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8.1 FINITE MODELS

In this introductory section we consider Blackwell optimality in Controlled
Markov Processes (CMPs) with �nite state and action spaces; for brevity,
we call them �nite models. We introduce the basic de�nitions, the Laurent-
expansion technique, the lexicographical policy improvement, and the Blackwell
optimality equation, which were developed at the early stage of the study of
sensitive criteria in CMPs. We also mention some extensions and generaliza-
tions obtained afterwards for the case of a �nite state space. In Chapter 2
the algorithmic approach to Blackwell optimality for �nite models is given.
We refer to that chapter for computational methods. Especially for the linear
programming method, which we do not introduce.

8.1.1 De�nition and existence of Blackwell optimal policies

We consider an in�nite horizon CMP with a �nite state space X, a �nite action
space A , action sets A (x) = Ax, transition probabilities pxy(a) = p(yjx; a), and
reward function r(x; a) (x 2 X; a 2 Ax; y 2 X). Let m be the number of states
in X.

We refer to Chapter 1 for de�nitions of various policies, of probability distri-
butions and expectations corresponding to them, and notations. We also use
the notation

K = f(x; a) : a 2 A (x); x 2 Xg; (1)

so that, in particular,

P af(x) =
X
y2X

pxy(a)f(y); (x; a) 2 K : (2)
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For every discount factor � 2 (0; 1) the expected total reward

v(x; �; �) = v�(x; �) := E
�
x

"
1X
t=0

�tr(xt; at)

#
(3)

converges absolutely and uniformly in the initial state x and policy �, so that
the value function

V (x; �) = V�(x) := sup
�2�

v�(x; �); x 2 X

is well de�ned and �nite. Following Blackwell [3], in this chapter we say that
a policy � is �-optimal if v�(x; �) = V�(x) for all x 2 X (not to confuse with
�-optimal policies, for which v�(�) � V� � �; in this chapter we do not use
them).

In the case of a stationary policy ' 2 �s it is convenient to write (3) in
matrix notations. In that case we have an m�m transition matrix P (') = P'

with entries pxy('(x)) = p'xy, and (3) can be written in the form

v�(') = v'� =

1X
t=0

(�P')
t
r' = (I � �P')�1r' (4)

where r' is a vector with entries r(x; '(x)), x 2 X (formula (4) makes sense
also for complex � with j�j < 1), (in the notation (2) P'f(x) = P'(x)f(x)).
For every � 2 (0; 1) there exists a �-optimal policy '� 2 �s; namely, one may
set

'�(x) = argmax
a2Ax

h
r(x; a) + �

X
y2X

P av�(x)
i
; x 2 X:

In the important case of undiscounted rewards, when � = 1, the total ex-
pected reward in general diverges, and the simplest performance measure is the
average expected reward w(x; �) = w�(x) (see Chapter 1). For a stationary
policy '

w' = lim
n!1

1

n

n�1X
t=0

(P')tr' = Q'r' = lim
�"1

(1� �)v'� ; (5)

where Q' = Q(') is the stationary (or limiting) matrix

Q' = lim
N!1

1

N + 1

NX
t=0

(P')
t
; and Q'P' = P'Q' = Q': (6)

The last expression for w' in (5) follows from (3) and the fact that Cesaro
summability of a divergent series implies its Abel summability to the same limit.
Howard [27] proved the existence of average optimal policies in �nite CMPs
with the class �s of admissible policies, and developed a policy improvement
algorithm to �nd them, related with his name. Almost at the same time Wagner
[46] determined that such policies are average optimal in the class � too.

However, the average reward criterion is insensitive, under selective since it is
entirely determined by the arbitrarily far tail of the rewards; in accordance with
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this criterion, two policies providing rewards 100+0+0+ � � � and 0+0+0+ � � �
are equally good (or bad). Blackwell [3] in his study of �nite CMPs introduced
a much more sensitive concept of optimality, that bears now his name, and
proved the existence of stationary policies optimal in this new sense.

De�nition 8.1 A policy � is said to be Blackwell optimal, if � is �-optimal
for all values of � in an interval �0 < � < 1.

A stationary Blackwell optimal policy ' is average optimal. Indeed, there
exists a stationary average optimal policy  , and by (5)

w = lim
�"1

(1� �)v � � lim
�"1

(1� �)v'� = w';

so that w' = w . Since the last limit is the same for all Blackwell optimal
policies, stationary or not (as follows from De�nition 8.1), and since by The-
orem 8.1 below there is a stationary Blackwell optimal policy, every Blackwell
optimal policy � 2 � is average optimal.

Theorem 8.1 In �nite CMP there exists a stationary Blackwell optimal policy.

Proof. Since for every positive � < 1 there exists a �-optimal policy '� 2 �s,
and because the set �s of stationary policies is �nite together with X and A ,
there exists a stationary policy ' which is �-optimal for all � = �n where
�n " 1. We claim that ' is Blackwell optimal.

Suppose the contrary. Then, because X and �s are �nite sets, there are a
state x0, a policy  2 �s, and a sequence 
n " 1 such that

v'� (x0) < v � (x0) for � = 
n; 
n " 1:

On the other hand, by the selection of '

v'� (x0) � v � (x0) for � = �n " 1:

It follows that the function

f(�) = v'� (x0)� v � (x0)

de�ned for all complex � with j�j < 1 takes on the value 0 at an in�nite
sequence of di�erent points zn " 1, and takes on nonzero values at the points

n " 1.

By using Cramer's rule to compute the inverse matrix, we �nd that each
entry of (I � �P')�1 is a rational function of �, and the same is true with  
in place of '. Therefore and by (4), f(�) is a rational function of the complex
variable � in the circle j�j < 1 (and hence on the whole complex plane). A
rational function cannot have in�nitely many di�erent zeros zn if it is not an
identical zero. The obtained contradiction proves that ' is Blackwell optimal.

The above proof is a purely existence argument, without any indication
how to �nd a Blackwell optimal policy '. Blackwell's original proof also did
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not provide a complete algorithm to obtain ', but it contained some essential
elements in this direction. Blackwell used, besides the limiting matrix Q', the
deviation matrix D' corresponding to ' 2 �s. If the Markov chain with the
transition matrix P' is aperiodic, then

D' =
1X
t=0

[(P')t �Q']; (7)

and the above series converges geometrically fast; in general

D' = lim
N!1

1

N + 1

NX
n=0

nX
t=0

[(P')t �Q']: (70)

An important property of this matrix is that D' is uniquely determined by the
equations

D'Q' = Q'D' = 0; (8)

D'(I � P') = (I � P')D' = I �Q' (9)

(see, for instance, Kemeny and Snell [29]). Blackwell derived and utilized the
expansion

v'� =
h'�1
1� �

+ h'0 + o(1) as � " 1; (10)

where
h'�1 = Q'r'; h'0 = D'r'; (11)

and introduced the notion of a nearly optimal policy � 2 �. For such a policy
V� � v�� = o(1) as � " 1.

The existence of a Blackwell optimal policy ' 2 �s implies a similar expan-
sion for the value function

V�(x) =
h�1
1� �

+ h0 + o(1) as � " 1: (12)

It is easy to see using (12), that a policy � is average optimal i� v�� = h�1=�+
o(1=�), where � = 1��, and that � is nearly optimal i� v�� = h�1=�+h0+o(1).

8.1.2 Laurent series expansions and n-discount optimality

Average optimal and nearly optimal policies, as well as relations (10)-(12),
are at the start of a chain of notions and equations developed by Miller and
Veinott [33] and Veinott [42], which lead to a deeper insight into Blackwell
optimal policies and to an algorithm to �nd them. We present their main ideas
in a slightly modi�ed form.

The approach is based on the Laurent series expansion of the resolvent

R� = (I � �P )�1 = I + �P + �2P 2 + � � � (j�j < 1) (13)

of a Markov chain with the transition kernel P in the neighborhood of the point
� = 1. This expansion is a general fact known in functional analysis (see, for
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instance, [48]). In the particular case of an aperiodic Markov chain, it follows
immediately from the geometric convergence of P t to the limiting matrix Q.
Indeed, the di�erence

R� �
1

1� �
Q = (I �Q) + �(P �Q) + �2(P 2 �Q) + � � � ;

in which kPn�Qk � C
n for some 
 < 1, is an analytic function of the complex
variable � in the circle j�j < 1=
 (we use the norm in the space of (m �m)-
matrices generated by the supremum norm in the space of m-vectors). The
point � = 1 is inside this circle, thus R� has the same singularity at the point
� = 1 as 1

1��Q, i.e. has a single pole. Therefore in some ring 0 < j� � 1j < �0
a Laurent expansion

R� =
R�1
�

+R0 +R1�+R2�
2 + � � � ; � = 1� � (14)

holds. If the Markov chain is periodic, consider the least common multiple d
of the periods of all its ergodic classes. The chain with a kernel P d is then
aperiodic, so that Pnd converges geometrically fast to a stochastic matrix eQ as
n!1. Similar to the preceding argument, it follows that the in�nite sumeR� = I + �dP + �2dP 2 + � � �

is analytic in a circle j�jd < 1=
 of a radius greater than 1, and thus has a
simple pole at � = 1. Then the same is true for

R� = (I + �P + � � �+ �d�1P d�1) eR� :
Instead of the Laurent series (14), one may write a similar series in powers

of another small parameter � equivalent to �, which has the meaning of an
interest rate:

� =
1� �

�
=

�

1� �
; � =

1

1 + �
= 1� �: (15)

Veinott [42] and most of the subsequent authors used series in �. Chitashvili
[6, 7, 56] and following him Yushkevich [49]{[55] used series in �. We present
both versions.

Theorem 8.2 In a �nite CMP there exists a number �0 2 (0; 1) such that for
every policy ' 2 �s

v'� = (1 + �)
1X

n=�1

h'n�
n =

1X
n=�1

k'n�
n; �0 < � < 1 (16)

where
h'�1 = k'�1 = Q'r' = w'; h'0 = k'0 = D'r' (17)

(cf. (10) and (11)), and where for n � 1

h'n = (�D')nh'0 ; k'n = (I �D')nk'0 : (18)

A similar expansion is valid for the value function

V� = (1 + �)

1X
n=�1

hn�
n =

1X
n=�1

kn�
n; �0 < � < 1: (19)
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Proof. The existence and convergence of Laurent expansions (16) follow from
expansions in powers of � or � of �R'� , respectively R

'
� , and from the formula

v'� = R'�r
' equivalent to (4). To get the coeÆcients (17)-(18), observe that by

(4) v'� = r' + �P'v'� , so that by (15) and (16)

(1 + �)

1X
�1

h'n�
n = r' + P'

1X
�1

h'n�
n:

By the uniqueness of the coeÆcients of power series, this results in equations
(to simplify writing, we temporarily skip the superscript '):

h�1 = Ph�1; (20)

h0 + h�1 = r + Ph0; (21)

hn + hn�1 = Phn (n � 1): (22)

From (6) and (20) by iteration and taking a limit, we �nd h�1 = Qh�1. For
the stationary matrix Q = QP = PQ, and a multiplication of (21) by Q gives
Qh�1 = Qr, so that h�1 = Qr as in (17). A multiplication of (22) byQ provides
Qhn = 0 (n � 0). Using this, the relation h�1 = Qh�1 and (8){(9), we get
after a multiplication of (21) by D = D', that D(I � P )h0 + DQh�1 = Dr,
or (I � Q)h0 = Dr, or �nally h0 = Dr as in (17). Multiplying (22) by D,
in a similar way we get D(I � P )hn + Dhn�1 = 0, or hn � Qhn = �Dhn�1,
or hn = �Dhn�1 (n � 1), and this proves that hn = (�D)nh0 as in (18).
Formulas (17){(18) for k'n follow absolutely similarly from equations k�1 =
Pk�1, k0 + Pk�1 = r + Pk0 and kn + Pkn�1 = Pkn instead of (20){(22).

Since the set �s is �nite, we have the expansions (16) simultaneously for all
' 2 �s in some interval (�0; 1). Formula (19) follows now from Theorem 8.1.

Formulas of Theorem 8.2 are a generalization of (10) and (11). They stim-
ulate a similar generalization of the average optimality and nearly optimality
criteria. The following de�nition is due to Veinott [43].

De�nition 8.2 For n � 1, a policy �� 2 � is said to be n-discount optimal, if
for every � 2 �

lim
�"1

��n[v�(�
�)� v�(�)] � 0 (23)

(with � in place of � we have an equivalent condition).

By substituting in (23) a Blackwell optimal policy �, for which v�(�) = V�
and v�(�

�) � v�(�) � 0, one may see that in �nite CMPs condition (23) is
equivalent to a simpler (and formally stronger) condition

lim
�"1

��n[V� � v�(�
�)] = 0: (24)

However, condition (23) appeared to be more suitable for an extension of sensi-
tive criteria to denumerable and Borelian CMPs. To avoid confusion, mention
that in literature 0-discount optimal policies are sometimes called bias-optimal
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or 1-optimal; the latter name originates from Veinott [42]. Also, as seen from
a comparison of (16) and (19), a stationary policy is Blackwell optimal i� it
is n-discount optimal for every natural n, or, brie
y speaking, is 1-discount
optimal. For bias optimality in models with �nite state and action spaces see
Chapter 3.

A convenient description of n-discount optimal policies can be made in terms
of sequences of coeÆcients of series (16) and (19) and a lexicographical ordering
in spaces of them. De�ne

H' = fh'�1; h
'
0 ; : : : g; K' = fk'�1; k

'
0 ; : : : g; (25)

let H'
n and K'

n be the initial segments of H' and K' up to the n-th term,
and let H , K, Hn and Kn have the same meaning for the series (19) (each h'n
etc. is an m-vector). For those sequences and segments we introduce a natural
lexicographical ordering denoted by symbols �, �, �, �. So, H' � H means
thatH' 6= H , and that there exists a numberN <1 and a state x0 2 X, such
that H'

N�1 = H 
N�1 (if N � 0), and h'N (x0) < h N (x0) while h

'
N (x) � h N(x)

for all other x 2 X. The relation H' � H means that either H' = H or
H' � H . The relations H � H' and H � H' are equivalent to H' � H 

and H' � H .
With this notation we have H' � H and K' � K for every ' 2 �s, and the

policy ' is n-discount optimal (or Blackwell optimal) i� H'
n = Hn or K

'
n = Kn

(respectively, if H' = H or K' = K).
The following theorem due to Veinott [43] shows that in �nite CMPs the

n-th discount optimality of a stationary policy for large values of n coincides
with its Blackwell optimality. Let �n be the subset of �s consisting of all
stationary n-discount optimal policies (n � �1), and let �1 be the set of all
Blackwell optimal policies in �s. Evidently,

��1 � �0 � �1 � � � � ; �1 =
\
n

�n:

Theorem 8.3 In �nite CMPs with m � 2 states

�m�1 = �m = : : : = �1:

Proof. It is suÆcient to show that �m�1 = �1. Consider any policy ' 2
�m�1. We have H'

m�1 = Hm�1, or in more detail

h'n = hn; n = �1; 0; 1; : : : ;m� 1: (26)

Since m � 2, both h0 and h1 are present in (26). We claim that m column
m-vectors h0; h1; : : : ; hm�1 are linearly dependent. It is suÆcient to show that
m row vectors of the corresponding square matrix are linearly dependent; these
rows are fh0(x); : : : ; hm�1(x)g = fh'0 (x); : : : ; h

'
m�1(x)g, x 2 X. In fact even

the in�nite sequences

fh'0 (x); h
'
1 (x); : : : ; h

'
t (x); : : : g; x 2 X (27)

are linearly dependent. Indeed, in the �nite Markov chain generated by P'

there exists a stationary distribution f�(x); x 2 Xg. The total discounted
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expected reward corresponding to the initial distribution � and policy ' is
equal to

v'� (�) :=
X
x2X

�(x)v'� (x) =
X
x2X

�(x) E
'
x

1X
t=0

�tr(xt; '(xt)) =

=

1X
t=0

�t
X
x2X

�(x) E
'
x r(xt; '(xt)) =

1X
t=0

�t E
'
� r(xt; '(xt)): (28)

Here the P'�-distribution of xt does not depend on t because � is a stationary
distribution, and hence the factor at �t in (28) is some constant C. Thus

v'� (�) = C

1X
t=0

�t =
C

1� �
= C

1 + �

�
= (1 + �)

"
C

�
+

1X
n=0

0 � �n

#
(29)

(cf. (15)). On the other hand, by (28) and (16),

v'� (�) = (1 + �)

1X
n=�1

�n
X
x2X

�(x)h'n(x):

A comparison with (29) together with the uniqueness of the Laurent coeÆcients
show that

P
x �(x)h

'
n(x) = 0 for all n � 0, so that the sequences (27) are

linearly dependent.
Now, by (18)

h'n+1 = �D'h'n; hn+1 = �D hn (n = 0; 1; 2; : : : ) (30)

where  is a Blackwell optimal policy. Let t be the maximal integer such that
the vectors h0 = h'0 ; : : : ; ht = h't in (26) are linearly independent; such t � 0
exists if only h0 6= 0, and as just proved, t < m � 1. If h0 = 0, then by (26)
also h'0 = 0, and by (30) h'n = 0 = hn for all h � 0, so that H' = H and
' 2 �1. If there is the required t, then ht+1 = h't+1 is a linear combination of
h0 = h'0 ; : : : ; ht = h't :

ht+1 =

tX
i=0

Cihi; h't+1 =

tX
i=0

Cih
'
i : (31)

Due to (30) multiplying the �rst identity by �D and the second by �D', we
only increase every subscript in (31) by 1, and since h'i = hi for 0 � i � t+ 1,
we get h't+2 = ht+2. Repeating this, by induction we get h'n = hn for every
n � 0, so that ' 2 �1.

The sets �m�2 and �m�1 are in general di�erent. The following example,
taken from [43], con�rms this statement. To make it more visual, we present
it for m = 5.

Example 8.1 There are m = 5 states 1; 2; : : : ; 5 with mandatory transitions
2 ! 3 ! 4 ! 5, the state 5 is absorbing. In state 1 there is a choice between
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2 3 4 51 02 -6 6 -2

11

p11( )=
1
2 p12( )=

1
2

p12(')=1

Figure 8.1

two actions, which determine two stationary policies ' and  (see Figure 8.1).
Under ' we have a mandatory transition 1 ! 2, under  transitions 1 ! 1
and 1 ! 2 are equally likely. The numbers under arrows indicate the rewards
r(x; a). Mention that the rewards 2;�6; 6;�2 are the binomial coeÆcients of
(A�B)m�2 = (A�B)3 multiplied by 2.

The expected rewards v'� and v � di�er only at the initial state 1. For ' we
have

v'� (1) = 2� 6� + 6�2 � 2�3 = 2(1� �)3 = 2�3:

For  , by the formula v � = r + �P v � (cf. (4)) we have the equation

v � = 1 + �[
1

2
v � (1) +

1

2
v � (2)]:

Thus

(2� �)v � (1) = 2 + �v � (2);

where

�v � (2) = �(�6 + 6� � 2�2) = v'� (1)� 2:

Hence

v � (1) =
v'� (1)

2� �
=

2�3

1 + �
= 2�3 � 2�4 + 2�5 � � � � :

This means that V�(1) = 2�3, that ' is Blackwell optimal, and that  is 3-
discount optimal, but not 4-discount optimal. Thus �3 6= �4 = �1.

8.1.3 Lexicographical policy improvement and Blackwell optimality equation

Policy improvement is both a practical method to approach an optimal policy
in CMPs and an important tool in their theory. Its essence is that if ' and
 are two stationary policies, if � =  '1 is a Markov policy coinciding with
 at the �rst step of the control and coinciding with ' afterwards, and if � is
better than ', then  is also better than '. This method, almost trivial for
the discounted reward criterion with a �xed � < 1, was developed by Howard
[27] for the average reward criterion. Howard used, besides the average reward
w'(= h'�1), a second function, in fact equal to the term h'0 in the expansions
(10) and (16) up to a constant term on each recurrence class of the Markov
chain generated by '. Blackwell [3] provided a rigorous proof that a slightly
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di�erent version of Howard's policy improvement method does converge. Miller
and Veinott [33] have extended policy improvement to the case of Blackwell
optimality, and Veinott [43] re�ned it using the classes �n. We expose this
topic in a modernized form, using an operator approach developed in Dekker
and Hordijk [8] in the framework of CMPs with a countable state space X. To
avoid additional formulas, we do all calculations in terms of �; in terms of �
formulas are slightly di�erent.

From the structure of � and (13) we have

v�� = r + �P v'� = r +
1

1 + �
P v'� = r + P 

1X
n=�1

h'n�
n;

while

v'� = h'�1�
�1 +

1X
n=0

(h'n + h'n�1)�
n:

Subtracting, we get

v���v
'
� = (P h�1�h�1)�

�1+(r +P h0�h0�h�1)+

1X
n=1

(P hn�hn�hn�1)�
n

(32)
where it is understood that hn = h'n. By (18), the supremum norm kh'nk is
growing no more than geometrically fast with n.

It is convenient to introduce the space H of all sequences H = fhn; n � �1g
of m-vectors satisfying this growth condition, and to treat the sequences of
Laurent coeÆcients of the series (16), (32) etc. as elements of H. In particular
H' 2 H (see (25)), and in H we consider the same lexicographical ordering as
we have introduced in connection with H'. Also, it is convenient to de�ne the
spaces Hn of �nite collections Hn = fht;�1 � t � ng of m-vectors.

The right side of (32) de�nes an operator L in the spaces H and Hn. Since
the matrix P has entries pxy(a) with a =  (x), we express L through the cor-
responding operators La transforming functions (vectors) on X into functions
of pairs (x; a) on the state-action space K de�ned in (1). We have

(L H)(x) = L (x)H(x); x 2 X; (33)

LaH(x) = f`ha�1(x); `h
a
0(x); `h

a
1(x); : : : g; (x; a) 2 K ; (34)

where according to (32)

`ha�1(x) = P ah�1(x) � h�1(x);

`ha0(x) = r(x; a) + P ah0(x)� h0(x) � h�1(x); (35)

`han(x) = P ahn(x)� hn(x) � hn�1(x) (n � 1):

The same formulas de�ne La and L , as operators on Hn.

Lemma 8.1 Let ';  2 �s. If (L H')n+1 � 0 for some n � �1, then H 
n �

H'
n . Moreover, if in addition (L H')n+1(x0) � 0 at some x0 2 X, then

H 
n (x0) � H'

n (x0). The same is true with the reverse inequality signs.
In particular, if L H' = 0, then H = H'.
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Proof. The condition (L H')n � 0 means that

v�� = v'� +Qn(�) +O(�n+1) (36)

where Qn(�) is a vector consisting of polynomials of degree � n with lexico-
graphically nonnegative coeÆcients, and where O(�n+1) is uniform in x 2 X

since X and A are �nite sets (compare (32) with (33)-(35)). Consider policies
�t =  t'1, and let v(t) = v�(�t), so that, in particular, v(0) = v'� , v(1) = v�� .
We have

v(t+ 1) = r + �P v(t); t = 0; 1; 2; : : : (37)

and by (36)
v(1) = v(0) +Qn +R; (38)

where the remainder R is of order �n+1. From (37) and (38) by induction we
get

v(t) = v(0) + (I + �P + (�2P )2 + � � �+ (�P )t�1)(Qn + R); t � 1:

(we use that r +�P v(0) = v(0)+Qn+R according to (37) and (38)). Since

� < 1, in the limit v(t) becomes v(1) = v � , so that

v � = v'� +

1X
t=0

(�P )t(Qn(�) +R) = v'� +R � (Qn +R):

Here Qn � 0 for small � > 0, R is of order O(�n+1), and the resolvent R �
is of order O(1 + � + �2 + � � � ) = O(��1). This proves that H 

n�1 � H'
n�1 if

L H'
n � 0. Other assertions are proved in a similar way.

To proceed further, we need the lexicographical Bellman operator L in the
spaces H and Hn:

LH(x) = max
a2Ax

LaH(x); H 2 H; x 2 X; (39)

where the maximum is understood in the lexicographical sense �; the same
formula holds for Hn 2 Hn. This maximum always exists because the sets A x
are �nite. Since one may use all combinations of actions in stationary policies,
formula

LH = max
 2�s

L H (40)

de�nes the same operator L.
If in (32)  = ' then � =  '1 coincides with ', and the left side of (32)

is zero. Hence all the coeÆcients at the right side vanish, and this means
that L'H' = 0 for every ' 2 �s. Therefore LH' � 0 for every ' 2 �s. If
LH' = 0, we say that ' is unimprovable; if LH'

n = 0, then ' is unimprovable
of order n. The equation

LH = 0 H 2 H (41)

is called the Blackwell optimality equation in honor of Blackwell; the similar
equation LHn = 0 for Hn 2 Hn is the n-order optimality equation. Let H =
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fhng be the element of H corresponding to the value function V� (see (19)),
and let Hn be the initial segments of H . We say that a stationary policy ' is
conserving (or n-order conserving) if L'H = 0 (respectively, L'Hn = 0).

Theorem 8.4 A. The Blackwell optimality equation has a unique solution
H� = max'2�s H'. A policy ' 2 �s is Blackwell optimal i� H' = H�,
and i� ' is a conserving policy.
B. For every n � �1, H�

n is uniquely determined by the equation LHn+1 = 0.
A policy ' 2 �s is n-discount optimal i� H'

n = H�
n, and is n-discount optimal

if ' is (n+ 1)-order conserving.

Proof. By Theorem 8.1 there exists a Blackwell optimal policy ' 2 �s. Ev-
idently, H' � H ,  2 �s and ' is unimprovable, so that H' = H� :=
max 2�s H , and LH� = LH' = 0. Since L'H' = 0, also L'H� = 0, and '
is conserving. In part A it remains to prove that the solution of (41) is unique,
and that a conserving stationary policy is Blackwell optimal. If  is conserv-
ing, then L H� = 0, hence L H' = 0 for a Blackwell optimal ', therefore by
Lemma 8.1 (applied to every n) H = H' = H�, so that  is Blackwell optimal

too. Finally, suppose that eH is a solution to (41). By taking for each x 2 X

a lexicographical maximizer a 2 A x of La eH(x), we obtain a stationary policy

 for which L eH = eH . One may check (we omit the proof) that Lemma 8.1

is true for any H 2 H in place of H', in particular, for eH. It follows that
H = eH, and since LH = L eH = 0, the policy  is unimprovable. Hence  is
Blackwell optimal, so that eH = H = H�.

The proof of part B is similar, with a reference to Lemma 8.1.

Policy improvement is a basis for an algorithm to compute a Blackwell opti-
mal policy in a �nite CMP. Theoretically, one may proceed in the following way.
Start with some ' 2 �s and compute H'

m using formulas of Theorem 8.2 (here
m is the number of states in X). Check the values of `a�1h(x); (x; a) 2 K . For

a = '(x) those values are zeros, and if `a
�

h�1(x
�) > 0 for some pair (x�; a�),

then the policy

 (x) =

(
a� if x = x�,

'(x) otherwise

improves '. If there are no such pairs (x�; a�), repeat the same procedure
with `ah0 and the shrinked sets A 0 (x) = fa 2 A �1 (x), `

ah�1(x) = 0g, K 0 =
f(x; a) : a 2 A 0 (x); x 2 Xg (where A �1 (x) = A (x)). A policy  as above with
`a

�

h0(x
�) > 0, (x�; a�) 2 K improves '. If there are no such pairs (x�; a�),

repeat the procedure with all subscripts increased by 1, etc., until either you
get a better policy  , or reach the set Km . In the latter case ' is (m�1)-order
discount optimal, and therefore Blackwell optimal by Theorem 8.3. Otherwise,
proceed in the same way with the obtained policy  . Since the set �s is �nite,
this algorithm leads to a Blackwell optimal policy in a �nite number of steps.
In practice, one may improve ' simultaneously at several states x�; see Policy
Iteration in chapter 10 of [34].

On the other hand, the lexicographical policy improvement approach opens
a new way to prove the existence of Blackwell optimal policies via a maximiza-
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tion of H' over all stationary policies ' and the related Blackwell optimality
equation(41). The latter idea can be used in CMPs with an in�nite state space
X, in which the proof of Theorem 8.1, based on the fact that the set �s is �nite,
is inapplicable.

8.1.4 Extensions and generalizations

In [45] Veinott simpli�ed and updated results of [42, 43]. In particular, he
re�ned Theorem 8.3 as follows: �1 = �m�r where r is the number of recurrent
classes in X under a Blackwell optimal stationary policy.

Veinott [43] introduced also the notion of n-average optimality in addition
to the n-discount optimality. Let

v
(1)
T (x; �) = E

�
x

"
T�1X
t=0

r(xt; at)

#
and de�ne recursively for n � 1

v
(n+1)
T (x; �) =

TX
t=1

v
(n)
t (x; �):

Then �� is n-average optimal if for every policy �

lim
T!1

1

T

h
v
(n+2)
T (��)� v

(n+2)
T (�)

i
� 0:

Veinott [43, 44] and Sladky [38] showed that in a �nite CMP a policy is n-
discount optimal i� it is n-average optimal.

Chitashvili [6, 7, 56] extended results of Theorem 8.4 to more general mod-
els with a �nite state space. In [6] he treated CMPs with arbitrary (indeed,
compacti�ed) action sets. He considered also what can be called (n; �)-discount
optimal policies; in their de�nition one should replace 0 by �� in formula (23).
In [7] he studied n-discount optimality in �nite models with discount factors
depending on the state x and action a: �(x; a) = c1�+ c2�

2+ � � �+ ck�
k where

k and ci are functions of (x; a). In this case the reward functions were of some
speci�c average form. In [56] Theorem 8.4 is generalized to a �nite model with
two reward functions r(x; a) and c(x; a). More precisely,

v'� (x) = E
'
x

"
1X
t=0

�t(r(xt; at) + (1� �)c(xt; at))

#
(in [56] Chitashvili considered only stationary policies). This expected dis-
counted reward corresponds to an undiscounted reward

1X
t=0

r(xt; at) + lim
T!1

1

T

T�1X
t=0

c(xt; at):

In that case all formulas related to Theorem 8.4 remain valid, with one excep-
tion: in equations (35) de�ning La, the term `h1 should be changed to

`ha1(x) = c(x; a) + P ah1(x) � h1(x)� h0(x)
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(similar to the term `h0).
As explained in the proof of Theorem 8.1, in �nite CMPs the expected

discounted reward v'� (x) is a rational function of �. Hordijk e.a. [19] introduced
a non-Archimedian ordered �eld of rational functions, used a simplex method
in this �eld, and developed a linear programming method for the computation
of �-optimal policies over the entire range (0,1) of the discount factor. In
particular, their method allows to compute a Blackwell optimal policy. More
precisely, for some m one may �nd numbers �0 := 0 < �1 < � � � < �m�1 <
�m := 1 and stationary policies '1; '2; : : : ; 'm such that 'j is �-optimal for all
� 2 [�j�1; �j ], 1 � j � m� 1, and 'm is �-optimal in the interval [�m�1; �m)
(which means that 'm is Blackwell optimal). In section 5.4 of Chapter 2 this
algorithm is studied. In Chapter 4 an asymptotic simplex method based on
Laurent series expansions for the computation of a Blackwell optimal policy, is
used.

In CMPs with constraints the controller wants to maximize expected (dis-
counted) rewards while keeping other expected (discounted) costs in some given
bounds. For such CMPs Altman e.a. [1] gave a constructive proof for the fol-
lowing (weaker) version of the result obtained in [19]. There exist numbers
m and �j as above such that for every j = 1; : : : ;m either the constrained
problem is not feasible in the open interval (�i�1�j) or the value function is a
rational function of � in the closed interval [�j�1; �j ], j � m�1 and [�m�1; 1).
Consequently, if the constrained problem is feasible in the neighborhood of
� = 1, then v� has a Laurent series expansion at � = 1.

As shown in the proof of Theorem 8.1, the limits of �-optimal policies, for �
tending to 1, are Blackwell optimal. A counterexample in Hordijk and Spieksma
[22] shows that in general this is not true in unichain CMPs with a �nite state
space and compact action sets. This disproves a conjecture in Cavazos-Cadena
and Lasserre [4].

More recently, Huang and Veinott [28] extended many results concerning
Blackwell and n-discount optimality in �nite models to the case when (i) the
reward r(x; a; �) at the state x under the action a depends also on the interest
rate �, namely is an analytic function of � in a neighborhood of � = 0, (ii)
the nonnegative transition coeÆcients pxy(a) in general do not sum to 1, only
for every Markov policy the t-step transition matrices are of order O(1) as
t ! 1. They proved the existence of stationary Blackwell optimal policies,
extended to their case the lexicographical policy improvement, showed that if
r(x; a; �) is a polynomial or a rational function of � then Blackwell optimality
of a stationary policy is equivalent to its n-discount optimality for some n
depending on the degrees of involved polynomials. In the latter case the policy
iteration algorithm provides a Blackwell optimal policy in a �nite number of
steps. Another constructive rule is given for �nding n-discount optimal policies
using a linear programming approach.

8.2 DENUMERABLE STATE MODELS

In this section we consider CMPs for which the state space X is denumerable.
There are many applications of controlled Markov chains for which it is natural
to take an in�nite number of states. An important class of models is that of


