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Abstract: This chapter deals with total reward criteria. We discuss the exis-

tence and structure of optimal and nearly optimal policies and the convergence

of value iteration algorithms under the so-called General Convergence Condi-

tion. This condition assumes that, for any initial state and for any policy, the

expected sum of positive parts of rewards is �nite. Positive, negative, and dis-

counted dynamic programming problems are special cases when the General

Convergence Condition holds.

6.1 INTRODUCTION

This chapter deals with the total reward criterion. This criterion is natural for
�nite horizon problems and for in�nite horizon problems in which the number of
steps is not �xed but it is �nite along most trajectories. The examples include
discounted criteria, which can be interpreted as problems with geometrically
distributed horizon, as well as other problems such as sequential statistical
procedures, stopping, search, and optimal selection problems.

The analysis of �nite horizon models is usually based on the analysis of
optimality equations and optimality operators. The value function satis�es
the optimality equation and a Markov policy constructed by value iteration
procedures is optimal. If optimality cannot be achieved, one can sequentially
construct an "-optimal Markov policy for an N -horizon problem by backward
induction. Such a policy is formed by actions for which the reward operators,
when applied to the value function at the corresponding step, are ("=N)-close
to the optimal value.

For in�nite horizon problems, we can distinguish two distinct approaches.
The �rst approach deals with the analysis of optimality (also called, dynamic
programming) equations and operators. The second approach studies prob-
ability distributions on the sets of trajectories. In fact, the most interesting
results have been achieved by combining these two approaches.
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As was observed in the sixties, certain properties of optimality operators,
namely contracting and motonicity properties, imply the existence of optimal
or nearly optimal policies within natural classes of policies. These properties
also imply the convergence of algorithms. In general, dynamic programming
operators may not possess these properties. However, if the one-step reward
function is uniformly bounded and the nonnegative discount factor is less then
one, then the contracting property holds. If rewards are nonnegative (nonpos-
itive) then the value iteration algorithm, applied to the zero terminal value,
forms a monotone and therefore convergent sequence. The mentioned three
models are called discounted, positive, and negative respectively.

The �rst comprehensive results were obtained for these three models. Black-
well [8] Denardo [18], Strauch [61] studied discounted models, Blackwell [9],
Ornstein [50], and Strauch [61] studied positive models, and Strauch [61] stud-
ied negative models. The results di�er signi�cantly from one model to another.
To illustrate these di�erences, let us consider the situation when the state
space is countable and there are no additional assumptions such as compact-
ness of action sets. For discounted and positive models, for each initial state
the supremum of the expected total rewards over the class of all policies is
equal to the corresponding supremum over the class of all stationary policies;
Blackwell [8, 9]. However, it is not true for negative models; Example 6.5. For
discounted models, for any positive constant ", there exist stationary "-optimal
policies. Such policies may not exist for positive models; Blackwell [9]. How-
ever, for positive models there exist stationary "V -optimal policies also called
multiplicatively "-optimal; Ornstein [50]. There are other signi�cant di�erences
between positive, negative, and discounted programming. The di�erences are
so signi�cant that for a long period of time it was even was not clear how to
formulate uni�ed results. As the result, all textbooks on dynamic programming
and Markov decision processes, that deal with in�nite-horizon models with to-
tal rewards, consider only positive, negative, and discounted models and deal
with them separately; see e.g. Ross [53] and Puterman [52].

In addition to positive, negative, and discounted models, problems with
arbitrary reward functions and without discounting have been considered in the
literature for a long period of time. It turned out that the most comprehensive
results can be proved when the so-called General Convergence Condition holds.
This condition means that the positive part of the reward function satis�es the
positive programming assumptions. Positive, negative, and discounted models
are particular cases of models satisfying the General Convergence Condition.

Blackwell [7] and Krylov [45] proved the existence of stationary optimal
policies for MDPs with �nite state and action sets. Dubins and Savage [20]
and Hordijk [43] described necessary and suÆcient conditions for optimality,
so-called conserving and equalizing conditions. Derman and Strauch [19] and
Strauch [61] proved that, for a given initial state, any policy can be substi-
tuted with an equivalent randomized Markov policy. Krylov [45] and Gikhman
and Skorohod [40] showed that nonrandomized policies are as good as random-
ized policies. Dynkin and Yushkevich [21] proved that if someone randomizes
between di�erent policies, the objective function cannot be improved. Fein-
berg [22, 23] proved that, for a given initial state, (nonrandomized) Markov
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policies are as good as general ones; earlier van Hee [70] showed that the supre-
mum of the expected total rewards over the class of Markov policies is equal
to the supremum over the class of all policies.

Seminal papers by Blackwell [8, 9] and Strauch [61] dealt with models with
Borel state and action spaces. Some of the following papers on total reward
MDPs dealt just with countable state spaces. For some results, their extension
from countable to uncountable models is a straightforward exercise. For other
results, such extensions are either diÆcult or impossible. In addition, Blackwell
and Strauch considered Borel-measurable policies and discovered that "-optimal
policies may not exist but for any initial measure they exist almost everywhere.
In order to establish the existence of everywhere "-optimal policies, one should
expand the set of policies to universally measurable or analytically measur-
able policies. Such extension was introduced by Blackwell, Freedman, and
Orkin [11] and it was done in a systematic and comprehensive way in the book
by Bertsekas and Shreve [5]. In particular, this book expanded in a natural
way almost all results on positive, negative and discounted programming in a
way that "-optimality was established instead of almost sure "-optimality. The
major exception was Ornstein's theorem [50]. It was proved by Ornstein [50]
for a countable state space; see also Hordijk [43]. It's extension to Borel models
in the sense of almost sure multiplicative nearly-optimality was formulated by
Blackwell [9] as an open question. Frid [38] solved this problem (Sch�al and
Sudderth [59] found a correctable gap in Frid's proof). The natural conjecture
is that under more general measurability assumptions, in the spirit of Bertsekas
and Shreve [5], almost sure nearly-optimality can be replaced with nearly op-
timality everywhere in Ornstein's theorem. Blackwell and Ramachandran [12]
constructed a counter-example to this conjecture.

For the General Convergence Condition, signi�cantly deeper results are
available for countable state models than for Borel state problems. First, three
important particular results were discovered by van der Wal: (i) the supremum
of the expected total rewards over all policies is equal to the supremum over sta-
tionary policies if the action sets are �nite; [66, Theorem 2.22] (this result was
generalized by Sch�al [56] to Borel state models with compact action sets); (ii)
extension of Ornstein's theorem to models in which rewards may be nonpositive
and in each state, where the value function is nonpositive, a conserving action
exists; [68] (this results was generalized by van Dawen and Sch�al [65, 64]); (iii)
existence of uniformly nearly-optimal Markov policies; [67]. The survey by van
der Wal and Wessels [69] describes these and many preceding results.

Feinberg and Sonin [34] generalized Ornstein's [50] theorem to models satis-
fying the General Convergence Condition. For the long period of time, it had
not been clear even how to formulate such results. The �rst clue is that in the
more general formulation the value function of the class of stationary policies
should be considered instead of the value function of the class of all policies.
The second clue is that, in the de�nition of multiplicative "-optimal policies (or
in the de�nition of "V -optimal policies according to another terminology), the
value function V should be replaced with an excessive majorant of a value func-
tion of the class of stationary policies. The proofs in Feinberg and Sonin [34]
are non-trivial and di�er from Ornstein's [36] proofs. Feinberg and Sonin [36]



176 HANDBOOK OF MARKOV DECISION PROCESSES

extended these results to non-stationary policies and to more general classes of
functions that approximate optimal values.

Feinberg [25, 26] described the structure of uniformly nearly-optimal policies
in countable state models satisfying the General Convergence Condition. As
mentioned above, stationary policies can be signi�cantly outperformed by non-
stationary policies in negative problems; see Example 6.5. It turned out that
this example demonstrates the only pathological situation when the value of
the class of stationary policies is less than the value of the class of all policies.
Consider the set of states at which the value function equals zero and there
are no conserving actions (actions at which the optimality operator applied
to the value function achieves its maximum). Then there are policies which
are uniformly nearly optimal and which are stationary outside of this set; see
Theorems 6.20 and 6.21.

Another important feature of the papers by Feinberg and Sonin [36, 25, 26] is
that they consider general classes of nonstationary policies and general methods
how to deals with nonstationary policies. In particular, the information about
the past plays an important role. It is possible to identify two properties
of this information: (i) Non-Repeating and (ii) Transitivity Conditions. The
Non-Repeating condition implies that randomized policies are as good as non-
randomized ones and there exist uniformly nearly optimal policies within any
class of policies that satis�es this condition. The Transitivity Condition implies
that the model can be transformed into a new model in a way that the class of
policies satisfying this condition in the old model becomes the class of stationary
policies in the new one.

This paper is a survey of results and methods for models satisfying the Gen-
eral Convergence Condition. We consider countable state MDPs everywhere
in this paper, except Section 6.10. We present the theory for countable state
MDPs, discuss Borel state MDPs, and discuss open questions, most of which
deal with uncountable state spaces. In order to illustrate major concepts and
counter-examples, we start our presentation with classical discounted, positive,
and negative problems.

6.2 DEFINITIONS OF DISCOUNTED, POSITIVE, NEGATIVE, AND

GENERAL CONVERGENT MODELS

We say that an MDP is discounted if function r is bounded and there is a
constant � 2 [0; 1[, called the discount factor, such that

v(x; �) = IE�

x

1X

t=0

�tr(xt; at): (6.1)

An MDP is called unbounded discounted if (6.1) holds and the function r is
bounded above, r(x; a) � C <1 for all x 2 X; a 2 A (x) and for some C:

Discounted and unbounded discounted MDPs can be reduced to an MDP
with a discount factor equal to 1. In order to do it, we add an additional
state to the state space X. This state has only one action under which it is
absorbent and all rewards are equal to zero in this state. This state sometimes
is called a grave. The one-step transition probabilities between states in X


