z,a) <0, for all z € X and a € A(x).

Note that to recover the average reward in the original setting, it is only neces-
sary to add R to W. onb

When X is finite, it is known, e.g. Sennott f?ﬂlf Proposition 6.2.3], that
there exist By € (0,1) and a stationary policy ¢ that is both discount optimal
for B € (Bo,1), and average reward optimal. Note that in the general case,
W (z) may not be constant. The following result was shown in [34, Proposition
6.4.1] for the cost minimization framework. The proof may be recast into the
reward maximization framework.

Proposition 1 Let X be finite. The following are equivalent:
Q) W)=W, forxz e X.

(ii) There exists z € X and a finite constant L such that |V (z,8)-V (2,8)| < L,
for allz € X and B € (0,1).

(iii) Giveny € X, there exists a finite constant L such that |V (z, )=V (y,5)| <
L, for allz € X and B € (0,1).

2 Counterexamples

When X is denumerably infinite, the situation is quite different from that when
X is finite. An average reward optimal stationary policy may not exist. The
following example shows that, in fact, an optimal policy of any sort may not
exist.



Example 2 The state space has two “layers.” The top layer consists of states
{1,2,3,...} and the bottom layer of states {1*,2*,3*,...}. There is a single
action in each bottom state and these are all absorbing, i.e. py+z+ = 1. There
are actions a and b in each top state, with 1 = pypi1(a) = pgye+(b). There are
no rewards in any top state, and r(z*) =1 — 1.

Beginning in state x, to achieve a positive reward requires that b be eventu-
ally chosen. Assume that b is first chosen in state y, where y > x. Then from
that point on, a reward of 1 — % per unit time is earned. It is clear (and can
be proved) that the rewards earned up to this point do not affect the limiting
average reward, which is thus 1— 1 < 1. Clearly, W(z) = 1. However, no policy
achieves an average reward of 1.

The next example shows that, even if an average cost optimal policy exists,
it may be nonstationary.

Example 3 Let X = {1,2,3,...}. There are two actions in each state with
1 = Pyat1(a) = Paa(b). There is no reward under a and r(z,b) =1 — 1. In
words, we may advance to the next higher state and earn nothing, or remain in
z and earn 1 — % Let us assume that the process begins in state 1 and operates
under a stationary policy. If this policy chooses b for the first time in state z,
then it must continue to choose b, and the average reward under this stationary
policy is 1 — Z.

However, consider the nonstationary policy m that operates as follows: Upon
first entry into state z, it chooses b a total of = times and then chooses a. The
sequence of rewards generated under 7 is

0707%7%707272727 727%7%7%707"' (2)
It may be shown that w(1,7) = 1, and hence 7 is average reward optimal.

These examples appear in Ross ﬁf] In both examples, it is the case that
there exists a stationary policy achieving an average reward that is within € of
optimality. If this were always the case, we would probably be satisfied to know
that we could produce a stationary policy with any desired degree of closeness to
the optimal value. However [31, p. 91], gives an example for which no stationary
policy is within e of optimality.

3 Assumptions for Validity of Eq. (1)

The examples above show that some assumptions are necessary to achieve the
goal of (1). One possible form for those assumptions is suggested by the situation
when X is finite. In this case, as we have observed, there exists a stationary
policy that is discount optimal, for every discount factor sufficiently close to 1,
and is also average optimal. We may seek to obtain a similar result when X is
denumerable. Since we also want W (z) to be constant, this suggests that the
condition in Proposition 1(ii) might be a suitable assumption. It is shown in
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Ross ﬁﬁs, p. 95] that this will indeed work, but it turns out that this condition
is too strong to enable us to treat many important applications.

The following set of assumptions is based on a generalization of the condition

]ﬁroposmon 1. These assumptions are the reward version of thos in Sennott
ETp 132] and are a slight modification of those in Puterman %29 Section
8.10.2]. A version of these a sumptions is also discussed in Arapostathis, et
al FZ]’and Kitaev and Rykov %2’6] Keep in mind the fact that quantities that
are automatically finite for X finite may become infinite when X is infinite.
Expectations exist because we are assuming that rewards are nonpositive, but
they may be —o0

Let z be a distinguished state.

Assumption B The quantity (1 — 8)V (2, 8) is bounded, for 8 € (0,1).

This implies that V' (z, 8) > —oo and hence we may define the function h(z, 8) =
V(z,B) — V(z,8) without fear of introducing an indeterminate form.

Assumption C There exists a (finite) nonnegative function M such that
h(z,B) > —M(z), for x € X and 8 € (0,1).

The final assumption is:

Assumption D There exists a (finite) nonnegative constant L such that
h(z,B) <L, forx € X and B € (0,1).

Note that h(z,8) = 0 and hence we may always take M(z) = 0. As we will
see, Assumption B is related to the requirement that the average reward be
finite. Assumptions C and D are basically the condition in Proposition 1(ii),
but modified to allow the lower bound to be a function, rather than a constant.
Section 10 discusses a weaker set of assumptions that allows the upper bound
to also be a function. It turns out that for many applications, the upper bound
is constant, and this assumption simplifies the theory.

One may also wonder whether the distinguished state z plays a special role
in the assu tions. The answer is no. For the cost minimization framework, it
is shown in [34, Proposition 7.2.4] that if Assumptions A - D hold for z, then
they hold when z is replaced by any other state.

Here is an important lemma.

Lemma 4 Let ¢ be a stationary policy. Assume that there exist a (finite) con-
stant W and a (finite) function h, that is bounded above, such that

W + h(z) < Th(z), z€X, (3)
where
TOh(2) = r(2,¢(2)) + Y Poy(d(x))h(y)- (4)

Then w(z,¢) > W, for z € X.



Proof. Assume that the process starts in state x, operates under ¢, and let
Xo =x,X1,X>,... be the sequence of values. Then from (3) it follows that

W +h(X;) <T?h(X;), t>0. (5)

We now show that E?[h(X;)] > —oo. In fact, we prove by induction on
t that the expectation is bounded below by tW + h(z). This is clearly true
for t = 0. Now assume that it is true for ¢ . Then from (5) it follows that
E?[h(Xy41)|Xy] > W + h(X;). Taking the expectation of both sides, using a
property of expectation (i.e. E(E[X|Y]) = E[X]), together with the induction
hypothesis, we find that E?[h(X¢41)] > W + E2[W(X)] > W +tW + h(z) =
(t +1)W + h(z). This completes the induction.

Now take the expectation of both sides of (5) and rearrange, to obtain

E2[r(Xe)] > W + EZ[A(Xe)] = EZ[M(Xe11)], ¢ 0. (6)
What has just been proved assures us that we have not created the indeter-

minate form —oo + oo. Add the terms in (6), for ¢t =0 to n — 1, and divide by
n to obtain

v(@,6,m) o g, P - EZ[h(Xn)]
Z W + h(x)7_L

Here L is the upper bound on h. Taking the limit infimum of both sides of
(7) yields the result. [ |

The proper generalization of the finite state space result deals with sequences
of discount factors rather than sufficiently large discount factors. The following
definition sets up the basic concepts. (It is independent of the assumptions.)
We will be taking subsequences of sequences, and for notational convenience,
each time this is done, the subsequence will be indexed by n.

Definition 5 (i) Let z be o distinguished state and assume that the function
h(z,B) =: V(z,B) — V(z, B) involves no indeterminate form. Let (3, be a
sequence of discount factors converging to 1. (All sequences are assumed to
converge to 1 from the left.) If there exist a subsequence &, and a function
h such that

lim h(z,d,) = h(z), z € X, (8)

n—oo

then h is a limit function (of the sequence h(—, By)).
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(ii) Let ¢(B) be a stationary policy realizing the B discount optimality equation,
and let B, — 1. Assume that there exist a subsequence d,, and a stationary
policy ¢ such that lim, ,o ¢(6,) = ¢. This means that for a given z and
sufficiently large n (dependent on x) we have ¢(6,)(x) = ¢(z). Then ¢ is
a limit point (of ¢(Bn).

(iii) Let ¢ be a limit point. The limit function h is associated with ¢ if there
exists a sequence B, such that lim, o h(—,B,) = h and lim,_,, ¢(8,) =

¢.

4 The Existence Theorem

The following xigtence theorem is our major result. It is the average reward
counterpart of [34, Theorem 7.2.3].

Theorem 6 Assume that Assumptions A-D hold. Then:
(i) There ezists a finite constant W =: limg_,1 (1 — )V (z, B), for z € X.

(ii) There exists a limit function. Any such function h satisfies —M < h < L
and

W + h(z) < Th(x), zeX. (9)

Let ¢ be a stationary policy realizing the mazimum in (9). Then ) is
average reward optimal with (constant) average reward W and

lim ZHRCW] 0, =zeX. (10)

n—o0 n

(iif) Any limit point ¢ is average reward optimal. There exists a limit function
associated with ¢. Any such function h satisfies

W + h(z) < Th(z), z€X. (11)
and
¢
im ZeME) e x (12)
n—o0 n

(iv) The average reward under any optimal policy is obtained as a limit.



Proof. Observe that the theorem encompasses two viewpoints. It says that
an optimal stationary policy may be obtained from (9), which is constructed
by first obtaining a limit function. Or an optimal stationary policy may be
obtained as a limit of discount optimal stationary policies. In any case, the
average reward under any optimal policy (stationary or not) is obtained as a
limit, rather than a limit infimum.

We Ist. prove (ii). Fix a sequence 3, — 1. It follows from Assumptions C
- D and [34, Proposition B.6] that there exists a limit function of the sequence
h(—,Bn), and that any such function h satisfies —M < h < L.

Now fix a limit function h as in (8). Using Assumption A we see that
(1 —-05)V(2,6y) is a bounded sequence of real numbers. Any such sequence has
a convergent subsequence. Hence there exist a subsequence €, and a (finite)
number W such that

lim (1 - €,)V(z,en) =W. (13)

n—oo

Note that (1 —8)V(z,8) = (1 - B)h(z,8) + (1 - B)V(z,
let n — oo. The last term approaches W. It follows from (
of h that the second term approaches 0. Hence

B). Let § =€, and
) and the finiteness

lim (1 — &)V (z,e0) =W, z€X. (14)
n—o0

The discount optimality equation V' = TgV may be rewritten as
(1-8)V(z,0)+ h(z,B) =Tsh(z,B), z€X. (15)

Now fix a state z and consider the sequence ¢(e,)(z) of discount optimal
actions in z. Because the action set A(z) is finite, it is the case that there exist an
action a(z) and a subsequence 7, (dependent on z) such that ¢(y,)(z) = a(x).
For the fixed state z and 8 = 7,, (15) becomes

(1 = 1)V (2,7) + h(@, 1) = T2 h(@, 7). (16)

Take the limit supremum of both sides of (16) as n — oo. Use (8), (13), and

the limit supremum version of Fatou’s lemma [34, Proposition A.2.1] to obtain
W + h(z) < T*@h

+h(a) < T*@h(a) )

< Th(z).*

Because this argument may be repeated for each z, it follows that (9) holds.

Now let 9 be a stationary policy realizing the maximum in (9). Then (3)
holds for . To prove that 1 is optimal, let 7 be an arbitrary policy and fix an
initial state . Then

w(z,$) 2 W > liminf(1 — B)V (=, f) > liminf(1 — Blv(z, 7, B) > w(z, ).
(18)
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The leftmost inequality follows from Lemma 4. The next inequality follows
from (14) and the definition of the limit infimum. The next inequality follows
since V(—, B) > v(—, m, ), and the rightmost inequality follows from (33) in the
chapter Appendix. This proves that ¢ is average reward optimal. Moreover by
settingm = 1 we see that w(z,¢¥) = W and hence W is the maximum average
reward.

Recall that the whole argument was carried out with respect to the sequence
Bn. Given this sequence we obtained a subsequence such that (14) holds for the
maximum average reward W. This means that given any sequence, there exists
a subsequence such that (14) holds for the fixed value W. This implies that the
limit exists and hence (i) holds.

We prove (iv) and then return to the proof of (10). To prove (iv) let = be an
arbitrary average reward optimal policy. Note that all that is assumed is that
W = w(z,n). We have

W = lim (1 — B)V(z,p) > limsup(l — B)v(z, 7, )
B—1 B—1

(19)
> liminf(1 — B)v(z, 7, B) > W.
B—1

The leftmost equality follows from (i). The rightmost inequality follows from
(33) and the optimality of m. Hence all the terms in (19) are equal to W and it
follows that limg_,1 (1 — B)v(x,w, B) exists. Then (iv) follows from Proposition
22 in the Appendix.

Let us now prove (10). Using the optimality of ¥ and (iv) it follows that we
may take the limit of both sides of (7) to obtain (10). enb

The proof of (iii) is similar to the proof of (ii) and we omit it. (See fBﬂTp.
137].)

No implication concerning the structure of the Markov chain induced by an
optimal stationary policy can be drawn from the assumptions. To see that this
is the case, consider a process with any desired transition structure whatsoever
and with identically 0 rewards. Then the assumptions hold and all policies are
optimal. o

The cost minimization analog of the assumptions are deno ec%] (SEN) in fﬁ’}z
A related set (SCH) of assumptions was introduced by Schal %&’2 . Problem 7.6
of claims that (SEN) < (SCH), and hence these assumptions sets may be
shown to be equivalent.

Eq. (9) is the average reward optimality inequality (ARQOI). The next section
explores conditions under which it will be an equality, yielding the average
reward optimality equation (AROE).

5 The Average Reward Optimality Equation

It is possible for the inequality in (9) to be strict. Cavazos-Cadena ﬁvi)resents
an example for which this is the case. However, in “normal situations”, (9) is
an equality. This section gives very weak conditions for the AROE to be valid.



We first develop some notation. Let G be a nonempty subset of X. Then
R(z,G) is the set of policies 7 satisfying the following: Beginning in z and
following 7, the process will enter G at some time ¢ > 1 with probability 1,
and the expected time m,g(7) of a first passage from z to G is finite. We let
R*(x,G) be the subset of R(x, G) consisting of policies 7 such that the expected
(total) reward 7, () of the first passage is also finite. If G = {y}, then R(z,G)
(respectively, R*(z,R)) is denoted R(z,y) (respectively, R*(z,y)).

Proposition 7 Assume that Assumptions A - D hold and let ¢ be a stationary
policy realizing the mazimum in (9). The AROI is an equality ot a fized state
z under any of the following conditions:

(i) There ezists a finite set G such that ¢ € R(z,G). This also implies that
¢ € R*(z,G) and h(z) = ry,(¢) — Wmy,(¢) + E2[h(Xr)], where T is the
time of a first passage to G.

(ii) We have ¢ € R(z,z). This also implies that ¢ € R*(z,z) and h(z) =
Tzz (¢) - mez (¢)

(iii) The Markov chain induced by ¢ is positive recurrent at x.
(iv) We have pgy(¢(x)) > 0 for only finitely many values of y.

Proof. We omit the proof of (i). A generalization of (i), with proof, is given

in [34, Theorem 7.4.3] for the average cost framework. If we grant the truth of
(i), then (ii) follows immediately by setting G = {z}. Similarly, (iii) follows by
setting G = {z}, and (iv) follows by setting G' = {y|pgy(é(x)) > 0}. [ |

Assume that the process operates under an optimal stationary policy determined
by (9). From Proposition 7, we see that the AROI can be strict at z only if
the process does not reach any finite set in a finite expected amount of time. A
system with this property is unlikely to arise in applications. The impetus for
Proposition 7 came from Cavazos-Cadena }fa“

6 A Sufficient Condition for Assumption C

This section presents a sufficient condition for Assumption C to hold and then
uses this to show how the assumptions can be verified in an example.

Proposition 8 Assume that Assumption A holds. Let z be the distinguished
state, and assume that V(z,8) > —oo, for B € (0,1). Given x # z, assume
that there exists a policy 7, € R*(z,2). Then h(z,B) > ry.(m;), and hence
Assumption C holds with M(x) = —ry, (7).

Proof. If the process begins in state z # z and follows 7, it will reach state
z at some time in the future. Let T be a random variable denoting this time.
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Let the policy n follow 7, until z is reached, and then follow a discount optimal
policy ¢(8). Then

V(z,B) > v(z,,B)
T—1
—E" l Bir(Xy, Ar) | + EX[BTIV (2, B)
= ()
> E;r l r Xt7At +V(zaﬂ)
t

=0
:Tz‘z )+VZIB)

The validity of the second inequality follows from Assumption A. The result
that follows by subtracting V'(z, ) from both sides. [ |

We now give an example. All the examples take place in discrete time.

Example 9 Figure 1 shows the structure. We have a single server queue, and
the service time of a customer is geometrically distributed with success parame-
ter p € (0,1]. There are Bernoulli arrival processes k = 1,2,..., K, and process
k has parameter py, € (0, 1].

The state of the system is the number z > 0 of customers currently in
the system. In each state and each time slot, the action set is {0,1,..., K}.
Action k,1 < k < K, allows arrival process k to operate. In this case, with
probability pg, one customer will enter the system, and with probability 1 — pg,
no customer arrives . Let us adopt the convention that the customer arrives
sometime during the slot, so that, if it arrives to an empty buffer, it will enter
service at the beginning of the next slot. Choosing action 0 bars the system
from new customers for that slot.

There is an increasing holding cost H(xz), where H(0) = 0. If process k is
chosen, then a positive reward R(k) is earned. If action 0 is chosen, then we set
R(0) = 0. If R is the maximum possible reward, then we may set this up as a
reward maximization problem by defining r(z,k) = —H(z)+ R(k) —R,0< k <
K.

Let us argue informally that Assumptions B - D hold, with distinguished
state 0. Let ¢ be the (stationary) policy that always chooses 0. In this case, no
new customers can enter the system and eventually the process will reach state
0 and remain there. In state 0 the reward is —R, and hence v(0, ¢, 3) = —%.
Then 0 > (1 — )V (0,8) > (1 — B)v(0,¢,8) = —R, and Assumption B holds.

For z > 1, it is easy to see that v(z, ¢, 3) > —o0, and hence V (z, 8) is finite.
Moreover, mgo(¢) = £ and ry0(¢) = —[H(z) + H(z — 1) +...+ H(1) + zR]/p,
and hence ¢ € R*(z,0). It follows from Proposition 8 that Assumption C holds.

We may prove by induction on the finite horizon that V(0,8) > V (=, ).
This is intuitively clear since every state has the same choices and the holding
costs are increasing in the state. Granted this, we see that Assumption D holds
with L = 0.
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It then follows from Theorem 6 that an average reward optimal stationary
policy may be determined from the AROI. Since Proposition 7 (iv) holds, the
AROE is valid. We may conjecture that an optimal policy will choose 0 for
sufficiently large x.

Example 10 This is a modification of Example 9. Figure 2 shows the structure.
The arrival streams are as in Example 9. However, each stream has its own
queue and server, with stream k being served at geometric rate p.

The state of the system is the vector x of buffer occupancies. In each state
and each time slot, an allowable action is a vector a, such that ay equals 1 if
the kth process is activated and 0 if it is not.

There is an increasing holding cost Hy(zy) on the content of buffer k, with
zero cost for an empty buffer. Let H(x) = >, Hi(xx). If ar = 1, then a positive
reward Ry, is earned. Let R = ), Ry be the maximum possible reward, and let
R(a) = ), Rray be the reward earned under action a. We may set this up as
a reward maximization problem by defining r(x,a) = —H(x) + R(a) — R.

Let the distinguished state be 0, and let ¢ be the (stationary) policy that
always chooses a = 0. In this case, no new customers can enter the system
and eventually the process will enter state 0 and remain there. The argument
showing that Assumptions B - C hold is similar to that for Example 9.

It is intuitively clear that the best situation for the system is to be in state
0. This is so because there are the same actions in each state, and the holding
cost is minimized in 0. So we have V (0, 3) > V(x, ). A formal induction proof
on the finite horizon may be given to justify this claim. Granted this, we see
that Assumption 3 holds with L = 0.

7 A Sufficient Condition for Assumptions B - C

In Example 9, the presence of the non-admit action aided us in verifying the
assumptions. What if the controller must always choose among the active arrival
streams? In this section, we give a sufficient condition for Assumptions B and
C to hold, and then show how this condition is useful in the modified version of
Example 9.

Definition 11 Let z be a distinguished state. A z standard policy is a (ran-
domized) stationary policy ¢ such that mg,(¢) and ry.(¢) are finite, for all
zeX.

The implications of Definition 11 are: (1) The Markov chain induced by ¢ has a
single positive recurrent class S containing z; (2) The expected time and reward
to reach the class from any = ¢ S are finite; (3) The average reward is a constant
w(¢), for all initial states, and

w(@) = a(y, $)r(y, $(v)), (21)

yES
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where g(—, ¢) is the steady state distribution. If ¢ is randomized, then the
last term in (21) is the expected reward associated with state y. For details on
this concept and other results concerning Markov chains used throughout the
chapter, see fBTAppenduc CJ.

This concept provides a sufﬁcient condition for Assumptions B and C to
hold.

Proposition 12 Assume that Assumption A holds, and let z be the distin-
guished state. If there exists a z standard policy, then Assumptions B - C hold.

Proof. Let ¢ be a z standard policy. Then

w(g) =Y aly, EJr(X,), n>0. (22)

yeS

This is easily proved by induction on n. It holds for n = 0 by (21). For full
details, see [34, p. 299].
Multiplying both sides of (22) by 8™ and summing over n yields

w(g) = (1-8)Y_ (v, d)o(y, 6, B)- (23)

yeS

It follows from (23) that w(¢) < (1 — B)q(z, $)v(z, ¢, B). Hence

and Assumption B holds. The quantity on the left of (24) equals . (¢).
The validity of Assumption C now follows from Proposition 8. [ |

Example 13 This is Example 9, modified to remove the 0 action, so that the
controller must choose among the active streams. We assume that p; < p < 1,
and note that ¢ =: [(1 — p)p1]/[u(1 — p1)] < 1. Assume that

o0

ZH(x)c‘” < 0. (25)

z=1

Assumptions A and D will hold as before. Let ¢ be the stationary policy
that always chooses the first stream. If we can show that ¢ is 0 standard, then
the validity of Assumptions B - C will follow from Proposition 12.

It is clear that ¢ induces an irreducible Markov chain on X. If this chain
is positive recurrent Wit%%ilgite average reward, then it will follow that ¢ is 0
standard. It is shown in [34, Proposition 8.5.1] that

A N ) R S L
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Then w(¢) = R1 — R — (%) > H(z)c® > —oo, where the finiteness follows

from (25). Hence the assumptions hold.

If the arrival streams are not Bernoulli, various Lyapunov techniques (e.g.
fBTAppendlx C]) may be used to prove that ¢ is 0 standard. In particular, if
the mean of the ﬁrst arrival stream is less than p(< 1), the (n + 1)th moment
of this stream is finite, and H(z) is bounded by a polynomial of degree n, then
the result will still hold.

8 Verifying Assumption D

In Examples 9, 10, and 13, we verified Assumption D by finding a state that
maximized the value of V. Choosing that state as the distinguished state then
verified Assumption D with L = 0. Here is a generalization of this technique.

Proposition 14 Assume that Assumption A holds, and that Assumptions B -
C hold for distinguished state z. Assume:

(i) There exists a finite set G of states, containing z, such that, for © ¢ G and
B € (0,1), there ezists y € G with V(y,8) > V(z, B).

(ii) Given y € G — {2}, there exists a policy 7y € R*(z,y).
Then Assumption D holds.

Proof. We claim that the nonnegative quantity

L= - < 27

yerg%){(z}[ Tay(my)] < 00 (27)

will work to verify Assumption D. To see this, fix z # z and 8 € (0,1). If z ¢ G,

let y be as in (i). Whereas, if z € G, let y = z. Let the process start in z and

follow the policy m, until y is reached, and then follow a 8 discount optimal
stationary policy. Using similar reasoning to that in (20), we have

V(z,8) 2 2y (my) + V(y, B)

L+ V(e.5). (28)

2T
> -
and hence Assumption D holds. [ |

It is possible to generalize Proposition 14 to allow G to be infinite, if we can
show that L defined in (27) as a supremum, is finite. Here is an example using
Proposition 14.

Example 15 This is a modification of Example 10. In this case, if z; = 0, then
we must set ar = 1. That is, if a buffer is empty, then we must activate the
arrival process for that buffer. Otherwise, the model remains the same. Notice
that the allowable set of actions now depends on the state.
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Let ¢ be the stationary policy that chooses ar = 0 when x; > 1. When
a buffer is empty, it must admit, but as soon as a customer enters the system
and begins service, arrivals are rejected until that service is finished. Hence
each buffer contains either 0 or 1 customer. Indeed, the positive recurrent class
is § = {x|zr = 0,1}. It is readily seen that ¢ is 0 standard, and hence by
Proposition 12, it follows that Assumptions B - C hold.

A bit of thought convinces us that V takes on its maximum value in the
finite set S. The reason is that, for any state x with x; > 1, the controller is
in a better position as z; decreases to 1, while holding the other coordinates
constant. Once this has been done, the same reasoning can be given for x5, etc.
until we reach a state in S. We may set 7y = ¢, for y € S — {0}. Hence it
follows from Proposition 14 that Assumption D holds.

9 A Stronger Set of Assumptions

This section presents a sufficient “non-structural” set of conditions for the as-
sumptions.

Proposition 16 Assume that Assumption A holds, and let z be a distinguished
state. Assume:

(1) There exists a z standard policy ¢ with positive recurrent class S.

(if) There exists € > 0 such that G = {z|r(z,a) > w(p) — € for some a} is a
finite set.

(iii) Giveny € G — S, there exists a policy 7y, € R*(2,y).
Then Assumptions B - D hold. Moreover:
1. The AROE holds.

2. The Markov chain induced by an optimal stationary policy i has at least
one positive recurrent state in the set G(¢) = {z|r(z,¢(z)) > W — €}.
Let S() be the set of positive recurrent states. The number of positive
recurrent classes making up S(v) cannot exceed |G(v)|, and there are no
null recurrent classes.

3. If 1 realizes the mazimum in the AROE, then ¢ € R*(z,G(¢) N S(¥)),
for all x. Hence, if S(3) consists of a single class, then v is y standard,

fory e S(¥).

Proof. It follows from (i) and Proposition 12 that Assumptions B - C hold.
Suppose we can show

(*): V takes on its maximum in the finite set G given in (ii).

We may then apply Proposition 14 to show that Assumption D holds. (Add
z to the set G if necessary. For y € (GNS) — {z}, set 7y = ¢.)
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To show (*), let us fix § € (0,1) and suppress it in our notation. We first let
o be any (randomized) stationary policy and choose z ¢ G. Let T be the time
of a first passage from x to G, under o. For notational purposes, let a = "’Y’f)ﬂ*e
Then we have

v(z,0) < Ef[a(T = 00) + {a(1 = B7) + BTv(Xr,0) (T <o)l (29)

This follows since w(¢) — € is an upper bound on the rewards outside of G.

Since the expression on the right of (23) is a convex combination, it follows
from (23) that there exists y € S such that w(¢) < (1 — B)v(y,d). We claim
that

w(¢) < (1 — B)v(i,d), for some i € G. (30)

This is proved by contradiction. Assume that (30) fails. Use (29) with o = ¢
and z = y to obtain a contradiction. (Note that I(T = c0) = 0.)

Since G is finite, it follows that there exists j € G that maximizes the value
of V for initial states in G. Then from (30) it follows that

w
U < V(). G
Let us now begin the process in z ¢ G and operate under the discount
optimal stationary policy ¢(8). Applying (29) with ¢ = ¢(8) and using (31)
yields V(z) < V(j). This shows that V takes on its maximum in G, and proves
that the assumptions hold. onb
Proposition 16 is the average reward version of fiﬂ,’ Theorem 7.5.6]. The
rather lengthy argument for the validity of (1)-(3) is given there for the average
cost case, and we omit the proof. [ |

The following remarks discuss background and also some subtle ramifications
of the conditions in Proposition 16.

Remark 17 Propo5;1'{{’1"91[%1 11 goa’—}zgo lg'gJabg%sion of an ass mption set originally
developed by Borkar |[3, 4, 5, 0] and denoted (BOR) in . The proof that
(BOR) = (SEN) originally appeared in Cavazos-Cadena and Sennott . As-
sume that (BOR) holds, and let v be an optimal stationary policy. From (2) it
follows that the Markov chain induced by 1 has at least one positive recurrent
state in G(v), and no null recurrent classes. Thus e%ll non-positive recurrent
states must be transient. It is shown in Sennott 7?73? that the probability of
reaching a positive recurrent class from any transient state is 1. However, an
example is given showing that the expected time of such a first passage may be
infinite. Of course, by (3) this behavior cannot occur if ¢ realizes the AROE.

Remark 18 There is a slightly weaker assumption set due to Stidham and We-
ber%ﬁ], and denoted (WS) in . The only change is that (i) appears without
the €. It is the case that (BOR) = (WS) = (SEN). Under (WS) it is still possi-
ble to prove the corresponding version of (2) which fé% the € omitted. However,
interestingly enough, (8) may fail. Problem 7.7 in %Z% asks the reader for such
a construction, and this is available from the author.



16 9 A STRONGER SET OF ASSUMPTIONS

. . L. ava, cavb, cavd
The following corollaries of Proposition 16 are due to Cavazos-Cadenal[7, g, 101.
In each case, it is easily shown that conditions (i-iii) of Proposition 16 hold.
These results are very useful when the rewards are unbounded outside of finite
sets.

Corollary 19 Assume that Assumption A holds, and let z be a distinguished
state. Assume:

(i) There exists a z standard policy ¢ with positive recurrent class S.

(ii) Given a positive number U, the set G(U) = {z|r(z,a) > =U for some a}
is finite.

(iif) Given y € X — S, there exists a policy my, € R*(z,y).

Then the conclusions of Proposition 16 hold.

Corollary 20 Assume that Assumption A holds. Assume that there exists a
standard policy ¢ such that S = X. If, for each positive number U, the set
G(U) = {z|r(z,a) > =U for some a} is finite, then the conclusions of Proposi-
tion 16 hold.

The last example shows how Corollary 20 may be applied.

Example 21 Consider a polling system as in Figure 3. Stations 1,2,...,K
are arranged in a ring. We will be dealing with a number of distributions,
and for each one, we assume that the parameter of that distribution lies in
the interval (0,1]. Each station has an infinite buffer and the arrival stream
to station k is Bernoulli with parameter p;. The service time of a customer
at station k follows a geometric distribution with rate uy. The server travels
around the ring counterclockwise from station 1 to station 2, etc., and finally
back to station 1. The walking time for the server to get from station k — 1
to station k is geometrically distributed with rate wg. Note that station 0 is
station K. The set-up time at station k (which occurs after a walk terminating
at k) is geometrically distributed with rate ;. The arrival processes, service
times, walking times, and set-up times are all independent.

The state of the system is a vector (x,k,z). Here x is the K vector of
buffer occupancies. The quantity k indicates the number of the station currently
involved, and z = 0, 1, 2 indicates the condition of the server. Here z = 0 means
that the server is already set-up at k (and ready to serve customers if the buffer
is nonempty); z = 1 means that the server is setting up at k; and z = 2 means
that the server is walking from k& — 1 to k.

A choice of action is available only when 2z = 0 or 1. The action set is
A = {a,b}, where a = remain at the present station, and b = initiate a walk.
We are assuming that if the server is walking to a station, then the walk must
be completed. However, when the station is reached and set-up is begun, it may
be aborted at any time.
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A holding cost of Hyx is incurred on a buffer content of z at station k, where
Hj;, > 0. The objective is to minimize the expected average holding cost. This
may be cast as a reward maximization problem by setting the reward equal to
- Z Hk Tk -

We assume that

K
Pk 1. (32)
=1 H*

This is the condition for stability of the polling system under a stationary policy
known as exhaustive service, denoted ¢. This policy operates as follows. If the
server arrives to an empty station, it immediately initiates a walk to the next
station. If it arrives to a station with customers, it sets up and serves customers
at that station until the buffer empties, and it then walks to the next station.
Note that when the system is empty the server will continually cycle until a
customer enters the system.

It is easy to see that ¢ induces an irreducible Markov chain on X. Moreover,
it may be shown that the chain is positive recurrent with finite average reward. It
then follows immediately from Corollary 20 that the conclusions of Proposition
16 hold.

Most of the work on polling systems has been done for continuous time systems.
Under the assumptions of Poisson arrivals and exponential service times, the
stability of the exhaustive service policy under (32) was derived heuristically by
’l;%kagi%%?and rigorously by Aliﬁ%an et.al %%gl C;eg(r:giadis and Szpankowski

]. See also Fricher and Jaibi [I7]. Takagi We useful survey articles
containing many references.

10 Weakening the Assumptions

It is possible to weaken the assumptions by allowing the constant L in Assump-
tion D to be a function. This necessitates several additional assumptions. This
development, for the cost minimization framework, is given in [34, Sec. 7.7].
The resulting set of assumptions is denoted (H). %;y are related to a line of
development due to Hordijk l23, ?3 and also to Hu [[25]. Also see Spieksma?ﬁ%].
Example 7.7.4 of is a priority queueing system satisfying (H) but for which
(SEN) may not hold.

11 Appendix

For a given policy 7 and initial state z, let w*(z,m) be the limit supremum of
the expected average rewards. That is, w*(z, ) is defined as in (=) but with lim
inf replaced by lim sup. The following result provides a crucial link between the
discounted value function under 7 and the lim inf and lim sup expected average
rewards under 7.
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Proposition 22 For any policy m and initial state x we have

U)(.Z’,ﬂ') < hgli{lf(l - ,B)U(:E,ﬂ',ﬂ) < hmsup(l - ,B)’U(.Z’,ﬂ',ﬂ) < U)*(maﬂ-)' (33)
- B—1

For any x € X the following are equivalent:
(i) All the terms in (33) are equal and finite.

(i) w(z,7) = w*(x,7) > —o0, and hence the quantity in () is obtained as a
limit.

(iil) limg—1 (1 — B)v(z, m, B) exists and is finite.

Proof. ﬁ%hls result is stated for the cost minimization case as Proposition
6.1.1 in and a complete proof appears in Sec, .A.4 of . The statement
of (33) for the continuous case appears in Widder ﬁﬁ% Grantmg (33), it is easy
to see that the only non-trivial implication is (iii) = (ii). The original proof of
this is due to Karamata (see Titchmarsch [40]). This proof is adapted and fully
explicated in gﬁ% [ |

12 Bibliographic Notes

Important early work was done by Derman IZ K Stronger jgsgmgtl&ns Pkaan

those in this ter were developed by Federgruen and others
1 ..
see Lippman [27] and Wijngaard H%[%

A line of development has extended some o[g ‘chese1 rebsull‘gs to thhe general state
space case, see Hernandez-Lerma and others [19; 20, 21, 22, 28]. Also see Ritt
and Sennott ]

1 Detailed discyssions of prior work occur in Arapostathis et al ﬁT Puterman

] and Sennott
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