
Controlling rare events

Joint work with Rami Atar, Paul Dupuis

Technion, May 2005



MOTIVATION and OUTLINE

General issue: combining control theory and large deviations.

Test case: controlled networks with Large Deviations scaling.

Outline:

• A re-entrant line network

• Controlled Markov processes and Large Deviations

• Control of rare events

• The exit problem



• Projected dynamics and the Skorokhod problem

• Dynamic programming and the differntial game

• Representation of the optimal cost

• Explicit solutions



“Re-entrant line” queueing network:
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Controlled Markov processes: martingale formulation

We are given a generator Lu of a Markov process which depends

on a control variable u ∈ U.

Say X is a controlled Markov process, starting from x, with

control process U if {X,U} is adapted to Ft, P
U
x (X(0) = x) = 1,

and for every function f (in some class)

f(X(t)) −
∫ t

0
LU(s)f(X(s))ds

is an Ft−martingale.

Example: pij(u) is, for each u, the transition matrix of a Markov

chain, transition time from i to j is exponential λ(i), and U(t) =

Ũ(x(t)) (feedback control).



The large Deviations scaling

Speed up time, shrink space: define

L̃n,uf(x) := nL̃ug(nx),

where g(·) = f(n−1·). For the scaled controlled process

f(Xn(t)) −
∫ t

0
L̃n,u(s)f(Xn(s))ds

is an Ft−martingale.

Example: sum of J Poisson processes, with jump directions ej

Lf(x) =
J
∑

j=1

λj

[

f(x+ ej) − f(x)
]

Lnf(x) =
J
∑

j=1

nλj

[

f

(

x+
ej

n

)

− f(x)

]

.



Control of rare events: take 1.

Let G be some domain and σ the exit time.

Asymptotically (Large Deviations), the probability of exit is

Pun (exit) ≈ e−nI(u;G), where I(u;G) = inf
φ exits G

∫ σ

0
lu(φ, φ̇) dt

where u denotes the control policy.

If exit is undesirable, maximize I(u;G) with respect to u.

Problems:

1. Large Deviations principle does not hold for most u.

2. Order of limits: why maximize the limit?



Control of rare events: take 2.

Fix c > 0 and a domain G. Let σ be the exit time from G. Define

the value function for the stochastic control problem

V (x) := − inf
controlled Markov Proc.

logEuxe
−cσ x ∈ G.

The value function for the scaled process is

V n(x)
.
= − inf

controlled Markov Proc.
n−1 logEu,nx e−ncσn.

Take limit of the extreme process!

Questions: existence, characterization of limit.



The queueing network:

J queues, each served by a single one of K ≤ J servers.

Arrivals λj, services µj, next station r(j).

Control: ui = p if queue i is served with a fraction 0 ≤ p ≤ 1 of

the effort (w.p. p).

Generator: for f : ZZJ → IR,

Luf(x) =
J
∑

j=1

λj

[

f(x+ ej) − f(x)
]

(1)

+
J
∑

j=1

ujµj1x+er(j)−ej∈ZZ
J
+

[

f(x+ er(j) − ej) − f(x)
]

.

(2)

The unconstrained controlled process Y is not restricted to ZZJ+,

and so its generator Lu0 is without 1
x+er(j)−ej∈ZZ

J
+
.



An exit problem:
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Let G be a piecewise smooth, bounded open set (with 0 ∈ G).

Assume: on every point in IRJ of its boundary, it is possible to

exit through an external arrival, or G is a hyper-rectangle. Define

σn := inf {t : Xn(t) 6∈ G} .

Goal: keep process within the bounded region G for as long as

possible: fix c > 0 and minimize over admissible controls

V n(x) := − inf
u
n−1 logEu,nx e−ncσ

n
.

Find the minimum and an “optimal” policy for large n.

Note: the Large Deviations Principle as well as representation of

the rate function are available only for very few control policies,

since the theory requires “smooth statistics” and rates which are

bounded away from 0.



We need a way to describe the dynamics near the boundary of

IRJ+: not only for the queueing system but also for “limiting”

processes. Suppose a queue is empty and the unconstrained

process experiences a “service,” changing its state from y to

y+ v. The state then changes by er(j) − ej. Define for such y

π(y+ v) = y = (y+ v) − v.

There exists π so that for y in ZZJ+ we have π(y) = y, and

for y outside ZZJ+ there is a unique π(y) on the boundary—the

projection along the directions ej − er(j). Then

1
x+er(j)−ej∈ZZ

J
+

[

f(x+ er(j) − ej) − f(x)
]

= f(π[x+er(j)−ej])−f(x).

This projection leads to the projected velocity

π(x, v) := lim
∆↓0

π(x+ ∆v) − π(x)

∆
.



This projection defines a Skorohod map. For a continuous func-

tion ψ with ψ(0) ∈ IRJ+ let Γ(ψ) satisfy

• Γ(ψ)(0) = ψ(0),

• Γ(ψ)(t2) − Γ(ψ)(t1) = ψ(t2) − ψ(t1) whenever Γ(ψ)(t) is in

the interior of IRJ+ for t ∈ [t1, t2],

• while Γ(φ)(t) is on the boundary, if the dynamics of ψ point

“out” of the boundary of IRJ+, the path is “pushed back just

enough” to stay inside, and along the specified directions.

Lemma 1 (Dupuis et. al.) Γ is a Lipschitz continuous map

from CJ([0,∞)) (with the sup norm) to itself.



The scaled processes Xn and Y n:

time accelerates by a factor of n and space is shrunk by the same

factor. The respective generators are

Ln,uf(x) = nLug(nx), L
n,u
0 f(x) = nLug(nx), (3)

for f : n−1ZZJ → IR and where g = f(n−1·).

These define the scaled processes Xn and Y n.



The optimal cost: dynamic programming.

Define Wn(x) = exp [−nV n(x)]. Dynamic programming Eq.:

0 = inf
u∈U

[

L̃n,uWn(x) − ncWn(x)
]

, x ∈ Gn, (4)

and Wn(x) = 1, x 6∈ Gn. In terms of V n (deviding by Wn)

0 = inf
u∈U





J
∑

j=1

nλj

(

exp

[

−nV n
(

x+
1

n
vj

)

+ nV n (x)

]

− 1

)

− nc

+
J
∑

i=1

nµiui

(

exp

[

−nV n
(

x+
1

n
π(x, ṽi)

)

+ nV n (x)

]

− 1

)





for x ∈ Gn. Devide by n and use

[ey − 1] = sup
x>0

[xy − (x log x− x+ 1)] yields



0 = sup
u∈U

inf
m∈M

[Ln,u,mV n(x) + c+ ρ(u,m)],

λi and µi denote arrival rate and service rate of queue i,

The control vector u = (u1, . . . , uJ),

the “perturbed rates” vector m = (λ̄1, . . . , λ̄J , µ̄1, . . . , µ̄J),

l : IR → IR+ ∪ {+∞} and ρ : U ×M → IR ∪ {+∞} are

l(x) =











x log x− x+ 1 x ≥ 0,

+∞ x < 0,

ρ(u,m) =
J
∑

i=1

λil

(

λ̄i

λi

)

+
J
∑

i=1

uiµil

(

µ̄i

µi

)

.

Ln,u,m is the generator for the same process, but with rates m.



The Bellman equation for our control problem is therefore










0 = supu∈U infm∈M [Ln,u,mV n(x) + c+ ρ(u,m)], x ∈ Gn

V n(x) = 0, x 6∈ Gn.

(5)

This leads to a differential game.

ui is the service rate to class i. Player 1 control space is

Ū = {u : [0,∞) → U ; u measurable}.

Denoting M = [0,∞)2J, the control space for player 2 is

M̄ = {m = (λ̄1, . . . , λ̄J , µ̄1, . . . , µ̄J) : [0,∞) →M ; m measurable}



For u ∈ U and m ∈M define

v(u,m) =
J
∑

j=1

λ̄jvj +
J
∑

i=1

uiµ̄iṽi,

where vj = ej, ṽi = er(i) − ei.

The dynamics are given by










φ̇(t) = π(φ(t), v(u(t),m(t))),

φ(0) = x.

Note that π is not continuous in φ. Nonetheless,

Lemma 2 (Dupuis et al) Given u and m there exists a unique

solution to the ODE.

This is to be expected since Γ is Lipschitz, but is not trivial.



The exit time is σ = inf{t : φ(t) 6∈ G}.

The cost for the game is (recall c ≥ 0)

C(x, u,m) =

∫ σ

0
[c+ ρ(u(t),m(t))]dt.

α : M̄ → Ū is a strategy for player P1 if

m(s) = m̃(s) for a.e. s ∈ [0, t],

implies

α[m](s) = α[m̃](s) for a.e. s ∈ [0, t].



In an analogous way, one defines a strategy for player P2 β : Ū →

M̄ . The set of all strategies for P1 [P2] is denoted A [B].

The lower value for the game is

V −(x) = inf
β∈B

sup
u∈Ū

C(x, u, β[u]),

and the upper value is

V+(x) = sup
α∈A

inf
m∈M̄

C(x, α[m],m).

Notes: In general the upper value may be smaller than the lower

value: no symmetry!

The value may be discontinuous accross a boundary!



Theorem 1 The differential game has a value V (x), so that

V+(x) = V −(x) = V (x), x ∈ G, V+(x) = V −(x) = V (x) = 0, x ∈ ∂G.

Proof outline:

• V −(x) is Lipschitz in G. The proof uses an explicit construc-
tion and pathwise arguments.

• By definition, V −(x) satisfies a variational equation.

• Therefore V −(x) satisfies the PDE: for x ∈ G,

H(DV −(x)) = 0, where H(q) = inf
m

sup
u

[〈q, v(u,m)〉 + c+ ρ(u,m)]

V −(x) = 0 for x ∈ ∂G,
〈DV −(x), γi〉 = 0 for γi a direction of constraint if x ∈ ∂IRJ+.



Actually, we show that V − is both a viscosity super solution

and a viscosity sub solution, hence a viscosity solution (analytic

arguments). This is required since there is no C2 solution (in

fact the solution may not be even C0!) Next we show

• V+(x) is also Lipschitz, and satisfies the same PDE (min-

max theorem)

• there is uniqueness of solutions to the PDE. This involves

showing that every sub solution is smaller than a super solu-

tion, and using the fact that a solution is by definition both

a sub and a super solution.

This concludes the proof that the differential game has a value.



Theorem 2 V n(x) is Lipschitz, uniformly in n, and

lim sup
n→∞

V n(x) ≤ V+(x), lim inf
n→∞

V n(x) ≥ V −(x).

Therefore limn→∞ V n(x) = V (x).

Proof outline:

• Using an explicit construction of a pair of processes with the

same control (coupling) show Lipschitz property.

• Using the dynamic programming equation (of the control

problem) and properties of the generators, derive the bounds.



Summary of main results:

Theorem 3 (i) The limit limn→∞ V n(x) = V (x) exists: in fact,

lim
ε↓0

lim sup
n→∞

sup {|V n(x) − V (y)| : x ∈ Gn, y ∈ G, |x− y| ≤ ε} = 0.

(ii) The differential game has a value, and

V (x) = V+(x) = V −(x).

That is, The differential game with constrained dynamics has

a Lipschitz value, which coincides with the limit of the optimal

values of the exit control problem.



Example 1: competing queues

Single server, customers leave upon service completion.

Average cost problem: minimize
∑

cixi where ci > 0 and xi is the

size of queue i, service is exponnetial µi.

Result: Fixed priority, serve queue with maximal µici (µc rule).

For exit from the rectangle with sides [0, zi], can solve PDE

explicitely. For c large enough and some positive, computable αi

V (x) = min
i
αi(zi − xi).

Serve the (weighted) closest to overflow.

Proof: verify via definition of viscosity-PDE.



Example 2: queues in series.

A sequence of queues, each with its own server. Upon service

completion customers enter the next queue, and from the final

queue they leave.

Note that overflow to any but the first queue can be prevented

by stopping service to the preceding queue.

For exit from the rectangle with sides [0, zi], can solve PDE

explicitely. For c > 0 and some positive, computable βi

V (x) = min
i
bi · (z − x)

where bi = (βi, βi, . . . , βi,0, . . . ,0) has βi in the first i coordinates.

The minimizer station is a “bottleneck” and must be served:

service to other stations does not influence the cost.



Extensions (open):

• Relax conditions on G (partially done).

• Random routing (requires a new formulation for the reflec-
tion).

• Other costs:

V n(x) := inf
u
n−1 logEu,nx ecτ

n

where τn = inf{t ≥ 0 : Xn(t) = 0}, or “Risk-seeking” cost

V n(x) := sup
u
n−1 logEu,nx ecσ

n

• Solutions or structure of solutions to the differential game


