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Abstract

We consider a class of non-stationary dynamic decision-making models to which we refer
as Piecewise Stationary Markov Decision Processes (PSMDPs). In these models, the decision
making horizon can be partitioned into intervals, called renewal cycles, of N + 1 epochs. The
transition law and reward function are identical over the first IV epochs of each renewal cycle,
but distinct at the final epoch. The motivation for these models is in applications where
decisions of different nature are taken at different time scales, i.e. many “low-level” decisions
are made between “high-level” ones.

Our aim is to characterize solutions of the discounted reward optimality problem for large
values of N, with the effective discount rate over an entire renewal cycle held fixed. In this
model, initially stationary policies are natural candidates for optimal policies. Similar to
turnpike policies, an initially stationary policy uses a fixed decision rule for some large number
of epochs in each renewal cycle, followed by a relatively short planning horizon of time-varying
decision rules.

Our analysis relates the PSMDP to an average reward MDP defined by the stationary part
of the system. We focus here on the constant gain case, where this MDP’s optimal average
reward is independent of the initial state. We find that the optimal value of the PSMDP can
be fully characterized. It is shown that initially stationary policies are e-optimal under weak
conditions and require a planning horizon whose length is bounded in N. We further identify
conditions under which these policies are precisely optimal. The non-constant gain case is
briefly considered here via examples, and further analyzed in the companion paper [7].



1 Introduction

The work presented here concerns sequential decision-making problems in which decisions of
different nature are taken at different time scales. Such applications lead to decision process
models similar to Markov Decision Processes (MDPs), but which possess a particular piecewise
stationary structure. In these models, the decision horizon may be partitioned into intervals of
N + 1 epochs which we call renewal cycles. In the first N epochs of each renewal cycle (called
the stationary epochs), the process evolves according to a time-homogeneous set of transition
probability and reward functions. However, at the final epoch (the non-stationary epochs), the
rewards and transition functions are distinct. These distinct functions describe the effect of
decisions made at a slower time scale. We refer to such types of decision processes as Piecewise
Stationary Markov Decision Processes (PSMDPs).

In this paper, we define two sub-categories of PSMDPs which we respectively term Markovian
Slowscale Models (MSMs) and Delayed Slowscale Models (DSMs). In an MSM, all transitions
and rewards are described by standard, Markovian probability and reward functions. At non-
stationary epochs these functions are different from those at stationary epochs. In a DSM, mean-
while, rewards and transitions at non-stationary epochs are determined not only by the current
state and action, but also by an action (of a different type) which is taken at the start of the
current renewal cycle. Hence, there is a delay of many epochs between the time when the action
of the second type is taken and when it affects state transitions and rewards. This means that
DSMs, unlike MSMs, have a history-dependent structure.

The DSM and MSM models are quite similar, but have conventions suiting different appli-
cations. MSMs are highly suited to applications where routine decision making is periodically
interrupted by non-routine, higher-level decisions. An example is the management of multiple
project operations, in which the decision maker periodically selects one of several projects to
work on for a term of N epochs. In this case, the actions taken at non-stationary epochs corre-
spond to selections of projects, while decisions at intervening epochs determine the evolution of

the current project.

In such applications, the projects may be likened to the discrete component of a hybrid system.
In hybrid systems (see, for example, [1, 2, 3, 4]), a discrete state component, indicating the mode
of the system, makes infrequent transitions relative to a second, continuous state component. The
continuous component evolves, between these transitions, according to state equations determined

by the current mode.

The motivation for DSMs is in applications where the effect of certain types of actions on the
physical variables in the system is slower to arrive than other types. If decision epochs represent
the times where the “faster” actions are taken, then there is a lag of many epochs between the

epochs when the “slower” actions are taken and when they take effect. As an example, one



might consider a manufacturing plant which produces goods by the hour using some stock of
manufacturing components. If we suppose that supply orders of the manufacturing components
are made monthly and take a month to process, then the plant may be appropriately modeled as
a DSM in which the fast actions are manufacturing decisions and the slow actions are order levels

for new components.

For PSMDPs of these two types, we consider the problem of optimizing the total expected
reward when rewards devalue by a discount factor A at the beginning of each renewal cycle. Under
this criterion, the renewal cycle length is regarded as the time scale on which the present value
of rewards changes. Our aim is to understand how the solutions of this problem behave for large,
finite values of IV, i.e. when the interval of stationary epochs in each renewal cycle is long. We

assume finite state and action spaces throughout.

As usual, we are interested both in the optimal value obtainable and the decision-making
policies which attain it. We expect that for large N, a policy of a simplified form, which we call
an initially stationary policy (i.s.p.), will result in near optimality. An i.s.p. is a policy which,
in each renewal cycle, uses a fixed decision rule for some large number of epochs followed by a

relatively short horizon of time-varying decision rules.

This structure is highly reminiscent of policies associated with turnpikes. The notion of
turnpikes originates in the work of Shapiro [13], and was subsequently expanded by Hinderer and
Hubner [5]. It is rooted in the intuition that, at the start of a stationary MDP with a large,
finite horizon, it appears to the decision maker that the horizon before him is infinite. Initially,
therefore, optimal decisions can be made using a time-invariant decision rule, as in an infinite-
horizon version of the MDP. As the end of the horizon approaches, however, the problem looks

more and more like a finite horizon problem and time-varying decision rules may be required.

This intuition was verified in [5, 13] for discounted MDPs possessing a unique optimal decision
rule. The time-invariant decision rule is referred to as a “turnpike”, while the interval of time-
varying decision rules is referred to as the planning horizon. Analogous results hold for non-
discounted MDPs as well. The same intuition leads us to conjecture that an initially stationary
policy might be optimal in PSMDPs. For in these models, the decision maker faces a long

stationary horizon at the start of each renewal cycle.

The analysis in this paper is carried out under certain conditions on ¥, the average reward
MDP associated with the stationary data. The basic requirement is that the optimal gain of
U is independent of the initial state. Analysis of the PSMDP starts by characterizing the form
of the optimal value as a function of N. We establish (Theorem 4.1) that the optimal value is
approximately the sum of two terms. The first term is proportional to N and the gain of ¥, and
does not depend on the non-stationary data. The second term is bounded independently of N

and converges to a limiting vector as N increases. This structure is used to establish the existence



of e-optimal initially stationary policies with a finite planning horizon which depends only on €
but not on N. It is worth noting that these results hold under mild technical conditions on ¥; in
particular, they require no conditions on the rate of convergence of value iteration in ¥ in order

to bound the planning horizon.

Moreover, under some additional technical conditions (which hold, for example, if ¥ is unichain),
we establish that, even in the DSM model, e-optimal i.s.p.’s have a simple Markovian structure.
Namely, actions are chosen based on the current state and time alone. This is a noteworthy
finding for DSMs since they have a history-dependent structure. Existence of precisely optimal
i.8.p.’s is examined next, and established under the additional requirement that the set of average

optimal decision rules which are maximizing in ¥’s optimality equation is a singleton.

The rest of this paper is organized as follows. Section 2 includes a model introduction and
defines notation which we work with throughout. Section 3 describes the optimality criteria
and the relevant optimality equations for PSMDPs. Since the structure of the DSM optimality
problem is seen to be readily extendible to MSMs, our analysis in this and subsequent sections is

restricted to the former, while the analogous results for MSMs are summarized in Section 7.

In Sections 4, 5, and 6, we treat DSMs with state-independent gain. Section 4 establishes the
asymptotic form of the value function, while Sections 5 and 6 study e-optimal and optimal i.s.p.’s
respectively. Finally, in Section 8, a preliminary examination is made of PSMDPs for which ¥
has state-dependent gain. This is to develop a sense of the more complex behavior of such models
as compared to the state-independent gain case. We first establish that the optimal value is
bounded in N, with respect to the span norm, if and only if ¥ has state-independent optimal
gain. Example 8.3 illustrates that e-optimal i.s.p.’s may require unbounded planning horizons.
Example 8.4 illustrates that e-optimal i.s.p.’s may require initial decision rules which are not gain

optimal in W. A fuller analysis of the state-dependent gain case may be found in a sequel paper

7).

2 Model Introduction and Notations

2.1 Model Introduction

A Piecewise Stationary Markov Decision Process (PSMDP) is a discrete-time sequential decision
process whose evolution is described by an (N + 1)-periodic sequence of transition probability
and reward functions. In the first V epochs of each periodic interval, the probability and re-
ward functions are time-homogeneous. At the final epoch, however, they are distinct. We call
these periodic intervals renewal cycles and the epochs at the start of these cycles — i.e. epochs
t=0,(N+1),2(N+1),... — renewal epochs. The first N epochs of each renewal cycle shall be

called stationary epochs. Accordingly, the reward and transition probability functions governing
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Figure 1: Time evolution of a Markovian Slowscale Model (MSM)

the stationary epochs shall be referred to as the stationary data. Conversely, we shall call the
final epoch in each renewal cycle the non-stationary epochs and refer to the relevant reward and

transition probability functions as the non-stationary data.

We furthermore define two sub-categories of PSMDPs, respectively called Markovian Slowscale
Models (MSMs) and Delayed Slowscale Models (DSMs).

An MSM is specified by a state space S and, for each s € S, spaces of allowable fastscale actions
A and slowscale actions AJ. Fastscale actions are selected at stationary epochs where rewards
and transition probabilities are given by stationary data r(s¢, at), p(s¢+1|st,at). Slowscale actions
are taken at non-stationary epochs where rewards and transitions are given by non-stationary
data r7(s¢,af), p?(si+1]s¢,ay). The MSM timing framework is depicted for one renewal cycle in
Figure 1.

A DSM is specified by a state space S, a space of allowable fastscale actions A, for each

L. In this case, fastscale actions, a; € A, are

state s € S, and a space A? of slowscale actions
selected at all epochs ¢ while slowscale actions af € A7 are selected at renewal epochs. As in
MSMs, rewards and transition probabilities are given at stationary epochs by functions r(s;, a;)
and p(sg+1/5¢, ar). However, at non-stationary epochs, they are given as r(s¢, as, a€N+1) Lt/(N+1)] )
p(3t+1|3t’at’a€N+1)Lt/(N+1)J ). The DSM timing framework is depicted for one renewal cycle in

Figure 2.

For a PSMDP, we define the history, h;, as the chronological sequence of states observed and

actions taken ending with the state observed at epoch ¢. A randomized history-dependent policy

' As in MSMs, it is possible to let the set of allowable slowscale actions vary with s, but no interesting general-

izations seem to follow from this.
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Figure 2: Time evolution of a Delayed Slowscale Model (DSM)

is a sequence of functions gy, (-) on the set of decisions possible at ¢. These functions indicate the

probability of making a particular decision when the history is h;.

Let TIZ% denote the set of all randomized history-dependent policies, for a certain N. Each
™Ee H%R induces, for each initial state s € S, a probability measure P — and a corresponding
expectation operator E —on the space of possible histories h;. The construction of this probability

measure is standard and is based on the law of conditional probabilities.

We shall assume throughout that all state and action spaces are finite.

2.2 Norms and Dynamic Programming Notation

ES

We shall represent functions on S by column vectors in R Likewise, we shall define various

dynamic programming operators and think of them as mappings of vectors from RIS to RIS

Let us introduce the following notation for a given vector y € RIS,

A
il £ maxy(s)

1>

max y(s) — miny(s).

Hy”Sp s€S s€S

The span semi-norm |y||;, measures the maximal variation between the elements of y.

For a scalar ¢ > 0, we use the notation o(c) to denote an unspecified vector in RIS whose

sup-norm is at most c.

Let L denote the one-step dynamic programming operator for the stationary data, defined as

La(s) = maxeen {r(s, a) + 32 csp(ils; a)z(5)}, s €S .

Some well known properties of the L operator are



(i) L(z+c1) = Lz + c1 where c is any scalar and 1 denotes a column vector whose every

element is 1.
(i) |[Lz — Ly|| < ||z —yl|, |[Lz — Lyl[s, < ||z — yllsp-

Property (ii) is sometimes referred to as the non-ezpansive property of the L operator. From this

property, we deduce that L(y + o(c)) = Ly + o(c) for any vector y.

For an MSM and a given 0 < A < 1, we define the discounted dynamic programming operator

for the non-stationary data

L7z(s) = alglea}g{r(’(saa”) + A;p"(jlsaa”)ﬂ?(j)}, ses
J

Similarly, for a DSM, each a® € A? shall be associated with a discounted operator

La" — o . o .
z(s) Crbréii({r(s,a,a )+ )\Zp(ﬂs,a,a )z(5)}, s€S
jeS
for the non-stationary data. Finally, we define the (N 4 1)-step DSM discounted operator Ly,

Lyz(s) = a{‘rleaj(a{LNLaax(s)}, seS . (2.1)

It corresponds to backward induction over one renewal cycle.

2.3 Policies and Decision Rules

A decision rule is a mapping from states to actions, and can be thought of as a rule for selecting
actions at some epoch based on the current state. Let D denote the space of decision rules
mapping each s € S to some a € A;. In MSMs, D? shall denote the space of decision rules
mapping s € S to a? € AJ.

For a decision rule d € D, we define the restriction of L to d as
A
L,z =rq+ Py,

where 74 is a reward vector with components r4(s) = r(s,d(s)) and P, is a transition probability

matrix with entries Py(j,s) = p(j|s, d(s)). Restrictions of other operators are similarly defined.

We shall sometimes represent L using the vector form,
Lz = max{rqg + Pz
deD{ a+ Faz},

where the maximization over D is component-wise, and similarly for other dynamic programming
operators. Note that Lz > L,z with equality for at least one d. A decision rule, d, attaining this

maximum shall be called an z-improving or z-maximizing decision rule.



If = {dmn,dm-1,--. ,d1} represents a sequence of m decision rules, then for all 0 < k < m,
A
Lﬁ‘r =ra, + Py,ra,_, + Pa Pay_yTay_, + -+ Py Pay_, - Pa,)z

In other words LXz denotes the k-th reward-to-go function of the m-horizon policy = when the

terminal reward is z.

The maxima on the right hand side of (2.1) are obtained by s-dependent sequences of the form
{U/U,do,dl,... ,dN}(S), ses (22)
such that

£N$(8) = LdoLdl T LdN_ngjv.’B(S).

A set of sequences of the form (2.2) can be associated with a DSM policy which, at a given
renewal epoch, prescribes the sequence {a’,dy,d1, ... ,dn}(s) if the current state is s. The element
a? is the slowscale action chosen at the renewal epoch while the decision rule d;,2 = 0,1,... , N is
the rule that will be used to select fastscale actions at the i-th epoch of the current renewal cycle.
We call policies of this form cyclo-stationary policies because of their (N + 1)-periodic form. The

set of all cyclo-stationary policies shall be denoted H?Vyc.

A sequence prescribed in some state by a cyclo-stationary policy, shall be abbreviated as
{a%,m,d} where m = {dy,d1,... ,dn_1} are the decision rules used at the stationary epochs while

d is the decision rule used at the non-stationary epoch.

A particular type of cyclo-stationary policy which will be of interest to us is an initially

stationary policy (i.s.p.) which has the form
{a%,6,6,0,... ,0,dN—n,dN—pt1,--- ,dAN}($)-

L.e., when a renewal cycle starts in state s € S, the policy prescribes some fixed decision rule, §
(which may depend on s), for all but possibly the final 5 stationary epochs (7 < N) of the renewal
cycle. We refer to 7 as the i.s.p.’s planning horizon ? (borrowing from turnpike terminology). Also,
we refer to ¢ as the initial decision rule for the particular state s. If the initial decision rule is

the same for all s, we call the i.s.p. simple.

2.4 The Underlying MDP

The stationary data in a PSMDP can be associated with an average reward MDP, denoted U,
with decision rule space D. We shall refer to ¥ as the underlying MDP of the PSMDP.

2We shall sometimes use the term planning horizon loosely to mean also the interval of 5 epochs in a renewal
cycle where time-varying decision rules are used by an i.s.p.



1 n
The gain vector gg4 of a decision rule d € D is defined as gq4 = Pjrq where P; = lim — E Pf
n—oo n o

is the limiting matrix of Py. Since the action and state spaces are finite, it is known that g5,

the optimal gain vector of U, satisfies g* > g4 with equality for some decision rule d. We define
A . . . .

D*={d € D|g* = gq} as the set of optimal decision rules in ¥.

The optimal gain vector, ¢g*, is characterized by the optimality equations

g- = max{Pyg"} (2.3)
g +v = I;leaé({’r‘d-l-Pd’U} (2.4)

Here, E 2 {d € D | Pyg* = g*} is the set of decision rules which attain the maximum in (2.3).
The vector v belongs to a closed, unbounded set of solutions denoted by V. For a given v € V', we
denote E(v) 2 {d€ E|g*+v= Lgv}. When the entries of g* are state-independent, (2.3) and
(2.4) reduce to

g*+v=_Lv

and E(v) is the set of v-improving decision rules.

Our analysis in this paper will refer to combinations of the following conditions on ¥,

(C1) The optimal gain g* is state-independent.
(C2) V is one dimensional, i.e. for some vy, V = {v € R!SI |v = vy + c1,¢c € R}

(C3) The sequence LFz — kg* converges, as k tends to infinity, for all vectors z.

Perhaps the most general, commonly considered class of models in which (C1) holds is the class
of weakly communicating models (see [8, pages 348-352]). The MDP ¥ is weakly communicating

if any state is either (i) reachable from all states for some P, or (ii) transient for all P,.

Condition (C2) is also sufficient for (C1). An equivalent condition for (C2), in terms of the
chain structure of ¥, was identified in [9]. Namely, (C2) holds if and only if a randomized optimal
decision rule exists with a single recurrent class and this class contains the largest number of
recurrent states possible for gain optimal decision rules. A typical case where (C2) holds is when

W is a unichain model, meaning that P; has a single recurrent class for all d € D.

Necessary and sufficient conditions for (C3) were established in [10]. The equivalent condition
is that a randomized, aperiodic optimal decision rule exists with the maximum number of recurrent
states and the minimum number of recurrent subchains possible for gain optimal decision rules.

Typically, (C3) will hold if P, is aperiodic for all d € D.



If (C3) holds, the operator
A li;n(Lkm — kg*)

is defined on all RISl Tt is known that L°z € V for all vectors = for which L is defined (see
Lemma 2.2(g) in [11]). Furthermore L™ has the same properties (in particular, properties (i) and
(ii) in Section 2.2) as L (see Lemma 2.1 in [11]).

When (C3) holds in a DSM, we define y, as the unique vector satisfying the fixed point

equations

Yoo(s) = max {L¥Lyeo(s)}, s €S (2.5)

The uniqueness of y., follows by noting that the operator applied to ys on the right hand side is

a contraction operator with respect to || - || with contraction factor A.

In addition, we define
M, (€) 2 {mink | ||LFL yoo — kg* — LPL yo|| < € for all a” € A%}

By Lemma 2.2(e) in [11], if (C1) holds, the sequence ||L¥z — kg* — L°°z|| decreases monotonically
in k. Hence, M,_ (¢) is the smallest k for which all sequences LFLY o, a® € A% have converged

within e. Note that M,_(€) is always finite since A“ is finite.

3 Optimality Criteria

In this Section, we describe the discounted optimality criteria which we will work with.

Due to the analogy between our optimality problem and a standard discounted MDP, a theory
describing the properties and computation of its solution may be readily derived using standard
embedding and reformulation techniques. The details are tangential to our analysis and therefore
we merely state the results. Interested readers are referred to the Appendix for relevant proofs

and an extended discussion.

3.1 The Discounted PSMDP
Consider a PSMDP and let 0 < A < 1. For a policy w € H%R, define the following value function
v (s) 2 EF SR ANy se 5. (3.1)

where r; is the stochastic process of rewards induced by .

10



We address the optimization problem of finding, for all s € S, the optimal value

A

(L sup oF(s) (3:2)
meIIR?
as well as a policy, 7} € ITiE | satisfying
v (8) —vpx(s) <€ (3.3)

€

for a given € > 0. Policies 7 satisfying (3.3) are said to be e-optimal. A 0-optimal policy is said

to be optimal.

Equations (3.2) and (3.3) define a discounted reward optimality criterion in which the rewards
devalue by A at each renewal epoch. As an example, one may consider a financial operation in
which epochs last for minutes or hours but in which renewal cycles last for months or years. In
such cases, the present value of the rewards will not change greatly after a single epoch, but

significant devaluation may occur on the time scale of renewal cycles.

In the analysis of this paper, we shall treat this optimality problem in detail for DSMs only.
The dynamics of an MSM are largely the same as a DSM in which A is a singleton, making
extensions of our analysis to MSMs readily obtainable. The extensions are summarized in Section
7.

The following Theorems characterize solutions of the optimality problem. Theorem 3.1 estab-
lishes the existence of optimal cyclo-stationary policies and Theorem 3.2 establishes an optimality

equation. For proofs, see the Appendix.

Theorem 3.1 (Existence of Cyclo-stationary policies) An optimal cyclo-stationary policy

exists.

Theorem 3.2 (DSM optimality equation)

(a) The operator Ly is a contraction operator, with respect to || - ||, with contraction

factor X and fized point vy,. Hence,

vy (s) = a{‘neajca{LNL”av}“\,(s)}, sES . (3.4)

(b) A cyclo-stationary policy is optimal if and only if, for each s € S a sequence
{a%,m,d} is prescribed satisfying

vk (s) = LYLY iy (5). (3.5)

11



3.2 Uniform Optimality

For cyclo-stationary policies in DSMs, we also define the stronger notion of uniform optimal-
ity. (For MSMs, an analogous definition may be made.) An e-optimal cyclo-stationary policy
T € ngvyc shall be called uniform e-optimal if it is e-optimal starting from any time epoch (and
not just the initial one). More formally, if a sequence {a“,w,d} is prescribed by =} in some initial
state s € S,

ILFLO vy — LELE o] < e (3.6)

for all 0 < k < N. Note that Lergavx: (s) gives the value of w¢ starting at epoch N — k in state

S.

The following obvious result establishes that uniform optimal cyclo-stationary policies exist

and relates them to v}.

Theorem 3.3 A cyclo-stationary policy is uniform optimal if and only if for each s € S a

sequence {a’,m,d}, is prescribed satisfying,
vi(s) = LY LE 03 (9) (37)
and

LFLY vy = LELY vy, 0<k<N . (3.8)

The following Lemma provide sufficient conditions, in terms of v}, for cyclo-stationary policies

to be e-optimal and uniform e-optimal.
Lemma 3.4 (Criteria for e-optimality)

a) Suppose that for each fized s € S, the sequence {a%,w,d} prescribed by a cyclo-
S hat f h fized S, th 7 m,d ibed b l

stationary policy when starting in state s, satisfies
v (s) = LY LY vy (s) < (1 — Ne.
Then the cyclo-stationary policy is e-optimal.
(b) Suppose, in addition, that the sequence {a°,m,d} satisfies
IZFL vy — TELE || < (1 - Me

for all 0 < k < N. Then the cyclo-stationary policy is uniform e-optimal.

12



Uniform (e-)optimal policies are those obtained by using dynamic programming to compute
the right hand side of (3.4). In some cases, e-optimal policies of a particularly simple form exist,
but which are not uniform optimal. The practical disadvantage of such policies is that they
cannot be identified by dynamic programming alone (see [6], Example 8.18 or [7], Example 7.1).
Moreover, under (non-uniform) e-optimal policies, with € > 0, a decision maker might reach a
state where the sub-optimality (of the reward-to-go) is larger than e (see [6], Example 6.1). In

such scenarios, decision makers might wish to deviate from the policy.

4 The Asymptotic Behavior of v}

In this section, we describe the asymptotic behavior of v} as N becomes large. The main result

Ng*

is the following theorem, which establishes that v}, — 72 converges to 9, geometrically.

Theorem 4.1 (Asymptotic behavior of v}) Assume (C1) and (C3) hold and let yo be de-
fined as in (2.5). Fiz e >0 and suppose that N > My_(€). Then

*_Ng* _ €
”N—l_)\+y00+0<1_>\)' (4.1)

Proof.

*
Let zp = % + Yoo- Hence, for arbitrary a’ € A?,

- o ANg*
LNLa 2 = LNLa Yoo + 1_9A
. - ANg*
= L®L%yeo + Ng* +0(e) + T2
Ng* A -
= T _g)\ + L L% yoo + 0(€).

The first equality above followed from (C1). The second equality followed from our assumption
that N > M,_(e).
Taking maximums over A% and noting (2.5), we have,
N *
Lz = T2+ Yoo + 0(€) = 20 + 5(c).

By Theorem 3.2, the Banach theorem then implies,

[|Lnzo — 20| < €

*
— <
o — 2ol < P2 <

from which (4.1) follows. O

13



Remark 4.2 The Theorem implies that for any € > 0

N*
||U7V_%_yoo” <e

for N > My ((1 — A)e). This means that the convergence of this sequence is as fast as some

non-discounted value iteration sequence, L¥z — kg* i.e. it is geometric (See [11]).

When (C2) holds, we obtain additional information about the vector y,, namely that yo, € V.
We show this formally in the following Theorem.

Theorem 4.3 (Properties of y.,) Assume (C2) and (C3) hold. Then in the fized point equa-

tion

Yoo(8) = max {fJOOL“ayOO(s)}, sesS
a? CA°

a single slowscale action a attains the mazimum for all s € S. Hence,
Yoo = LOL yq, (4.2)

and Yoo € V.
Proof.

Since L maps into V, (C2) implies the representation

L®LY g = v+ ¢ 1 (4.3)
for all a” € A?. Choose a so that max {c®} = ¢* and fix an arbitrary s € S. Then
ao'e o
Yools) = max {L®L% yoo(s)}
a® €A’

— a’
= ayyeaj([r{vo(s) +c*}
= wo(s) +c™ (4.4)

Since s was arbitrary, this implies that Y = vg + ¢% 1. Equation (4.2) follows from this result
and (4.3) with a” = a?. In addition, (4.2) implies yo € V since L maps into V. O

5 Approximate Optimality of Initially Stationary Policies

In this section, we establish the existence of e-optimal i.s.p.’s, for NV sufficiently large, when the

underlying MDP has state-independent gain.

Our basic result, Theorem 5.1, indicates that an e-optimal i.s.p. exists whose planning horizon

7 is bounded independently of N. In addition, the initial decision rules are gain optimal in W.

14



When (C3) holds, the right hand side (3.4) gives us some reason to anticipate such a result
mathematically. If the sequences {L¥ L% vy — kg*, a € A%} have nearly converged after n. < N
steps, then {L"L% v}, a° € A%} approximate elements of V and, for each a° € A%, a § € D*

exists satisfying
Ly 7" L7 L v}, ~ LN LY vy (5.1)

Hence, decision sequences corresponding to an i.s.p. with planning horizon 7). are approximately

maximizing in the PSMDP optimality equation.

For (5.1) to be satisfied, we might initially expect to require some condition which bounds
the rate of convergence of the sequences {LkLaov}kV —kg*, a” € A°}. Otherwise, since v}, is a
priori unknown, we cannot be sure that convergence will take place in . < N steps. A virtue
of our subsequent analysis is that it does not require any such conditions. Apart from the state-
independence of g*, Theorem 5.1 requires only condition (C3), the existence of the limit. For
Theorem 5.2, we add condition (C2) and prove the existence of e-optimal i.s.p.’s of a simplified
structure. Here again, however, no information about the rate of convergence of value iteration

is used.

Condition (C3) is a technical assumption which excludes periodic phenomenon, thereby sim-
plifying our analysis. When (C3) does not hold, it is known (see [10]) that the sequences L¥z —kg*
are asymptotically periodic. The above arguments then generalize, establishing that e-optimal
cyclo-stationary policies exist which use a periodically varying sequence of decision rules at the

beginning of each renewal cycle.

Theorem 5.1 (Existence of e-optimal i.s.p.’s) Assume (C1) and (C3) hold. Fiz ¢ > 0 and
let ne = My, ((1 — \)?%e¢/2).

Then if N > ne, a uniform e-optimal initially stationary policy with planning horizon 7). exists.

The i.s.p. may be chosen so that for each initial state s € S,

(i) A slowscale action a® € A%, which is optimal in s for some optimal cyclo-stationary

policy, is selected.
(ii) The initial decision rule for s is L°L% yo,-improving where a° is as in (i).

Proof.

Consider an initial state s € S. Fix a slowscale action a® € A? which is chosen in s by some
optimal cyclo-stationary policy. Let ¢ be any Lepe Yoo-improving decision rule, let d € D satisfy
LYy = ngy o and let 7 be a sequence of N decision rules whose first N — 7. terms are ¢, and
which satisfies L¥ L% 1o, = Lergayoo for 0 <k < 7.
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Since N > . = M, ((1 — X\)?¢/2), we have from Theorem 4.1 that

N *
vk = 1_‘q/\-|—yoo+6((1—)\)e/2).

In light of (C1), the last equation implies,
ILFLY iy — LELS || < [|LFLY oo — LELE y, || + AL — M)e. (5.2)
forall 0 <k <N.
For 0 < k < 1, the definition of 7 implies that the first term on the right hand side of (5.2)

is zero. Therefore, we deduce the bound
IZFL vy — IELS ]| < (1= e (5.3)
Furthermore, by our definition of 7., we have that, for & > 7,
LFLY oo = L®LY yoo + kg* + 0((1 — X)?€/2). (5.4)
In the particular case where k = 7,
L L9 o = LOLY yoo + neg* + 0((1 — \)2€/2). (5.5)
Hence, for k& > 7.,
LELS yo = LE"(LL97yy)
= L®L g + kg* + 0((1 — X)2€/2). (5.6)

where the last inequality combines (5.5) with the fact that § is L%° L% y,o-improving and L L%y, €
V. Combining (5.4) and (5.6), we deduce that

ILFL Yoo — LR L ool | < (1= A)%e

for ne < k < N and so (5.2) becomes
|[LFLOvi — LELY v || < (1—A)%e+ A(1— e
= (1—-Xe (5.7)
for ne <k < N.
Finally, (5.3) and (5.7) together imply that

I v — AL o] < (1 - M (5.8)

for 0 < k < N. For the particular case k = N, (5.8) becomes
vy (s) = INLE v3e(s) < (1= N)e

by our choice of a’ and Theorem 3.2.

By Lemma 3.4, a sequence {a’,m,d} constructed for all initial states in this manner corre-

sponds to a uniform e-optimal i.s.p as described in the statement of the Theorem. m|
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When (C2) holds, we obtain a simplification of Theorem 5.1. It indicates the existence of an
e-optimal i.s.p. which prescribes actions based on at most the current state and time (i.e. it is
Markovian deterministic). Since DSMs have history dependent transition probability and reward

functions, this result is not self-evident.

Theorem 5.2 (Existence of Markovian i.s.p.’s) Assume (C2) and (C3) hold. Fiz € > 0 and
let ne = My, ((1 — X)%e/6).
Then if N > ne, a uniform e-optimal initially stationary policy with planning horizon 7). ezists.

The i.s.p. can be constructed so that

(i) It prescribes the same sequence {al,m,d} in each initial state where a is as in

Theorem 4.8 (Consequently it is Markovian deterministic).
(ii) The initial decision rule is vo-improving.

Proof.

Let ¢ be a vp-improving decision rule and let a7 € A% be defined as in Theorem 4.3. Note

that, since L maps into V, (C2) implies that 8 is also Lo° L% yu.-improving for any a® € A°.

In addition, let d € D be a decision rule satisfying L%y, = L;g Y., and let m be a sequence
of N decision rules 7 whose first N — 1, terms are § and which satisfies L¥ L% g, = LerZg Yy, for
0<k<ne.

Using the same manipulations as in the proof of Theorem 5.1, with € replaced by €/3, we find,
as in (5.4), that

LEL% oo = L¥L¥ oo + kg™ + 0((1 — X)%¢/6) (5.9)
for all k& > n.. Also, as in (5.8), we find that
| LEL% vy — LELG vy || < (1= M)e/3 (5.10)
for all 0 < k < N. Noting Theorem 4.3 and letting £ = N, (5.9) becomes
LVNL% Yo = Yoo + Ng* +5((1 — X)%¢/6).
Also, by Theorem 4.1,

N *
v = l_gA—I—yoo+6((1—)\)e/6).

The last two equations can be used to compute v}, — N L“‘*’v}*v by direct substitution. Noting

that g* is state-independent, this leads to

[[vi — LN L% v || < (1 — X)2¢/3. (5.11)
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Therefore, using the triangle inequality,

[ — LY LS o3|
<y = INL¥wy|| + ||LN L vy — LY L vy |

< (1-=2Xe

where the second inequality incorporated (5.10) with £ = N and (5.11). Hence,
vi(8) — LY L% % (s) < (1 — Ne

for all s € S.
This, together with (5.10) and Lemma 3.4 implies the result. O

The Theorem entails a significant simplification. Since the e-optimal i.s.p. which it describes
uses the same sequence in every state, only O(7,|S|) data are needed to represent it, as opposed
to the O(N|S||A?]) data typically required by cyclo-stationary policies (see Remark A.2, in the
Appendix) or the O(n|S||A?]|) data typically required by i.s.p.’s.

Procedures for constructing e-optimal i.s.p.’s as described in Theorems 5.1 and 5.2 are outlined
in [6], Section 7.6 and 7.7. These Procedures follow from the constructive nature of the proofs of
these Theorems. Mainly, what is involved is finding y and evaluating the dynamic programming
sequences {L¥L y,, a° € A?}. Notably, when (C2) holds, finding y is effectively the same as
solving the underlying MDP, due to Theorem 4.3.

6 Optimal Policies

In this Section, we assume (C2) and (C3) and examine the structure of precisely optimal policies
for large N.

With v as in (C2), let

A

p min : || Lvo — Lgvol| (6.1)

1
5 deD\E(vg

with p = oo if E(vy) # D. The parameter p satisfies

argmax{rq + Pguo + 0(p)} C E(vg). (6.2)
deD

The following Theorem establishes that uniform optimal policies use vg-improving decision rules

at all epochs but some final planning horizon in each renewal cycle.
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Theorem 6.1 (Structure of optimal policies) Assume (C2) and (C3) hold and let no = My_ ((1 — X)p).
Then if N > ng, all uniform optimal cyclo-stationary policies prescribe decision rules in E(vy) on

the first N — ng fastscale epochs of each renewal cycle.
Proof.

Consider an arbitrary uniform optimal cyclo-stationary policy and initial state s € S. Denote

the sequence prescribed by 7 in s as {a%, 7, d}.

Since N > n,

by Theorem 4.1.
Also, by our definition of 79 we have,
LFLY oo = L®LY yoo + kg™ + 0((1 — \)p)
for all k£ > ny.

Noting that g* is state-independent, the last two equations may be combined to obtain

LFLO vy, = LFLO gy +)1\ g/\ +25(p)

-~ - AN
= L®L% yo + (k + ﬁ) g* + 5(p).

for all k > ng. However L®°L* yo, € V and so, by (C1) and (C2), the expression L®LY oo +
(k + %) g* differs from vy by a state-independent vector. Incorporating this into the preceding

equality and recalling (6.2), we have

argmax{ry + Py(L*L¥ v},)} = argmax{ry + Pyvo + 8(p)} C E(v)
deD deD

for all £ > ng.

Since the cyclo-stationary policy is uniform optimal, this last result implies, by Theorem 3.3,
that all but the final 7y terms of 7 are vp-improving. Since the cyclo-stationary policy and initial

state considered were arbitrary, the assertions of the Theorem are proven. O
Theorem 6.1 has the following Corollary:

Corollary 6.2 (Existence of optimal i.s.p.’s) Assume (C2) and (C3) hold and let ng = M,_ ((1 — X)p).
Then if E(vg) is a singleton, 6, and N > 19, a uniform optimal simple i.s.p. exists with planning

horizon ng and initial decision rule rule §.
Proof.

Immediate from the Theorem. O
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Example 7.4 in [6] provides a counter-example for the Corollary. The requirement of the
Corollary that there exists a unique vg-improving decision rule is not a condition which has been
widely analyzed in the literature, to the best of our knowledge. Remark 3 of [11] refers to the
case where D* is a singleton, which in turn implies that E(vg) is a singleton since E(vy) C D*.

However, no assessment of the likelihood of this condition is provided.

In [6], a certain measure of the likelihood of uniqueness was made in a simplified setting. Data
for 100,000 2-state models were randomly generated according to a uniform distribution and the
instances of non-uniqueness were counted. A 0% incidence of non-uniqueness was found giving at

least some indication that uniqueness might be the the generic case.

Procedure 7.16 in [6] is a policy iteration algorithm for finding the optimal i.s.p. described by
Corollary 6.2.

7 Extension to Markovian Slowscale Models (MSMs)

All of our analysis for DSMs in the preceding sections followed from the DSM optimality equation
(3.4) together with the related dynamic programming sequences {L¥ L% v%,, a” € A°}.

By applying reasoning analogous to that in the Appendix to an MSM, one obtains the opti-
mality equation

vi = LN Lov%,. (7.1)

Furthermore, we find that optimality is obtained on a class of Markovian deterministic policies,

consisting of periodically repeating decision rule sequences of the form
{do,dy,... ,dn—1,d°} (7.2)
where d; € D, 1 =0,1,...N — 1 and d° € D°.

An analysis analogous to that in the preceding sections can therefore be carried out by con-
sidering (7.1) and the dynamic programming sequences LkL"v}k\,. This analysis is essentially the
same as that of a DSM whose slowscale action space consists of a single action, except that the

role of the single L% operator is assumed by L°.

Consequently, conclusions about the behavior of v}, as a function of N and the existence of
i.s.p.’s can be drawn by applying results already derived to this special case. So, for example, we

deduce that there exist policies of the form
{5,(5,5,... ;6;dN—n>dN—n+1a--- ,dN_l,dU} (73)

which are e-optimal under the conditions of Theorem 5.1 and precisely optimal under the con-
ditions of Corollary 6.2. Likewise, the relationship of the initial decision rules § and planning

horizon 1 to ¥, are as described in those Theorems.
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The conclusions of Theorem 5.2 imply no special simplification in this context because the

existence of optimal Markovian policies is trivial for MSMs.

8 On the Extension to the State-Dependent Gain Case

The previous sections complete the analysis of DSMs where the underlying MDP has state-
independent optimal gain. In this Section, we make a preliminary examination of the state-
dependent gain case to illustrate its distinctiveness from state-independent gain models. This is
in preparation for a sequel paper [7] where a fuller analysis of the state-dependent gain case will

be given.

In the state-independent gain case, we found that the structure of e-optimal policies were
influenced by the limiting behavior of the sequences { L¥ L% vy — kg*, a® € A%}. These sequences
nearly converge in a bounded number of steps. Recalling the discussion in Section 5, e-optimal

i.s.p.’s therefore exist with gain optimal initial decision rules.

Theorem 8.1 provides some alternative insight as to why this occurs in the state-independent
gain case, and also as to why more complicated behavior is apt to be encountered when g* is
state-dependent. The Theorem establishes that the optimal value v}, is bounded as a function of
N (in span norm) if and only if g* is state-independent. Otherwise, v}, diverges linearly in N.
Note that this is the fastest rate at which it could diverge.

Since [[vy ||, is bounded when g* (s) is state-independent, the sequences {LFLY v} — kg*, a” € A°}
are equivalent to value iteration sequences on a bounded set of terminal rewards. Conditions on
state-independent average reward models are known which bound the rate of convergence of such
sequences (e.g. Theorem 2(d) in [12]). Hence, the number of steps for approximate convergence is
likewise bounded in N. The Theorem therefore allows one to anticipate the existence of e-optimal
i.s.p.’s in the state-independent gain case under established conditions on the rate of convergence

of value iteration. Once again, however, our analysis did not rely on such conditions.

Conversely, when ¢* is state-dependent, ||v} || sp 18 unbounded in N. Hence, the number of
steps for approximate convergence will, in general, be unbounded as well, possibly even greater
than N. In the former case, e-optimal i.s.p.’s might require planning horizons which grow as an
unbounded function of N. This is illustrated in Example 8.3. In the latter case, it means that
the structure of e-optimal policies is not determined by the limiting behavior of value iteration at
all. Example 8.4 shows how, in the absence of appropriate conditions on the stationary data, the
non-stationary data can affect whether the sequences {L*¥L%” vy — kg*, a” € A%} approximately
converge in 77 < N steps. When this convergence does not take place, optimal i.s.p.’s with non-gain

optimal initial decision rules may be observed, in contrast to our previous results.
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Theorem 8.1 (Boundedness of v} in N)

(a) [lg"[lgp = 0 = limsupy_, o [0} /|, < o0

(b) ||g ||sp >0= hmlan_mo N Sp > 0.

Proof.

(a) For any vector z € RIS!,
Lyz(s) = max {INL¥ z(s) — Ng*(s)} + Ng*(s) (8.1)
ao’e a
for all s € S.
Let z € R/®| be a fixed vector of span 0. By Theorem 9.4.1(a) in [8], with vg = L% z, the first
term on the right hand side of (8.1) is bounded with respect to N. Since ||g*||s, = 0, it follows
that [|[Lnz|[y, is bounded in N.

Now, from the triangle inequality, Theorem 3.4(a), and the Banach Theorem

lonllgp < Moy = 2llg, + ll2llsp
||[’Nx _‘T”sp
- 1-A
||‘CN"I"Hsp
1—A

+ [llsp

Since ||Lnz||g, is bounded in N, part (a) follows.

b) Aiming for a contradiction suppose ||g* > 0 but that there exists a subsequence Ny
Sp
along which

o, |l
lim —— — ¢ 8.2
m — (8.2)
Now let z = v}, in (8.1) and divide through by Nj. Then noting Theorem 3.2(a), equation (8.1)

becomes,

Ui ()/Nie = mmax {INL v (5) = Nig*(5)} /Ny +9°(s), €S .

The terms v}, (s)/Ny and max {LNL“GU*Nk(s) — Nig*(s)}/Ny are components of vectors whose
ao'e o
spans approach zero as k tends to infinity. This is due to (8.2) and to Theorem 9.4.1(a) in [8] with

vy = L“U'uj‘vk. Therefore, passing to the limit, we deduce from the last equation that ||g*Hsp =0,

establishing a contradiction. O

Remark 8.2 The boundedness of v}, in N depends only on the stationary data and not on the

non-stationary data.
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Example 8.3 (Unbounded planning horizons) Consider a DSM with
S=A{1,2}, A1 ={1,2}, Ao ={1}, A =8
and stationary data,

r(s,a) p(lls,a) p(2ls,a)

) p(
1 1 0
0 [ 0.5 05
0 0 1

N = = ®»
_ N =R

In addition, A% = {a”} and,

for all d € D.

We shall let § € D denote the decision rule which chooses action 1 in state 1 while { € D will de-
note the decision rule which chooses action 2. Also, we shall use the notation segy(di,d2,n), 0 <n < N
to denote the “two-segment” i.s.p. which uses di € D for the first N — 7 epochs of each renewal
cycle and dy € D for the remaining ones. It is immediate to verify that § is the only decision rule
in D* (cf. Section 2.4) and that g* = [ 1 0 ]7. Hence (C1) does not hold. Since all decision
rules are aperiodic (C3) does hold.

The optimality equation is vy = N L% v%.. Since state 2 is absorbing with reward zero on

the stationary epochs, the optimality equation for state 2 is
vy (2) = 0.6v% (1) + 0.2v%,(2).

Hence v}, has the form [ ¢§, 0.75¢%, ]T. Since positive rewards are always obtainable in state 1,

cy > 0. Optimal policies are obtained via the backward induction sequence,

Cyn _ N 0.6chy
0.75c} 0.75c)y

Initially, ¢ is a maximizing decision rule in this sequence. If at some stage § is maximizing, it

remains maximizing. Therefore, a policy of the form seg,(d,(,n) is optimal.

Imitating the above, the value of segy (4, {,n) can be expressed as [ ¢ 0.75¢ |7 and satisfies

the fixed point equation,

Cn Cn
N — LN -nrn La" N .
0.75¢7, o 0.75¢7,
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Solving the component equation for state 1, we obtain

N -7
= : 8.3
N7 0.25+0.15(277) (8:3)

The optimality problem therefore reduces to finding 7*(N) which maximizes . Optimizing the
*

right hand side of (8.3) over 7, we obtain that n*(NN) is of order log, N and A}im CWN =4.

— 00

We now compare the value of the optimal policy seg,(d,(,n*(IN)) with that of an initially
stationary policy segy(d,(,7m9) having a fixed planning horizon 7y. It is sufficient to examine

* _ A0 :
cy — cy for which

Cy — Cy 1
N N oy
N—oo N 0.25 + 0.15(2m0) >0

Thus, we see that the discrepancy between the optimal value and the value of the i.s.p. with
a bounded planning horizon diverges at a linear rate as N tends to infinity. It is obvious that the
same conclusion holds for segy((, d,79) since such a policy can only accrue non-zero rewards on

the planning horizon.

We conclude, therefore, that the size of the planning horizon required in order for an i.s.p. to

be e-optimal in this model is an unbounded function of N.

Example 8.4 (Initial decision rules which are not gain optimal) Consider a DSM with
S = {15273}7 Ay = {152}5 Ay = {1}5 Az = {152}5 A=.38

and stationary data

s a r(s,a) p(l|s,a) p(2|s,a) p(3|s,a)
1] [1] [ 1] [ 1 0 0
1 2 0 0.5 0.5 0
2 1 0 0 1 0
3 1 0 0 1 0
1 3] L2] L-r] L 0 0 I

where the parameter 7 > 0. In addition, A° = {a’} and

0 0 1 0
r =10, P"=| .75 25 0
0 1—p 0 p

for all d € D. Here 0 < u < 1. We will show that, for N sufficiently large and for certain choices
of p and 7, the only (e-)optimal cyclo-stationary policy is an i.s.p. whose initial decision rule is

not average optimal. In particular, the initial decision rule chooses action 2 in state 3.
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Since state 3 cannot be reached when starting in states 1 or 2, the system reduces to that in
Example 8.3 for these starting states. Consequently, v} (1) = ¢}y, v} (2) = 0.75¢}, and the optimal
decisions in states 1 and 2 at all epochs are given by the i.s.p. segy(d, (,n*) from Example 8.3 .

As for state 3, the optimality equation implies
vy = LN[ 0.6¢3  0.75¢%  0.8¢i (1 — ) + 0.8uv%(3) 17.

When N > 1, it is clear that there are only two sequences of actions which can attain the maxima,
on the right hand side of the last equation for initial state 3. One possible sequence is to remain in
state 3 for all N stationary epochs and thereby obtain terminal reward 0.8¢} (1 — p) + 0.8pwvy (3)
at cost rN. The second is to absorb immediately into state 2 and collect a terminal reward of
0.75¢}. The only alternative to these two sequences is to absorb into state 2 after k fastscale
epochs where 0 < £ < N. Doing so yields the same terminal reward 0.75c}; as in the previous
case but at cost kr. Hence, it cannot be a maximizing sequence. The optimality equation for

state 3 therefore reduces to
v (3) = max{0.75¢}y, 0.8¢cx (1 — p) + 0.8pwy (3) — rN}.

We are interested in the case where only the second argument on the right hand side attains the
maximum. When this is so, staying in state 3 throughout the renewal cycle is the only possibility

in an optimal cyclo-stationary policy and

4(1 — p)cyy — 5rN

‘(o _ 4
vy (3) 5— 4y (8.4)
From (8.4), this will be the case when
0.25 — p)cyy — 57N
v, (3) — 0.75¢k = ( wey =5

5—4pu

In our analysis of Example 8.3, we saw that c}; is of the order 4N. Hence, upon normalizing
by N and taking N sufficiently large, the last equality becomes, in view of (8.3)

vy (3) —0.75¢y,  1—4p—5r A

N N = 5oa; ) (8:5)

For sufficiently small 7 and p, we have k(u,7) > 0. In this case, action 2 is the only optimal
decision in state 3, for N sufficiently large. Also, Nx(u,r) > 0 is approximately the minimum
amount by which non-optimal cyclo-stationary policies are suboptimal. Hence e-optimality (or
even Ne-optimality) is possible for arbitrary € > 0 only via an i.s.p. with a non-average optimal
initial decision rule. In turn, this indicates that L*¥ L% vy — kg* does not approximately converge
for k < N.

Conversely, when x(u,r) < 0, action 1 is always chosen, implying that a uniform optimal i.s.p.
exists with a gain optimal initial decision rule. Moreover, L’“L“GU}‘V — kg* does approximately

converge for k < N.
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9 Conclusions

The results we have presented focus on a discounted optimality problem for PSMDPs whose
underlying MDP has state-independent optimal gain. In this case, we arrive at a complete char-

acterization of the optimal value, v}, for large N. In particular, Theorem 4.1 establishes that the
*

sequence v, — 7115_} ~ converges geometrically. In addition, we have found that initially stationary

policies possessing favorable properties exist. Given any € > 0, Theorem 5.1 assures that a uni-
form e-optimal i.s.p. can be found, provided N is sufficiently large. Moreover, the length of the
planning horizon has a bound depending only on € and not on N. When N greatly exceeds this

bound, the form of the i.s.p. is much simpler than a general cyclo-stationary policy.

These general results rest on fairly weak assumptions. Beyond the assumption of state-
independent gain itself, we have applied condition (C3). However, this mainly simplifies the
presentation of our analysis. When (C3) does not hold, generalizations of our analysis which

account for periodicity effects are possible, although trite.

When, in addition (C2), a condition of common interest in the literature, is applied, a signif-
icant simplification is obtained for DSMs. Theorem 5.2 establishes that, for sufficiently large NV,
a Markovian deterministic uniform e-optimal i.s.p. exists, despite the fact that DSMs are non-
Markovian models. Under (C2), we have also established that uniform optimal cyclo-stationary
policies use gain optimal decision rules which can be obtained from the underlying MDP’s average
optimality equations. For sufficiently large N, these decision rules are used on all fastscale epochs
apart from some planning horizon which does not depend on N. When only one gain optimal
decision rule can be obtained from the average optimality equations, we concluded (see Corollary

6.2) that precisely optimal i.s.p.’s exist.

Of the case where the underlying MDP has state-dependent gain, we have made a preliminary
examination. Examples and a general theorem were presented which indicate that the behavior
of PSMDPs with state-dependent gain is more complex than those with state-independent gain.

A fuller treatment of such models will be given in a sequel paper.

Appendix

This Appendix contains the proofs of the statements in Section 3, and some additional remarks

concerning these results.

Proof of Theorem 3.1 (Existence of Cyclo-stationary policies). The discounted DSM can
be embedded in a standard, stationary discounted MDP in which rewards are discounted by A/~

at every epoch. To implement this embedding, we consider a state space

S=8SU(Sx A% x{0,1,2,... ,N}).

26



where X denotes the Cartesian product.

Transition probabilities are then chosen such that, with probability one, a state of the form
s € S is occupied at each renewal epoch, while at all other epochs, the state is a triplet of the

form
(s,a?,7) € S x A x {0,1,2,... ,N}.

In the latter case, s will be the element in S currently observed at t; a® will be the particular
slowscale action taken at the most recent renewal epoch; and 7 will equal t mod N, the time

elapsed since the most recent renewal epoch.

Reward functions are chosen such that

7:(3’ (a‘aaa)) = ’l"()(S, a,aa)
. o r(s,a,a%
T((S,a 7T)=a) = )\(T/(N—H))

In this alternative MDP formulation, an optimal stationary deterministic policy exists. It
follows by analogy that an optimal 7w € IIZ® can be found which chooses slowscale actions as a
function of the current state. Likewise, fastscale actions can be chosen as a function of the current
state, the last slowscale action (and hence the state observed at the last slowscale epoch), and the

time since the beginning of the renewal cycle. This, by definition, is a cyclo-stationary policy. O

Proof of Theorem 3.2 (DSM optimality equation). By Theorem 3.1, we can restrict the
space of policies of the DSM from H%R to H;:Vyc, without changing the optimal value. In this
restricted model, (IV + 1)-step state transitions and rewards are as in a A-discounted MDP with
state space S, generic actions {a?,dy,d;,... ,dy} and whose decision epochs are the renewal

epochs.

The rewards and probabilities for the MDP are given by

f(s,{a",do,dl,... ,dN}) =
[rdo + Paordy + PagPayTdy + - Py - 'PdN—1T((iLjV](3)

and
ﬁ(j|sa{a0’d03d17' .- ’dN}) = PdOPd1 "'PdN_1P(§LJ(\r7(Saj)

The dynamic programming operator for this MDP is Ly and the optimal value is vy. The

assertions of the Theorem then follow from standard properties of discounted MDPs. O

Remark A.1 The proof of Theorem 3.2 identifies an equivalence between the discounted DSM

and a discounted MDP with dynamic programming operator £y. From this equivalence, it is easy
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to see that any of the standard methods for solving discounted MDPs which make iterative use
of dynamic programming operators — value iteration, policy iteration, etc ... — can be adapted
to the DSM. For example, the value iteration sequence x, = L\zg converges to vy. Once vy is

known, an optimal cyclo-stationary policy can be found satisfying (3.5).

Remark A.2 From Theorem 3.2(b) or the proof of Theorem 3.1, it is evident that an optimal
policy which prescribes the same a” in 2 different states can be modified so that it also prescribes
the same sequences {dp, d1, ... ,dy} in those states, with no loss in optimality. Since, ordinarily,
|A?| < |S|, specifying an optimal policy therefore requires O(N|A?||S|) data. In a DSM, therefore,
the size of the policy space is much larger than that of the state space. It is magnified times N
due to the time-inhomogeneity and times |A?| due to the history dependent dynamics. Solution

of the optimality problem can be expected to be correspondingly difficult computationally.

Remark A.3 While uniform optimality constitutes a stronger optimality criterion than conven-
tional optimality, it is clear, in light of Theorem 3.3 and Remark A.1, that solving the conventional
optimality problem (3.2), (3.3) tends to yield uniform optimal policies anyway. For in all stan-
dard algorithms, we first find v} iteratively. To obtain an optimal cyclo-stationary policy we
then evaluate the right hand side of (3.4) via dynamic programming. This generates sequences
{a?,m,d} satistying (3.7) and (3.8).

Proof of Lemma 3.4 (Criteria for e-optimality.)

(a) Equate the DSM to the standard discounted MDP described in the proof of Theorem
3.2. The result then follows from a standard construction of a stationary deterministic e-optimal

policy in discounted MDPs (see, for example, the proof of Theorem 6.2.11 in [§]).
(b) By the triangle inequality,
IZFL vy — IELEoRe || < [|IZFL vy — LEL oy || + | LA LG vy, — LEL ol |

< (L= Ne+ Aol —voe]|.

The first term in the last inequality is due to the requirement of part (b). The second is due to

the non-expansive property of dynamic programming operators.

Since the policy is e-optimal, this becomes
IZRL* vy — LELG o || < e

which shows that it is uniform e-optimal. O
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