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Abstract

This paper continues the study of Piecewise Stationary Markov Decision Processes (PSMDPs)
with discounted costs. In such models, each decision cycle is partitioned into N + 1 fastscale
epochs. In the first N epochs the process evolves according to an underlying MDP with sta-
tionary data, while at the final epoch the rewards and transition law are distinct. For IV
large, initially stationary policies are natural candidates for optimal policies. In this paper,
we consider the general case where the underlying MDP has a multi-chain structure, hence
a state-dependent optimal average reward (gain). Results are developed describing the form
of the PSMDP’s optimal value vector as a function of N. We also give conditions under
which Ne-optimal initially stationary policies exist. These policies require a planning horizon
length with a bound depending only on € and not on N. Under somewhat stronger conditions,
e-optimal initially stationary policies exist. While the planning horizon length may increase as
a function of NV in this case, it is shown to be of lower order than N asymptotically. Counter-
examples are presented which demonstrate that these results may fail to hold if our conditions

are relaxed.

1 Introduction

The work presented here is a sequel to [3]. There, we introduced the notion of a Piecewise
Stationary Markov Decision Process (PSMDP). In these models, the decision horizon is partitioned
into intervals of N + 1 epochs which we call renewal cycles. In the first N epochs of each renewal
cycle (called the stationary epochs), the process evolves according to a time-homogeneous set

of transition probability and reward functions. However, at the final epoch (the non-stationary



epoch), the rewards and transition functions are distinct. These distinct functions capture the

effect of decisions made at a slower time scale.

In [3], we considered a discounted reward optimality criterion in which rewards devalue at the
start of each renewal cycle. We analyzed the solutions of the optimality problem for the case where
the average reward MDP associated with the stationary data (called the underlying MDP) had
an optimal gain which was independent of the initial state. In what follows, we consider the case
where the gain may be state-dependent. An illustrative application where state-dependent gain
is naturally encountered is the alternative projects management problem. In such applications,
a decision maker works on one of several projects for a period of N epochs. At the end of each
period, she may switch to another project. These applications may be modeled as PSMDPs whose

underlying MDP is multichain with subchains corresponding to the different projects.

Our aim is to examine whether initially stationary policies are approximately optimal. In
addition, we examine whether the required planning horizon length is small compared to V.
Though some review is given, for a full description and discussion of the model we refer to [3].
In the state-independent gain case, it was found, under fairly weak conditions on the underlying
MDP, that e-optimal initially stationary policies (i.s.p.’s) exist. The required planning horizon
1. was found to have a bound depending only on € and not on N. Moreover, the initial decision
rules were gain optimal in the underlying MDP. This was because certain relevant value iteration

sequences converged in a bounded number of steps.

Conversely, in the state-dependent gain case, these sequences do not generally converge in a
bounded number of steps. Examples 8.3 and 8.4 in [3] illustrated the type of behavior which
may be observed as a result. In Example 8.3, all e-optimal policies had horizons which were
unbounded. In Example 8.4, the only (e-)optimal i.s.p. in the model had a initial decision rule

which was not gain optimal.

The analysis presented in this paper identifies conditions on the underlying MDP that ensure
the existence of e-optimal i.s.p.’s with diminishing planning horizons. We call a planning horizon
diminishing if it is given by a function which is of lower order than N asymptotically. Furthermore,
it is established that Ne-optimal i.s.p.’s exist if N is large enough. Since the opportunity for
rewards grows linearly in N in the state-dependent gain case (see Theorem 8.1(b) in [3]), there is

adequate justification in accepting this kind of “scaled e-optimality”.

The conditions upon which these results rely are discussed in Section 2.4. Essentially, these
conditions impose requirements on the the chain structure of the underlying MDP. They are
naturally satisfied in the alternative project management applications in which the projects may
be individually modeled as weakly communicating MDPs.

This paper is organized as follows. In Section 2, we review the PSMDP model, supplement

the notation of [3], and describe the assumptions used in our analysis. In Section 3, we establish



some preliminary results.

In Section 4, we analyze the form of the optimal value as a function of N. We find that it
may be decomposed into the sum of a term which is linear in N and one which is of O(log N).
Unlike the state-independent gain case, the linear term in the decomposition depends on both the

stationary and non-stationary data.

In Section 5, we present Theorem 5.1 which establishes that, under appropriate assumptions,
there exists a uniform Ne-optimal i.s.p. whose planning horizon, 7, is a function only of e.
Moreover, the initial decision rule may be derived from the underlying MDP, W, alone. Theorem
5.2, indicates that a similar i.s.p. exists whose planning horizon n(N) is of order log N. However,
the i.s.p. is guaranteed to be optimal up to a term which is only O(log N). So, at the price of a

slightly larger planning horizon, one can approximate optimality much better.

In Section 6, we establish conditions for the existence of uniform e-optimal initially stationary
policies having diminishing planning horizons. The proof shows that the number of steps required
for the relevant non-discounted value iteration sequences to approximately converge is of lower
order than N. In the state-dependent gain case, there are two obstacles in this proof. Firstly, the
value iteration sequences are not guaranteed to reach their geometric phase of convergence in a
number of steps which is less than N. Secondly, even when this phase is reached, the geometric
convergence rate is generally not uniform over an unbounded set of terminal reward vectors.
These two obstacles are surmounted with the help of some new results on non-discounted value

iteration.

Finally, in Section 7, we present a counter-example to the results of the paper when the

conditions hypothesized by them do not hold.

2 Model Description and Notations

This section describes the model, notation, and assumptions which we work with throughout.
Our analysis focuses on Delayed Slowscale Models (DSMs). Extensions to Markovian Slowscale
Models (MSMs), as discussed in [3], are readily obtainable from results for DSMs in which A% is

a singleton.

2.1 Review of the Model and Basic Notation

We briefly review here some model definitions and notation previously introduced in [3]. A Piece-
wise Stationary Markov Decision Process (PSMDP) is a discrete-time sequential decision process
whose evolution is described by an (N + 1)-periodic sequence of transition probability and reward

functions. In the first N epochs of each periodic interval, the probability and reward functions are



time-homogeneous. At the final epoch, however, they are distinct. We call these periodic intervals
renewal cycles and the epochs at the start of these cycles —i.e. epochst =0, (N +1),2(N +1),...
— renewal epochs. The first N epochs of each renewal cycle are called stationary epochs and the
reward and transition probability functions governing the stationary epochs are referred to as the
stationary data. The final epoch in each renewal cycle is called the non-stationary epoch and the
relevant reward and transition probability functions are referred to as the non-stationary data.

A Delayed Slowscale Model (DSM) is a PSMDP specified by a state space S, a space of
allowable fastscale actions A; for each state s € S, and a space of slowscale actions A?. Fastscale
actions, a; € A, are selected at all epochs ¢ while slowscale actions af € A? are selected at renewal
epochs. Rewards and transition probabilities are given at stationary epochs by functions r(s;, a;)
and p(s¢+1|$¢, ar). However, at non-stationary epochs, they are given as r(s, at, a‘(’NH) H/(N+1)) )
p(St+1]st, at, a((TN+1)Lt/(N+1)J ). We assume finite state and action spaces throughout.

ES

We represent functions on S by column vectors in RIS'. For a given y € R'S!, ||y|| denotes the

sup-norm and [|yl|y, denotes the span semi-norm. For a scalar ¢ > 0, 0(c) denotes an unspecified

vector in RIS whose sup-norm is at most c.
The basic dynamic programming operators, written here in vector form, are
Lz 2 max{rq + Pz}
deD d d
o A o g
LY z =max{r] + APj z}, a° € A
deD

where D is the space of possible decision rules mapping each s € § to an a? € AJ.

For a decision rule d € D, Ly = ry + P; represents the restriction of L to d. If 7 =

{dm,dm—1,--.. ,d1} represents a sequence of m decision rules, then for all 0 < k < m,
A
Lfrx =rdy + Parap_y + Py Pay_\Tay_y + -+ (Pdlcpdk—l o Py )z
Analogous notation is defined for other one-step dynamic programming operators.
The DSM discounted dynamic programming operator is
Lyz(s) = max {LNLYz(s)}, s€S . (2.1)
a? €A9

With this notation, the DSM optimality equation can be written vy = Lyv}, or, component-wise,

vi(s) = max {LNL v} (s)}, s€S . (2.2)
The maximizations on the right hand side of (2.1) are obtained by sequences of the form

{a",do,dl,... ,dN_l,d}(S), seSs . (23)

Letting m = {dy,d1,... ,dn_1}, this abbreviates to {a?,m,d}. The sequences of the form (2.3)

specify a cyclo-stationary policy. At each renewal epoch, a cyclo-stationary policy prescribes,



based on the current state s, a slowscale action a’ to be taken immediately as well as a sequence

of decision rules for choosing fastscale actions throughout the upcoming renewal cycle.

An initially stationary policy (i.s.p.) is a cyclo-stationary policy which prescribes a sequence

of the form

{a?,0,6,6,... ,0,dN—pn,dN—pt1,--- ,dN}(9).

The decision rule § is called the initial decision rule for s. The parameter 7 is called the planning

horizon. When the initial decision rule is the same for every state s, the i.s.p. is called simple.

We shall refer to a planning horizon as diminishing if it is given by a non-negative, integer
function n(N) which is of lower order than N asymptotically, i.e. n(N)/N — 0. In general, we
shall refer to functions of lower order than N as diminishing. Likewise, a quantity shall be referred

to as diminishing if it given by a diminishing function.

2.2 Properties of the Underlying MDP

The stationary data can be associated with an average reward MDP, denoted as ¥, with decision
rule space D and optimal gain vector g*. We call ¥ the underlying MDP. Here, we define some

notation for ¥ and recall some relevant properties of average reward MDPs (see also [5]).

Define

1>

P,
max{Fyr}

1>

P,
Iéleag{rd + Pyz}

A . . . .
where E = {d € D | P4g* = ¢g*}. The optimality equations of ¥ can then be written,

g = Ug (2.4)
g+v = Tv (2.5)

where v belongs to a closed, unbounded set of solutions V.

If P} represents the limiting matrix of Py, then g4 = Pjrq denotes the gain of d. The set
D2 {d € D | ¢g* = gq} is the set of optimal decision rules in ¥. By Theorem 3.1(e) in [5], the

necessary and sufficient conditions for a decision rule d (randomized or deterministic) to be average

optimal are that, for any fixed v € V,

1. Pyg* = g*.

2. g*(s) + v(s) = rq(s) + Pyu(s) for all s € S which are recurrent states of P;.



An immediate consequence of requirement 1 is that D* C E.

Let E(v) 2 {d€e E|g*+v=rq+ Pyv}. Theset V is known to be convex if and only if there
exists a d € D such that d € E(v) for all v € V. This follows from Theorem 4.3 and Theorem
3.2(g) in [5].

Define

A . . . .
R* ={s € S| s is recurrent for some average optimal decision rule}.

In [5], it is shown that R* has a unique decomposition,
n*
R =] R(®).
a=1

The sets R*(a),a = 1,... ,n* which, for convenience, we refer to as the Schweitzer-Federgruen

classes, are mutually disjoint with the following properties, (see Theorem 3.2 of [5]):

1. Any irreducible subchain of any optimal randomized decision rule is contained in one of the
sets R*(a).

2. For each @ = 1,... ,n*, a randomized optimal decision rule exists which has R*(«) as an

irreducible subchain, i.e. R*(a) is a communicating set.

Finite algorithms are known for identifying the Schweitzer-Federgruen classes (see, for exam-
ple, the discussion in [5, pages 314]). It is known (cf. Theorem 5.1 in [5]) that, for any given
v1,v9 € V, the difference v1(s) — vo(s) is constant as a function of s over any fixed R*(«).

2.3 Zero-Reward Analogues

When we consider a version of ¥ in which all rewards are set to zero, we obtain useful analogues
to the properties cited in the preceding Section. Firstly, equations (2.4) and (2.5) reduce to

w = max{ Pyw} = Uw (2.6)

where w has replaced v.

The set W 2 {w € RIS!|w = Uw} is the analogue of V. Observe that the vectors 1 and g*

are in W. In addition, since U is positive homogeneous, i.e.
Ucx =cUx

for any non-negative scalar c, it follows that W is a cone.



Define
A
K(w)={d € D|Pyw=Uw = w}

as the set of decision rules attaining the maximum in (2.6). In analogy with V', the set W is
convex if and only if there exists a decision rule d € D such that d € K(w) for all w € W. Note,

from the positive homogeneity of U, that K(cw) = K(w) for any non-negative scalar c.

In addition, we define, for all w € W,

i Uw — P, K D
A 2 ) aeiin, 10w = Pawll: K(w) #
00 : K(w) = D.

Clearly, Aw > 0 and Aw = oo if and only if K(w) = D. Moreover,

1 1
argmax{Pjw + —o(Aw)} = argmax{Pjw + —o(Aw)}. (2.7)
deD 2 deK (w) 2

Since all decision rules are optimal in the zero-reward version, we have the following analogue
VAN . ..
R ={s € S| s is recurrent for some decision rule}

of the set R*. Likewise, we have the following analogous decomposition, sometimes referred to as
the Bather decomposition [1].

a*
R={] R(a).
a=1
This decomposition has the following properties

1. Any irreducible subchain of any randomized decision rule is contained in one of the sets

R(a).

2. For each a = 1,... ,a*, a randomized decision rule exists which has R(«) as a subchain,

i.e. R() is a communicating set.

We will refer to the sets R(c) as the Bather classes. Finite algorithms are known for identifying
the Bather classes (see, for example, [8]). When there is only one Bather class, ¥ is weakly

communicating.

By analogy with V', the difference between elements of W is state-independent over each fixed

A

R(«a). Since 1 € W, it follows that all w € W are state-independent on the Bather classes.



2.4 Assumptions

We shall work with combinations of the following conditions on the underlying MDP, ¥. The

statement of condition (C3) here is equivalent to that in [3].

(C3) For all terminal rewards z, the sequence T*z — kg* converges.
(C4) For all terminal rewards x, the sequence U¥z converges.

(C5) There exists a deterministic average optimal decision rule, v € D*, satisfying, for all
wewWw

Pyw=w=Uw. (2.8)

Hence, v € K(w) for all w € W.

Conditions (C3) and (C4) are equivalent to non-periodicity requirements on the chain structure
of ¥. Condition (C3) is equivalent [6] to the condition that a randomized, aperiodic, gain optimal
decision rule exists whose recurrent chains are the Schweitzer-Federgruen classes R*(«a), a =
1,...,n*. By analogy with an MDP with zero rewards, (C4) is equivalent to the condition that
a randomized, aperiodic decision rule (not necessarily gain optimal) exists whose subchains are
R(a), a=1,...,a"

It is often complicated to verify conditions (C3) or (C4) directly. A convenient condition
guaranteeing that both assumptions hold is that all deterministic decision rules in ¥ induce

aperiodic chains.

Assumption (C5) is a condition which, to our knowledge, has not been considered before. It
requires the existence of a decision rule v € K(w) for all w, or equivalently that W be convex

(see Section 2.3). In addition, it requires that v be gain optimal.

A sufficient condition for (C5) is that the following two hypotheses hold.

(H1) There are no states which are transient under all policies d € D, i.e. S\ R = {0}.

(H2) There is a Schweitzer-Federgruen class in each Bather class, i.e. R(a)NR* # {0}, o =

*
1,...,a"%.

When (H1) holds, the Bather classes completely partition the state space, S. When (H2) holds,
an average optimal decision rule exists under which all the Bather classes are closed. Denoting
this decision rule +, it follows from the fact that all vectors, w € W, are constant over the Bather

classes, that

Pyw=w=Uw.



which is (2.8).
Another hypothesis which implies (C5) is

(H3) The state space has a partition into subchains each containing a single Bather class

and which are globally closed, i.e. they do not communicate under any decision rule.

Hypothesis (H3) implies (C5) because all elements of W are then state-independent over
each globally closed block. This is because each block can be regarded as a separate, weakly
communicating sub-MDP. The latter condition is the zero-reward analogue of (C2) in [3]. Hence,
all w € W differ from 1 by a state-independent vector on each block.

Hypothesis (H3) is a condition which might naturally be encountered in alternative projects
models. In such models, an underlying MDP exists with a partition into globally closed blocks,
each one representing a project. The decision maker works on one of these projects for intervals
of N epochs and then, at non-stationary epochs, may select a new project. Each project can be

modeled as a separate MDP. If each MDP is weakly communicating, then (H3) holds.

Remark 2.1 Hypothesis (H2) holds trivially when there is only one Bather class. It is also valid
when there are two Bather classes and the values of g* corresponding to each Bather class are
distinct. In this case, all average optimal decision rules have a recurrent class in each Bather

class.

To see this, suppose, by way of contradiction that, for some d € D*, all states in Bather
class 1 are transient. Then via P], only Bather class 2 is reached with positive probability. This
implies that Pjg* = g31 # g* where g5 is the value of g* on Bather class 2. However, this is a

contradiction, because all average optimal decision rules, d, satisfy P;g* = g*.

Remark 2.2 Hypothesis (H2), but not (H1), is implied by (H3).

2.5 Additional Notation

When (C3) holds, the operator
Tz 2 lim Tkz — kg*
k—o0

is defined for all z € RS, As established in [7], ||T*z — kg* — T°°z|| converges monotonically to
zero at a geometric rate which depends on z. Also, 7 maps into V and has all the common

properties of a dynamic programming operator.

Analogously, when (C4) holds, the operator

0%z 2 lim Uks. (2.9)

k—o00



is defined for all z € RI/. Convergence of ||[U¥z — U®z|| to zero is monotonic and geometric
with a rate which depends on z. The U operator maps into W and has all the same properties

as the operator U.

Now, let us denote
Uz 2 max{P¢ z}.
dep - ¢

as the analogue of U for the non-stationary data. When (C4) holds, the operator

A Y o
Qz(s) = max {g*(s) + \U>®U* z(s)}, s€S
aae o
is a contraction mapping on R'S| with respect to || - || with contraction factor A\. We denote it’s

fixed point by z.

For each a” € A?, we define the restricted decision rule sets
a A roorTa’
D" = ENK({U®U" \to)-

and the MDP, U’ | as the restriction of U whose decision rule set is D* . When (C5) holds, each
D% is non-empty (since clearly v € D). Similarly, let us define

A
T(aoyr = max {rq + Pyz}.
de D’
We see immediately that T{40) is the L operator for U . What may be less obvious is that

T(4v) 1s also the T' operator for U2 . Because + is optimal in ¥ and v € D%, clearly g* must also

be the optimal gain of ¥%". Moreover, for any d € D%,
Pug* =g*

since, by the definition of D%, d is also in E. Therefore, all decision rules in D* are maximizing
in the first optimality equation of ¥%". Hence, T(4oy is this model’s T' operator analogue. It

follows that, under appropriate conditions, the sequence
n _ *
T(aa)a: ng

will exhibit all of the convergence characteristics classically associated with the T' operator.

For every finite set of reward vectors GG, and every € > 0, let
My(G,e) 2 min{k : [|UFz — U®z|| < ¢ for all z € G}.

Since ||[U¥z — U®z|| converges monotonically, My (G, €) is the point at which all the sequences

Ukz, £ € G have converged within e.

10



In general, we will sometimes refer to the number of steps for a backward induction sequence
to converge within a certain accuracy as its “convergence time”. The function My gives the

maximum convergence time for U¥z, z € G .

The set
A o
Gey, = {z € RI¥ | 2 = UY A2y, for some a” € A}
will be of particular interest, as will

M,_(€) & My(Ga, o).

Too

Finally, we define 7 as a bound on all of the reward data in the PSMDP.

3 Preliminary Results

In this section, we derive some results pertaining to the dynamic programming operators L, U,
and Ly which will assist us in the main part of our analysis. The first Lemma establishes some
useful properties concerning W — the set of fixed points of U — in the case when it is convex.
Recall from Section 2.4 that this is always the case when (C5) holds.

Lemma 3.1 (Convexity properties of W) Suppose W is convex. Let wy,wy € W and cy,cp > 0.
Then

(a) crwy + cows € W.
(b) K(ciwi + cowy) = K(wy) N K (ws).
(¢c) A(cywy + cowy) > min(cy, ¢o) min(Awq, Aws).

Proof.
(a) Immediate from the fact that W is a convex cone.

(b) We first fix d € K(ciwy + cows), implying

cawy + cqwy = Ul(ciwy + cows)

= ¢ Pywi + o Pjws. (31)

Let us further suppose that d ¢ K(w1) N K(ws). Then at least one of Pywy < wy or Pywy < wo

is true. Since c1,co > 0,

cawi + cowz < crwi + cows

11



is obtained from (3.1), establishing a contradiction.
This shows that that K (ciwq+cows) C K (w;)NK (we). To demonstrate the reversed inclusion,
fix d € K(w1) N K(ws). Then
U(c1w1 + CQ’UJQ) > 1 Pywi + coPyws
= clwi + cowsr
= U(ciwy + cows).
where the last equality followed from part (a). Hence, Py(ciwi + cows) = U(ciwi + cows) imply-
ing that d € K(ciw; + cows).

(c) Since ciwi,cowe € W and since min(Acjwi, Acowsy) > min(eq, co) min(Awy, Aws), it is

sufficient to prove (c) for ¢; = co = 1.
Let w3 = wy 4+ wy. For any d € D,
(I — Py)ws = (I — Py)wy + (I — Py)ws. (3.2)
Since both w; and wy are in W, both (I — Py)w; and (I — P;)ws are non-negative. Furthermore,
w; = Uw; for 1 = 1,2,3. Equation (3.2) therefore implies

|Uws — Pgws|| > [|[Uwy — Pygw:||, (3.3)

||Uw3 - Pd’ng Z ||Uw2 — PdeH. (3.4)

Now, from part (b), K(w3) = K(w1) N K(ws). If K(ws) = D, then Aws = oo and the result

follows trivially. If this is not the case, then

Awz = min [|Uws — Pyws]|.
dEK(wl)CUK(wz)C

Here, K(w)¢ denotes the set complement of K(w). If the minimum in the above is achieved in
K (w1)¢, (3.3) implies

A’wg = min ||UU)3 — Pdng
de K (wy)e
> min ||[Uw; — Py
deK (wr)°
= A’U)l

> min(Awi, Aws),
whereas if the minimum is achieved in K (w2)¢, (3.4) similarly implies

A’wg Z A’wg

> min(Aw;, Aws).

Since one of these two conditions holds, part (c) follows. a

12



The following Lemma gives us a logarithmic bound on My (G, €).

Lemma 3.2 (Log bound on number of steps to convergence) Suppose (C4) holds and con-
sider any finite set of vectors, G. Then there exist constants J,bg > 0,kg > 1 such that

My(G,e) < max(J [1og,m (b—G)] ,0).
Proof.

Immediate from the finiteness of G' and the geometric rate of convergence of U¥(-). O

The following Proposition describes value iteration on terminal reward vectors of the form
N Zo-

Proposition 3.3 (Value iteration on scaled vectors) Assume (C}) and (C5). Let yo be a
terminal reward vector of the form yo = Nz, let G be a finite set of vectors containing Ty, and

fix any € > 0.

Then, the representation,
L¥yg = kg* + N (U0 + 6(€)) + 8(cx My (G, €)) + 0(c2)

holds for all k > My (G,e€), where c1, ca are positive constants.
Proof.
For brevity, let M = My (G, €). We denote a generic M-horizon policy as m = {d1,ds, ... ,dm}

and the M-step transition matrix it induces as PM. Then,

IMyy = max{ry, + Payra, + -+ P (Nao)}
= Nmax{PMz} + 6(FM)
™
= NUMzo+6(FM). (3.5)

However, by the definition of M, we have
UMzy = Uy + o(e)
so that (3.5) becomes
LMyy = N(U®xz + 6(€)) + 6(7M). (3.6)

Now from the proof in Theorem 9.4.1 in [4] of the boundedness of L™z — ng* we know that for a

certain vector h,

L"x = rgq + Pyre,+ -+ Prz
< ng*+h+ P}z —h) (3.7)

13



for any given terminal reward vector z. In addition, if we consider the ‘MDP’ consisting of a

single average optimal decision rule § € D*, we may also derive from the proof the lower bound,

Lz > Lix
= ng* + hs + P§'(z — hy). (3.8)
where hj is the bias vector of 4.
Taking z = LMyy and n = k — M, (3.7) becomes
LEMLMy, —  Lky,
< (k—M)g*+h+ P!LMyy — P'h.
Upon substituting (3.6), rearranging, and noting that U®z¢ € W,

L*yy < kg* + N(PpU*zo + 0(c)) + 6(2||h]|) + 6(27 M)
< kg* 4+ N(U®z + a(e)) + 0(2||h||) + 6(27 M). (3.9)

Similarly, (3.8) becomes, once we let § = 7, where + is as in (C5)

LFyo > kg* + N(PrU®z + 6(€)) + 6(2||hy||) + 6(27 M)

kg* + N(U®zo + o(€)) + o(2||hy||) + 0(27M). (3.10)
From (3.9) and (3.10), we deduce that
Lryy — (kg* + NU®zq) = No(e) + o(c1 M) + 6(c2)

Here, we have taken ¢y as a bound on the terms 6(2||h||),5(2||h||) and also replaced 27 by ¢;.

The conclusions of the Theorem are therefore proven. O
The following Proposition relates a single step of value iteration Ly (Nzg) to Q.

Proposition 3.4 (Two timescale value iteration on scaled vectors) Assume (C4) and (C5).
Let 2o be a terminal reward vector of the form zo = Nxg, define G = {U% Axo,a° € A} and fix
any € > 0.

Then, if N > My (G,¢), the representation
Lnzg = N(Q.T() + 5(6)) + 5(01MU(G, 6)) + 5(62) (3.11)

holds for positive constants ci, cs.

Proof.

14



Fix a® € A% and let 2% = U Azy. Then,
LYz = “ + APy (N
20 géag({rd +APg (Nxo)}
= N Py o(7
max{ P§" Xeo} +o(r)
= NU% \zg + o(7)
By the nonexpansive property of LY, therefore,
LNLY 29 = LN (NU® Azo) + o(7). (3.12)
Because U% Azy € G, the hypotheses of Proposition 3.3 are satisfied for an initial reward vector
of the form NU% \zy and k¥ = N. Hence, it applies to the first term on the on the right- hand
side, yielding
LNLaUZO = Ng* + N(UOOUGU/\.’E() + 5(6)) + 5(61MU(G, 6)) + 5(62).
Since a was arbitrary, we can maximize both sides of the last equation over A to obtain (3.11).
O

4 Asymptotic Behavior of v}

In this section, we examine the N-dependence of v}3;. The next Theorem is the main result of
this section. It shows that under (C4) and (C5), the optimal value v}, can be decomposed into
an explicit term which is linear in N and a term which is O(log N). In contrast to Theorem 4.1
in [3], we find that in the state-dependent gain case, the linear term may depend on both the

stationary and non-stationary data.
Theorem 4.1 (Asymptotic behavior of v}, - non-constant gain) Assume (C4) and (C5).
Then

vy = Nz + O(log N). (4.1)

Proof.
Let 20 = N, and let G = {U% Az, a’ € A%}. Fix € and suppose that N > M,_(e), so

that the hypotheses of Proposition 3.4 are satisfied. Since Qo = Zoo, We may write,
Lnzg = N(zoo + 0(€)) + 0(c1 My (€)) + 0(c2)

Now, from Theorem 3.2(a) in [3] and the Banach Theorem,

|| L 20 — 20|
£ _ < HENZ0 7 0l
llvy — 2ol < T X
_ IN6(e) + 0(c1 Mz, (€)) + 0(c2) |
1—A )
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If we now take e = 1/N and substitute zg = Nz, the last result becomes,

[lo(1) + o(c1 My, (1/N)) + 0(c2)||
1-X

vy — Naoo|| < (4.2)

and this is satisfied for N > M,_(1/N).

In light of Lemma 3.2, M,_(1/N) = O(log N). Hence, N > M,_(1/N) and (4.2) holds for N
sufficiently large. Moreover, the right hand side of (4.2) is O(log N). This yields (4.1) concluding
the proof. O

The following Theorem documents some properties of .
Theorem 4.2 (Properties of z,,) Assume (C}). Then,

(a’) ||‘,L'00||sp = O < ||g*Hsp = O
(b) zo is constant on the Bather classes.

Proof.

(a) Substitute z = c¢1 as a candidate solution into the equation z = Qx. Then the definition
of ) implies

cl =g* + Acl.

A scalar ¢ will render a solution in this vector equation iff ¢g* is state-independent.

(b) Fix any two states s1, so which are contained in the same Bather class. For any vector y,
Uy € W and so is state-independent on each Bather class. In particular, letting y = U% 24, it

follows that U™ 4 (s1) and UPU® 4, (s2) are maximized over A” by a common af. Therefore

Too($1) — Too(s2) = (g7(51) — 9" (52)) + AUPUB o0 (51) — UPUSB 705 (52))
=0

since both ¢* and U®U% x4, are state-independent on the Bather classes. O

5 Scaled e-Optimality of Initially Stationary Policies
The following Theorem is the main result of this section. It establishes that Ne-optimal i.s.p.’s

exist whenever (C4) and (C5) hold. Moreover, the initial decision rule can be any ~y satisfying

(2.8) and so can be derived directly from .
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Theorem 5.1 (Existence of scaled e-optimal i.s.p.’s) Assume (C}) and (C5) hold. Fiz e >
0. Let ne =My ((1—X)e/4) and let v be any decision rule satisfying (2.8). Then for all N
sufficiently large, a uniform Ne-optimal simple i.s.p. exists with planning horizon ne and initial

decision rule 7.
Proof.

Let N > .. For brevity, let ¢ = (1 — \)e/4. Fix s € S and an associated a® € A7 such that
Too(s) = g*(s) + AUPU zo(s). (5.1)

Now, let d € D be a decision rule satisfying U Azo, = US” Az Let 7 denote a sequence of N de-
cision rules whose first N —1), terms are v and whose remaining terms satisfy U¥ Ué‘a Moo = UFUY Az oo
for 0 <k < 7.

By Theorem 4.1,

o

LY 0% = gleag{rf;" + AP (Nzo + O(log N))}

= N P log N
max{Py Ao} + O(log N)

= NUY Az + O(log N). (5.2)
Similarly, by the definition of d,
LY vy = NUY Az + O(log N). (5.3)
From (5.2),
LFLO v} = LF(NUY Az) + O(log N) (5.4)

Applying Theorem (4.1) yet again gives, for 0 < k < 7. and N sufficiently large,
|L¥LY v}, — LELZ vy || < N||UFUY Azoo — UFUS Az oo|
+27(ne + 1) + O(log N)
= N||UFUY Az — U,’ija)\acooH + O(log N)
= 0+ (1—A)Ne (5.5)
We have changed the the L and L% operators in the first inequality into U and U% operators

at the expense of the term 27(n. + 1). This term bounds the rewards obtainable in &k < 7, + 1
fastscale epochs. The third equality follows from the definition of .

When k& > 7., Proposition 3.3 applies to the first term on the right hand side of (5.4) which
then becomes,
LFLY vy = kg* + N(U®U Moo + 0(€')) + 0(c17¢) + 0(c2) + O(log N)
= kg* 4+ NU®U Az + No(e') + O(log N). (5.6)
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Applying L7 to both sides of (5.3), we have
LELY v = ro(ne) + Ui (NU* Az o) + O(log N)
= neg* + NUPUY Azoo + No(€') + O(log N). (5.7)
Reinvoking (3.8) with § =+ and incorporating (5.7),
LELY vy, = LEMepmepays
(k —ne)g* + hy + P}f—ns (g™ + NﬁoanU/\fUOO)
+No(e') + O(log N).

V

Noting (C5), this becomes

LELE vy > (k—n)g* + hy + neg” + NUPU Az + No(e') + O(log N)
kg* + NU®U A\zoo + No(e') + O(log N)

Subtracting this from (5.6) yields
LFL v}, — LELY v%, < No((1 — A)e/2) + O(log N) (5.8)

for ne <k < N.
For the case k = N, we get a similar result by noting from (5.1) and Theorem 4.1 that

vy (s) = N(g*(s) + AUU oo (s)) + O(log N)
and by subtracting (5.6) once again. This produces,
v (s) — LY LY vy (s) < N(1 — A)e/2 + O(log N). (5.9)

Taking (5.5), (5.8), and (5.9) together, it is clear that for N sufficiently large we will have,

after taking norms

ILFL vy — LELT vi]] < (1= A)Ne
for all 0 < kK < N — 1 and likewise that

vi(s) — LY L% v (s) < (1 — A)Ne.

By Lemma 3.4 in [3], an i.s.p. which, for each initial states s € S, selects a sequence {a’,m,d} in
this manner is uniform Ne-optimal. Moreover, the structure of such an i.s.p. is as described in

the statement of the Theorem. O

By letting . = M,__ (1/N), the preceding proof can be easily modified to prove the following

Theorem.
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Theorem 5.2 (Log order deviation from optimality) Assume (C4) and (C5) hold. Letn(N)
be the diminishing function of order log N given by n(N) = M,_(1/N) and let vy be any decision
rule satisfying (2.8). Then a simple i.s.p. with planning horizon n(N) and initial decision rule
exists which is uniform O(log N)-optimal.

Hence, if we accept a diminishing planning horizon n(N) as opposed to a bounded one 7., we
can achieve approximate optimality up to a deviation term which is of order log N rather than a

linear term Ne.

6 eOptimality

In this section, we establish conditions for the existence of uniform e-optimal i.s.p.’s. Our approach
is the same as in [3], Section 5, namely to show that the sequences {L¥L% v} — kg*, a” € A}
approximately converge in 7 < N steps. This leads to a proof that an e-optimal i.s.p. exists with
planning horizon 7. From Example 8.3 in [3], we know that this 1 will generally not be bounded
as a function of N. However, we may still hope for it to be a diminishing function. If so, we can

show that e-optimal i.s.p’s exist with diminishing planning horizons.

The first obstacle in establishing such convergence is that, when g* is state-dependent, the
operators L and T are generally not equal. In reference [7], the authors describe 3 phases in which
the general sequence L"x — ng* converges. The first phase ends after a number of steps ng(z)
when the L operator reduces to 7. However, Example 1 in [7] shows that no(x) can be linearly
related to z. In our case, the initial reward vector z is L% v} which, due to Theorem 8.1(b) in
[3], grows linearly in N. Hence, a sequence L¥ L% vy — kg* may not even complete the first phase

of convergence within N steps, let alone converge in a diminishing number of steps.

Theorem 6.1 addresses this first obstacle. Part (a) establishes that, when (C4) and (C5) hold
and N is sufficiently large, the L operator in {L’“Laav}*V — kg*, a® € A%} reduces not merely to
T, but to T{4s) in a diminishing number of steps, n(V).

Part(b) implies that, from that point onward, the sequences {L* L’ vy — kg*, a® € A%} evolve
like sequences {T(IZ U)O(log N) — kg*, a® € A°}. The second obstacle is then to establish that
these alternative sequences converge within € in a diminishing number of steps 7¢(N). This is
problematic because all that is known about the terminal rewards of this sequence is that they
are O(log N) (and so potentially unbounded). Since T(,-) is an analogue of T, Theorem 4.2
in [7] indicates that that the convergence of T(’fla)w — kg* is geometric for each fixed terminal
reward vector . However, the geometric rate of convergence may not be uniformly bounded over
an unbounded set of terminal rewards. This is true even in the state-dependent gain case, as
Example 3 in [7] shows. Hence, we can anticipate nothing about the convergence time of the
sequences {T’ZU)O(log N)—kg*,a® € A%}.
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The second obstacle was overcome in [2], Theorem B.4, which gave conditions such that the
convergence time of T-operator value iteration is of at most the order of the terminal rewards.
This allows us to complete the proof of the existence of uniform e-optimal i.s.p.’s. The result is

formerly presented in Theorem 6.2.

Theorem 6.1 (Reduction of L to T{,-)) Assume that (C4) and (C5) hold and let n(N) be a
diminishing function of order greater than log N. Then if N is sufficiently large,

(a) arger%ax{rd + PyLFLP N L9 y% ) = a;rgglzix{rd + PyLFL" M) L9704}
e al

(b) LkL"(N)Laafu}‘v = T(’Z(,)O(logN) +n(N)g* + N(U“U“U)\xoo)
forallk=0,1,... and a® € A°.

Proof.

Fix any a? € A?. By Theorem 4.1,
L% = gleag{rjo + AP (Nzo + O(log N))}
= NIC%%({P;U Ao} + O(log N)
= NU% Azs + O(log N)
Hence, by the nonexpansive property of the L operator,

LELIN) L7 yh = LFN) (NU \zo) + O(log N).

By Lemma 3.2, M;_(1/N) = O(log N), while n(IN) is of order greater than log N. We know,
therefore that for N sufficiently large, n(N) > M,_(1/N). In this case, Proposition 3.3 applies
to the first term on the right hand side of the last equation with G = G__ . Hence, for all £ > 0,

LFLPMN L% p% = (k4 n(N))g* + N(U®U Az + 6(1/N))
+ o(c1 My (1/N)) + o(ce) + O(log N)
= (k4 n(N))g* + N(U®U* Az) + O(log N), (6.1)

from which we immediately get

argmax{rq + P;LF LN L7 %}
deD

= arger%ax{Pd[(k +n(N))g* + N(U®UY Azoo)] + O(log N)}. (6.2)
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Because arg max is unaffected by dividing its argument by a positive constant, we may modify
the right hand side of (6.2) by dividing its argument by n(N),

argmax{rq + PyLF LN L7 %}
deD

= argmax{Pyw(k,N) + O(log N)/n(N)} (6.3)
deD
where we have introduced,
A k:+17(N)> ( N ) A -
wk,N)=| —F——— 9"+ | —— | UPU?* \z.
w2 (S55) o+ (5 >

Since (C5) holds, we know that W is convex (see Section 2.4). Noting that both ¢* and
U>U% Ao are in W, it therefore follows from Lemma 3.1 (a) and (b) that w(k, N) € W and
that K (w(k,N)) = D% for all k > 0 and N. Moreover, since n(IN) is of order less than N, we
may enlarge N so that (%) > 1. In this case, Lemma 3.1(c) applies and

Aw(k, N) > min(Ag*, AURU Az o)

for all £ > 0 and N sufficiently large.

Therefore, by making yet another enlargement of N, (6.3) becomes

argmax{rq + P;LF LN L7 p% )
deD

1 S o
= argmax{Pyw(k,N) + Eé(min(Ag*,AUoan AZoo))}
deD

= argenll)ax{Pdw(k,N) + %6(Aw(k,N))}

= argmax{Pyw(k, N) + %5(Aw(k, )} (6.4)
deDe’

where the last equality follows from (2.7).
Therefore argmax{ry + P;LFL"™ L% v%} C D and, hence, part (a) follows for a fixed
deD
a’ € A°.

To prove part (b), observe that, by induction, part (a) implies

LFLTMN L9 = TF,

( )L"(N )L v, (6.5)

for all £ > 0 and N sufficiently large.
Letting k = 0 in (6.1) and noting that K (n(N)g* + NU®U* Azs) = D*, we have
LFLMN L0y = T, (O(log N) +1(N)g* + NURU* Azo)
= Tk, O(log N) +n(N)g* + N(U*U A\zco)
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for all £ > 0 and N sufficiently large. Thus, part (b) is proved for fixed a? € A°.
We have established that both (a) and (b) hold for all £ =0,1,2,... and N sufficiently large

for an arbitrary fixed a” € A?. The same conclusions follow for all a? € A? simultaneously since
A? is finite. O

Theorem 6.2 (Existence of e-optimal i.s.p.’s) Assume (H1), (H2), and (C3) hold. Then for
every fized € > 0, there is a diminishing function n.(N) such that for all N sufficiently large, a

uniform e-optimal i.s.p. exists with planning horizon n(N).
Proof.
Hypothesis (H2) and (C3) together imply (C4). This is because each Bather class then contains

a subchain of some aperiodic optimal decision rule. Because each R(«) is communicating, a
decision rule which randomizes over all actions not permitting a transition out of the Bather
classes therefore has aperiodic chains R(a),a =1,... ,a*. Furthermore, (H1) and (H2) imply
(C5).

Consequently Theorem 6.1 applies. As discussed previously, the question of whether the
sequence LFLY vy converges then reduces to the question of whether

Tk

(a”

)(O(logN)).

converges, for all a® € A°.

In particular, if we can show that, for each fixed a and ¢, these sequences converge within a
number of steps k which is O(log N). Then the total convergence time of L¥L% v%, to within e

will be given by some 7(N) satisfying
1e(N) = n(N) + O(log N).

Here n(N) refers to the diminishing function of order greater than log N described by Theorem
6.1. This sum is a diminishing function for each fixed e. The Theorem then follows from arguments

similar to those used to prove Theorem 5.1 in [3].

To show this, however, it is sufficient to demonstrate that assumptions (C3) and (A6) (see
Appendix B in [2]) hold in each ¥?°. For then, by Theorem B.4 in [2], the convergence time of
T(ka U)(O(log N)) for each fixed € is on the order of the terminal rewards, which is log N. In the
remainder of the proof, we argue that this is the case.

Fix a” € A°. Note that when (H1) holds, any dy € D for which the Bather classes are
closed will be an element of K (w) for any w € W. This is because w is constant on all the Bather
classes, so naturally Py,w = w. In particular, any such dy will be in K (¢*)NK (TU®U® z4,) = D% .
However, decision rules which close the Bather classes are precisely the ones necessary to generate

the different possible recurrent chains in ¥. Clearly then, ¥% has the same system of Bather
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classes and Schweitzer-Federgruen classes as U. Therefore, (C3), (H1), and (H2) and consequently
(C5) hold in ¥%°. Finally, as we argued in Section 2.5, E and D for the restricted MDP ¥ are
the same set, D% . Hence, in %’ (C5) and (A6) are equivalent.

Since a” was arbitrary, we have shown that (C3) and (A6) hold in each W%’ completing the
proof. O

Remark 6.3 If the hypotheses (H1) and (H2) are substituted with (H3), the Theorem still holds.
The only difference in the proof is that the argument for why (A6) holds in each ¥%” is simpler.
As explained in Section 2.3, all w € W are state-independent on the globally closed blocks of
states under (H3). Hence, D = K (w) for all w € W. In particular, D = E = D% for all a° € A?,
implying that (A6) holds for each ¥U%’.

Theorem 6.2 can therefore be applied to all alternative projects models for which (H3) is
satisfied.

7 Counter-examples

The results developed in previous sections require conditions (C4) and (C5). Similar to (C3)
in [3], (C4) is a technical condition which excluded periodicity phenomena from our analysis.

Generalizations which take periodicity into account are possible, although trite.

When (C5) is relaxed however, we find that PSMDPs may exhibit very different behavior
than that described by the results in previous sections. One example where (C5) does not hold
was presented in [3], namely Example 8.4. Here Equation (2.8) does not hold for w € W of the
form w=1[a b ¢ ]’ with a,c >b. In that example, it was found that the convergence time
of sequences {L¥L* v} — kg*, a € A%} within arbitrary € > 0 may or may not be less than N.
This depended jointly on the stationary and non-stationary data. When the convergence time
was greater than IV, the only cyclo-stationary policy which was Ne-optimal for arbitrary e was

an i.s.p. with a non-average optimal initial decision rule.

In the following example, we find that

(i) Contrary to Theorems 5.1, 5.2, and 6.2, even a (uniform) Ne-optimal i.s.p. whose

planning horizon is diminishing does not exist.

(ii) Contrary to Theorem 6.1, the sequence LkLaav}*V — kg* does not converge, nor reach

its second phase of convergence in a diminishing number of steps.

(iii) Despite (i), a (non-uniform) optimal i.s.p. does exist with a diminishing planning

horizon, but is not identified by backward induction.
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Example 7.1 Consider a DSM with
S=1{1,2,3}, A1 = {1}, A2 ={1,2}, A3 ={1}, A=.75

and stationary data

s a r(s,a) p(lls,a)  p(2[s,a)  p(3s;a)
1 1 2 1 0 0
2 1 0.5 0.5 —pu 2u 0.5—p
2 2 —0.25 0.25 0 0.75
3 1 -1 0 0 1
where 0 < p < 0.5. In addition, A = {a°} and
0 0 0 1
=0 B= s 5 s
0 3 50

for all d € D. For simplicity, we shall take the parameter y equal to zero. A more tedious

development is possible for small, positive y with the same conclusions.

We denote the decision rule which chooses action 1 in state 2 as § and the decision rule which
chooses action 2 as (. Both decision rules are aperiodic, so (C3) and (C4) hold. It is easily verified
that & is the only optimal decision rule in D and that g* = [ 2 0.5 —1 ]7. Moreover, § does
not satisfy Equation (2.8) for all w € W (for instance w = [ 0 0.75 1 ]7), implying that (C5)
does not hold.

We will show by direct substitution that the vector N[ 2 1 0 ] solves the optimality equa-
tion and, hence, that v, = N[ 2 1 0]7. We let

w=L"C(2 1 0))=N[0 075 1]F
and examine the sequence L*y,, k =0,1,2,...,N.

By induction, it may be verified that, for £ < N/3 + 1, the only improving decision rule in

this sequence is ¢ and

0 2
LFyo=N| 075 | +%| —0.25 (7.1)
1 -1

for k < N/3+ 1.
Using this result, we can use induction once again to show that, for ¥ > N/3 + 1, the only
improving decision rule is § and

0 2
LFyg=Lfy,=N| 05 [+k]| 05 |. (7.2)
1 —1
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In the particular case k = N,
INyo=N[2 1 0]F=cx(N[2 1 0]F)

proving that N[ 2 1 0 ]7 solves the optimality equation.

As we noted, ¢ only becomes an improving decision rule after N/3 + 1 value iteration steps,
which is non-diminishing. Furthermore, it is easily verified that E = {§}. Hence, L reduces to T

only after a non-diminishing number of steps.

Now let
A k * T
e(k,y0) = LFyo —kg* — N[0 05 1] .

We deduce from (7.1) that

0 0
e(k,yo)=N| 025 | +k| —0.75
0 0

for k < N/3 + 1. From (7.2) we deduce that e(k,yo) = 0 for £ > N/3 + 1. This directly indicates
that

L®yy = L®L vy, = N[0 0.5 1]°

and that the sequence L¥L%” vy converges within an arbitrary error only after a non-diminishing
number of steps kK = N/3 + 1.

We now demonstrate, by contradiction, that it is impossible, for all N sufficiently large, to
achieve (uniform) Ne-optimality for arbitrary € via an i.s.p. with a diminishing planning horizon.
For suppose it were possible with diminishing planning horizon function, n(N). Then for any
€, we may extract a subsequence N; and an associated sequence of Nje-optimal i.s.p.’s 7, each
having planning horizon 7(/N;) and the same initial decision rule.

Take € = 0.1. Suppose first, that the common initial decision rule for the sequence is §. Now,
fix j sufficiently large so that n(N;) < N;/3 + 1. This condition can be satisfied since n(NN) is
diminishing. Using (7.1), we find, by direct substitution, that

L’I(NJ‘)“L“”u}*\, — LJL"(NJ')LG'GU’;V =

0 0
= N;j| 025 | +(@(V)+1) | —075 |. (7.3)
0 0
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If we consider starting the process n(N;) + 1 steps before a renewal epoch, then since each =; is

uniform Nje-optimal,

Nje 2 Ln(Nj)+1LaUU}kV(2) _ LZS.Nj)+1LaG'U7Tj (2)
> DU L (2) - LLE W L vy (2)
> LMDy (2) — LeL7N L0 (2).

The last two inequalities used the monotonicity of dynamic programming operators.

Combining this with (7.3) and substituting e = 0.1 yields
(N;)0.1 > LND+1La%ypx (2) — LN a%yx (9) > 0.25N; — 0.75(n(N;) + 1)
Dividing through by N; and letting j tend to infinity produces 0.1 > 0.25 thereby establishing a
contradiction.
Alternatively, if we suppose that the initial decision rule common to the sequence is (, then
using a similar approach, we first write

vy — LI Layr = N[ o 05 0 1.

The fact that 7; is Nje-optimal, implies

Nje > wj(2) - Lo ")

= 0.5N;.

LN L% % (2)

In this case, the contradiction 0.1 > 0.5 is reached.

Although we have proved that uniform optimal i.s.p.’s can not have diminishing planning
horizons in this model, it is nevertheless true that the i.s.p. which uses J at every fastscale epoch

is conventionally optimal. This follows from the second equality in (7.2). When k = N,
LYLv, =N[2 1 0]' =vy.

Hence, a conventionally optimal i.s.p. exists with the diminishing planning horizon n = 0.

8 Conclusions

We have analyzed PSMDP’s whose underlying MDP have state-dependent optimal gain. The
properties of i.s.p.’s are not as strong in this case as in the state-independent gain case. This
is due to the unboundedness of the optimal value together with the irregular behavior of value

iteration in this case. Examples have shown that, in general, optimal and e-optimal i.s.p.’s may
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not have bounded planning horizons. When using i.s.p.’s, it is necessary to settle for scaled

e-optimality and/or diminishing planning horizons.

Despite its more intricate nature, much information about the optimal discounted reward
and the optimality of i.s.p.’s was obtained in the state-dependent gain case. The results rested on
conditions which are naturally satisfied, e.g., in application of the alternative projects management
type where the projects may be individually modeled as weakly communicating MDPs. Theorem
4.1 gave us a decomposition of v}, into an explicit term Nz, and a term of order log N. Also,
Theorem 5.1 guaranteed the existence of an Ne-optimal simple i.s.p. Theorem 5.2 guaranteed a

similar i.s.p. which is O(log N)-optimal, but which has a diminishing planning horizon.

Proving the existence of e-optimal (non-scaled) i.s.p.’s with diminishing planning horizons was
by far the most challenging problem handled here. An important property required in the analysis
is the convergence of relevant value iteration sequences in a diminishing number of backward
induction steps. Established value iteration theory suggests that, in general, these sequences
might not even complete their first phase of convergence in a number of steps which is less than
N. Theorem 6.1, however, showed that, under (C4) and (C5), the sequences reach their second
phase within a diminishing number of steps. Moreover, the terminal reward of the sequence is
effectively O(log N). The remainder of the convergence problem was resolved through Theorem
B.4 in [2]. The Theorem established conditions such that the convergence time of second-phase

value iteration is comparable to the size of the terminal rewards.

The work of this paper and its prequel [3] identify conditions under which the structure of
optimal policies is strongly influenced by the limiting behavior of the stationary data’s value
iteration operator. When these conditions are relaxed, examples have shown that this may not
be the case. Phenomena such as i.s.p.’s with non-gain optimal initial decision rules may then be
observed. The investigation of such phenomena remains open. It seems evident, however, that
it will require tools beyond the theory of average optimality and the limiting behavior of non-
discounted value iteration. Moreover, conditions on the non-stationary data may play a greater

role than in our analysis.

Another future direction for analysis of PSMDPs is alternative optimality criteria. The (N +
1)-step discounted optimality problem which we have formulated is analogous to a standard
discounted MDP with stationary probabilities and rewards. With little difficulty, one can see
how other analogue (N + 1)-step criteria (e.g. average optimality, Blackwell optimality, etc...)
may also be formulated for PSMDPs. For all of these criteria, optimality will also be achieved on
the class of cyclo-stationary policies. Here again, we anticipate that more involved analysis will
be required — including combined consideration of both the stationary and non-stationary chain

structure — than for the present discounted problem.
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Notation List (Attached for the Reviewers’ Convenience)

A fastscale action

A slowscale action

A, The set of allowable fastscale actions in state s
A° The set of available slowscale actions

d A decision rule for choosing fastscale actions

D The set of deterministic decision rules by which

fastscale actions can be chosen; hence, also the set of

decision rules in the underlying MDP.

D* The set of gain optimal decision rules in the underlying MDP
D The set of decision rules given by E N K(U®U% )
for any slowscale action a? € A°
E The subset of decision rules d € D satisfying P;g* = g*
g* Optimal gain vector of the underlying MDP
Gy, The set of vectors defined as Gy__ 2 {x e Rl |2 = U Az, a® € A7}
K(w) For w € W, the decision rules d € D satisfying Uw = Pyw
L The single step dynamic programming operator
for the stationary data; Lz = I(?e%({rd + Pz}
L, The restriction of the L operator to the
decision rule d € D
Lk The k-th reward-to-go function for 7, a finite sequence
of decision rules in D whose length is at least k
L Operator defined via the limit L%z = liTan L"z — ng*
LY Discounted dynamic programming operator for the non-stationary
data and slowscale action a® € A%; L z = gleagc{rgo + APy z}
Ly The discounted dynamic programming operator for a PSMDP
My (G, e) The number of steps required for the sequence
U™z to converge to within e for all z € G
where G is a finite set of terminal rewards
M, (€) The function defined as M;_ () 2 My(Gy,,,€)
N The number of stationary epochs in each renewal cycle of a PSMDP
o(c) An unspecified vector whose sup norm is bounded by ¢
Q Operator defined via Qz(s) = Jnax {g* + \U>U* z(s)}
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=

R*

s &

Too

for vectors z and all s € S
The set of states which are recurrent for some
decision rule in the underlying MDP (the Bather classes)

The set of states which are recurrent for some average optimal

decision rule in the underlying MDP (the Schweitzer-Federgruen classes)

The state space

The restriction of L to decision rules in £

Operator defined via the limit 7%z = liT{n T"x — ng*

The restriction of L to decision rules in D%

A single step dynamic programming operator when the reward

data for the underlying MDP is zero; Uz = T%({de}
€
Operator defined via the limit U*z = limU"z
n
A version of U for the non-stationary data; U% z = glag{Pgaw}
€

An element of V

The optimal value vector of a discounted PSMDP

The set of solutions to the second average optimality
equation in the underlying MDP; V = {v | ¢* + v = Twv}
An element of W

A version of V when the rewards in the underlying MDP
are zero; W = {w | w =Uw}

The fixed point of Q)

An average optimal decision rule in the underlying MDP
satisfying P,w = w (as in Assumption (C5))

For w € W, the closest that a decision rule d € D can
bring Pyw to Uw without actually attaining the maximum
An N-dependent planning horizon; a diminishing function of N
The discount factor of the discounted PSMDP

The underlying MDP

A version of ¥ obtained by restricting D to D%

A column vector whose every element is one
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