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Abstract: The theme of this chapter is stability and performance approxima-
tion for MDPs on an infinite state space. The main results are centered around
stochastic Lyapunov functions for verifying stability and bounding performance.
An operator-theoretic framework is used to reduce the analytic arguments to
the level of the finite state-space case.

10.1 INTRODUCTION

10.1.1 Models on a general state space

This chapter focuses on stability of Markov chain models. Our main interest is
the various relationships between stability; the existence of Lyapunov functions;
performance evaluation; and existence of optimal policies for controlled Markov
chains. We also consider two classes of algorithms for constructing policies, the
policy and value iteration algorithms, since they provide excellent examples
of the application of Lyapunov function techniques for i-irreducible Markov
chains on an uncountable state space.

Considering the importance of these topics, it is not surprising that consid-
erable research has been done in each of these directions. In this chapter we do
not attempt a survey of all existing literature, or present the most comprehen-
sive results. In particular, only the average cost optimality criterion is treated,
and the assumptions we impose imply that the average cost is independent of
the starting point of the process. By restricting attention in this way we hope
that we can make the methodology more transparent.

One sees in several chapters in this volume that the generalization from finite
state spaces to countable state spaces can lead to considerable technicalities.
In particular, invariant distributions may not exist, and the cost functions
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of interest may not take on finite values. It would be reasonable to assume
that the move from countable state spaces, to MDPs on a general state space
should be at least as difficult. This assumption is probably valid if one desires
a completely general theory.

However, the MDPs that we typically come across in practice exhibit struc-
ture which simplifies analysis, sometimes bringing us to the level of difficulty
found in the countable, or even the finite state space case. For example, all of
the specific models to be considered in this chapter, and most in this volume,
have some degree of spatial homogeneity. The processes found in most appli-
cations will also exhibit some level of continuity in the sense that from similar
starting points, and similar control sequences, two realizations of the model
will have similar statistical descriptions. We do not require strong continuity
conditions such as the strong Feller property, although this assumption is some-
times useful to establish existence and uniqueness of solutions to the various
static optimization problems that arise in the analysis of controlled Markov
chains. An assumption of t-irreducibility, to be described and developed be-
low, allows one to lift much of the stability theory in the discrete state space
setting to models on a completely general, non-countable state space. This is
an exceptionally mild assumption on the model and, without this assumption,
the theory of MDPs on a general state space is currently extremely weak.

10.1.2 An operator-theoretic framework

When x is v-irreducible it is possible to enlarge the state space to construct an
atom 6 € X which is reachable from any initial condition (i.e. P, {7y < oo} > 0,
x € X). When the atom is recurrent, that is, Py{ry < oo} = 1, then an
invariant measure (see (10.9)) is given by

p{Y} = E, [Z ly(wt)], Y €F, (10.1)

where 7y is the first return time to 6 (see (10.6)), and 1y is the indicator
function of the set Y. This construction, and related results may be found
in [45, 39]. In words, the quantity u{Y} expresses the mean number of times
that the chain visits the set Y before returning to . This expression assumes
that 75 is almost surely finite. If the mean return time IEg[7y] is finite then in
fact the measure p is finite, and it can then be normalized to give an invariant
probability measure. Finiteness of the mean return time to some desirable state
is the standard stability condition used for Markov chains, and for MDPs in
which one is interested in the average cost optimality criterion.
Unfortunately, the split chain construction is cumbersome when developing
a theory for controlled Markov chains. The sample path interpretation given in
(10.1) is appealing, but it will be more convenient to work within an operator-
theoretic framework, following [45]. To motivate this, suppose first that we
remain in the previous setting with an uncontrolled Markov chain, and suppose
that do have an state 8 € X satisfying IPy{ry < oo} = 1. Denote by s the
function which is equal to one at 6, and zero elsewhere: That is, s = 14. We
let v denote the probability measure on X given by v(Y) = p(Y | 8), Y € F,
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and define the ‘outer product’ of s and v by
s@u(x,Y):=s(x)v(Y).

For example, in the finite state space case the measure v can be interpreted
as a row vector, the function s as a column vector, and s ® v is the standard
(outer) product of these two vectors. Hence s ® v is an N x N matrix, where
N is the number of states.

In general, the kernel s ® v may be viewed as a rank-one operator which
maps Lo to itself, where L, is the set of bounded, measurable functions on
X. Several other bounded linear operators on L., will be developed in this
chapter. The most basic are the n-step transition kernels, defined for n > 1 by

P f (2) = / f@p"(dylz), € Lo,

where p™(- | -) is the n-step state transition function for the chain. We set
P = P'. We can then write, in operator-theoretic notation,

Po{rg >n,2, €Y} =v(P-sov)" 'y, n>1,

and hence the invariant measure p given in (10.1) is expressed in this notation
as

v(P-s@v)"'ly, Y €T (10.2)

NE

uY) =

n=1

It is this algebraic description of p that will be generalized and exploited in this
chapter.

How can we mimic this algebraic structure without constructing an atom
0? First, we require a function s: X — Ry and a probability measure v on F
satisfying the minorization condition,

p(Y | z) > s(z)v(Y), zeX, Vel

In operator theoretic notation this is written P > s ® v, and in the countable
state space case this means that the transition matrix P dominates an outer
product of two vectors with non-negative entries.

Unfortunately, this ‘one step’ minorization assumption excludes a large class
of models, even the simple linear models to be considered as examples below.
One can however move to the resolvent kernel defined by

o0

K=(1-8)> p'P, (10.3)

t=0

where 3 €]0, 1] is some fixed constant. For a ¢-irreducible chain the required
minorization always holds for the resolvent K [39, Theorem 5.2.3]. The move
to the resolvent is useful since almost any object of interest can be mapped
between the resolvent chain, and the original Markov chain. In particular, the
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invariant measures for P and K coincide (see [39, Theorem 10.4.3], or consider
the resolvent equation in (10.11) below).
Much of the analysis then will involve the potential kernels, defined via

G = iKt. (10.4)
t=0
H = f:(K —s®@v)t. (10.5)

In Theorem 10.1 below we demonstrate invariance of the o-finite measure
defined by,

) = / v(de)H(z,Y), Y eF,

provided the chain is recurrent. The invariant measure can be written in the
compact form p = vH.

The measure p will be finite, rather than just o-finite, provided appropriate
stability conditions are satisfied. The most natural stability assumption is
equivalent to the existence of a Lyapunov function, whose form is very similar
to the Poisson equation found in the average cost optimality equation. The
development of these connections is one of the main themes of this chapter.

10.1.3 Overview

We conclude with an outline of the topics to follow. In the next section we
review a bit of the general theory of ¢-irreducible chains, and develop some
stochastic Lyapunov theory for such chains following [39, Chapters 11-14]. Fol-
lowing this, in Section 10.3 we develop in some detail the computation of the
average cost through the Poisson equation, and the construction of bounds
on the average cost. All of these results are developed for time homogeneous
chains without control.

In Section 10.4 this stability theory is applied to the analysis of the av-
erage cost optimality equation (ACOE). We explore the consequences of this
equation, and derive criteria for the existence of a solution.

Section 10.5 concerns two recursive algorithms for generating solutions to
the ACOE: value iteration and policy iteration. It is shown that (i) either
algorithm generates stabilizing stationary policies; (ii) for any of these policies,
the algorithms generate uniform bounds on steady state performance. However,
such results hold only if the algorithms are properly initialized.

Convergence is established for the policy iteration algorithm: Under suitable
conditions, and when properly initialized, the algorithm converges to a solution
of the ACOE.

Section 10.6 illustrates the theory with a detailed application to linear mod-
els, and to network scheduling.

This chapter is concluded with a discussion of some extensions and open
problems.



