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ABSTRACT

This research thesis is dedicated to analysis of the polling system
with exhaustive service discipline by means of the theory of large devi-
ations. The discussed polling system has numerous applications, par-
ticularly in the field of digital communications.

We consider a model which expresses the polling system as a jump
Markov process. While free Markov processes on Euclidean spaces
have been extensively studied, this model presents a new challenge as
it demonstrates an abrupt change in behavior every time one of the
served queues becomes exhausted.

In order to deal with such discontinuities, we introduce a new topo-
logical space as the state space for the random process of cliens arrival
and service, where discontinuities in behavior of the process are located
on the boundaries. We apply the results which exist for the free pro-
cesses, while taking special care of boundary areas, to deduce similar
results for the considered model.

As a first step, we deduce the most probable path of the random
process, and show that the probability to deviate from it in a significant
manner decays exponentially, as we increase the scaling coefficient of
the system.

Furthermore, we establish the notion of the rate function on the
introduced topology, as a composition of rate functions for the free
processes. An interesting outcome of our discussion is that in some
cases the rate function doesn’t have the usual structure of integral of
a local rate function over time, but rather exhibits some "predefined
strategy” of choice between free rate functions.

Finally, we establish the Large Deviations Principle for the discussed
model, or namely, set upper and lower bounds on the order of expo-
nential decay for probability of sets on the model state space.

The achieved results provide a base for further research of polling
systems with exhaustive service. For example, one can now rather
easily address the frequently posed questions about the probability of
escape from the stable state, the dynamics of an escape path, and more.
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1. PREFACE

“... The Ayalon River, which runs along the highway, overflowed as
its water level rose to seven meters. The highway had to be closed for
a day, hundreds of cars were stranded... ”

Ha’aretz, 26 Oct. 2000

While such news do not surprise anyone anymore, we still ask our-
selves, how did it come that the country’s major highway, which was
planned to flood only once in twenty years, did so right on the year of
its opening, and on the two years following it.

Was it an excessive reliance on the Almighty? Was the global warm-
ing responsible for such a treacherous conduct of the local weather?
Right now these questions have no definite answer, but they bring us
to the point: the theory of Large Deviations enters where the law of
averages fails.

The general notion of large deviations describes in some sense prob-
abilities of very unlikely events in a given setting. Usually it provides
means to determine asymptotic order of probability of some rare events
on an exponential scale. Research concerning very small probabilities
is perhaps as old as the theory of probability itself, but the foundations
of the modern abstract theory of Large Deviations were largely laid by
Varadhan [Var66]. The theory was greatly expanded in the 80’s, and
found numerous applications (e.g. digital communications and rare
event simulations [Buc90], thermodynamics [ElI85]).

The application of large deviations to queues can be done by nu-
merous methods. One of them, the “sample path” approach, involves
representation of the queue length as a jump Markov process, and it is
extensively covered by Shwartz and Weiss [SW95]. Another approach,
which uses weak convergence, is presented by Dupuis and Ellis [DE97].
A recently published book by Ganesh et al. [GOWO04] offers the “con-
tinuous mapping” approach, which utilizes simple models to propagate
large deviations results onto more complex settings by means of contin-
uous mappings on some topology. A review by Weiss [Wei95] provides
more sources on various approaches to large deviations.

In this paper we establish the Large Deviations Principle for the
polling system with two queues and an exhaustive service model. Our
approach heavily relies on the sample path technique laid out in [SW95].
While the said book covers a wide range of settings, it still can’t be
applied directly to our model. The problematic point in our case is the
presence of moments when the server abruptly changes its behavior,
and such discontinuities are not resolved in the scope of the existing
theory.

1.1. Overview. The considered system consists of a server with two
queues. Both queues are continuously filled by arriving clients, but the

server can serve only one queue at any time. The exhaustive service
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model, which is the object of our research, simply states that the server
serves each queue until it is empty, and only after that passes to serve
the other queue. Accordingly, when the other queue is empty, the
server passes back to the first queue, and so on.

The arrival of clients to each queue constitutes a Poisson process
with some constant rate (not necessarily the same for both queues).
The service of each queue, when it occurs, is also a Poisson process,
and has a rate of its own. In general, Poisson processes give us a very
good approximation of real-world random processes. e.g. in telecom-
munications or even customer service in a retail store.

As usual for large deviations, we don’t focus on a specific random
process, but rather study the asymptotic behavior of an infinite family
of similar processes. In order to be able to speak about asymptotics, we
perform a scaling of our arrival-service process on a time-space scale.
For this purpose we represent our polling system as a two-dimensional
random walk, where the number of clients waiting in each queue at any
given moment constitutes the location of the walk on the appropriate
dimension at that moment (see formal definition in Section 2.1). In this
setting each arrival or service event is represented by a step of length
1 of the random walk in some direction. The scaling of this random
walk is obtained by making jumps which are n times faster, but also n
times shorter.

A common sense hints us that such scaling would bring the random
walk to some sort of deterministic limiting behavior, just like randomly
moving water molecules all go very deterministically to the kitchen
sink. Indeed, we are able to show that our random walk converges in
probability to some deterministic path, as the scaling coefficient n goes
to infinity. This result is a sort of a law of large numbers, and it is
known as “Kurtz Theorem”.

In our case, we show that there is some deterministic “average” path,
and the scaled random walk tends very strongly to stay near that path.
More specifically, the probability of the scaled random walk to escape
from some fixed small neighborhood of the average path vanishes ex-
ponentially with respect to the scaling coefficient.

The last sentence gives the reader a first taste of the idea of large
deviations. Note that we considered the escape of some random walk
from its average state, or namely a “large deviation” from the average.
The theory states that such an escape is a very rare event, and its
incidence decreases on an exponential scale, as we refine the steps of
the motion. Nevertheless, this statement about escaping the vicinity
of the most probable path is still a very coarse one. The multitude of
possible escape paths can be further divided into areas, and a question
may arise, whether an escape from the average state along some specific
path « is more likely to happen than an escape along some other path

3.



In order to answer this question we define an “escape cost” for each
deterministic path. This cost is intended to reflect the relative chance
of the random walk to stay near that path. In this context, the average
path would undoubtedly have the lowest cost, as the probability of the
random walk to stay near it is incomparably larger than anything else.
The cost as a function of paths is called the “rate function”. One of
the main objectives in the course of study of any model from large
deviations’ point of view, is to define the rate function for this model
and to prove that this definition accurately reflects the situation.

Once the rate function is obtained for the given model, it becomes
a powerful tool to further study of the properties of that model. For
example, one may consider two points A and B and ask, what was
the most probable path of the random motion which started in A and
arrived to B after some period of time. The answer to this question is
that among all paths which connect A to B, the cheapest path would
be the most probable one.

The statement which relates rate functions to probabilities is called
“the Large Deviations Principle”. This principle doesn’t operate with
single paths, but rather with open and closed sets of such paths. The
cost of a set of paths is defined as the infimum of costs of all single
paths comprising the set. The Principle of Large Deviations consists
of two parts:

1. The probability of a sample random walk to belong to some open
set dominates on the exponential scale the cost of that set. This
is the so-called “lower bound” part of the principle.

2. The probability of a sample random walk to lie in some closed set
is dominated on the exponential scale by the cost of that set. This
statement constitutes the “upper bound”.

The results we obtained for the polling system with exhaustive ser-
vice, are presented in this paper in the following order:

In Chapter 2 we formally introduce the model of the exhaustive
service. We also describe the geometry of the random motion and
define the topology which governs the notions of open and closed sets
of paths.

In Chapter 3 we find out how the average path of the random motion
looks like, and prove that the scaled random motion stays near it with
sufficiently large probability.

In Chapter 4 we present a deeper insight into the structure of the
random walk, and define the rate function of our model. Furthermore,
we state several useful properties of the rate function.

In Chapters 5 and 6 we state and prove the upper bound and the
lower bound, which together establish the Large Deviations Principle
for our model.

7



1.2. The basics. Numerous books provide the basis for the large devi-
ations, e.g. [Var84]. We bring here some simple overview of the theory,
based on the presentation in [DZ93, Ch. 1]. The latter also includes a
concise review of the history of large deviations.

In the most general setting we consider a topological space 2 with a
family of probability measures {u.} on it. We wish to characterize the
behavior of the probability (') for some measurable set I' C Q, as €
tends to zero. Such characterization is usually obtained in the form of

the Large Deviations Principle (LDP).

Definition 1 ([DZ93]). A lower-semicontinuous mapping I : Q —
[0,00] is called a “rate function”.

Definition 2 ([DZ93]). The family of measures {u.} satisfies the Lar-
ge Deviations Principle with some rate function I, if for any measurable

'caO

. S

(1a) hrﬁglonfelog pe(I) > xlélFfo I(z),

(1b) lim sup elog p.(T") < — inf I(z),
e—=0 z€el

where T° and T denote the interior and the closure of T' respectively.

Whenever the righthand sides of (1la), (1b) coincide, the function
I designates the rate of convergence of . (I') on an exponential scale,
and (1) can be loosely restated as

fre(T') =~ e_%lrv

where It = infyere I(z) = inf g I(x).

In a typical problem in the field of large deviations, one has to find
an appropriate function I which would satisfy LDP for the given family
{pc}. A simpler problem may ask to determine the points in  which
“attract” the measure p., i.e. x € Q such that

lgrgelog pe(B;) =0

for any open neighborhood B, of z. One can see that such an attraction
loosely tells that p.(B,) vanishes at a subexponential rate, or perhaps
doesn’t vanish at all, and in this sense the measure tends to accumulate
near .

Let us provide a couple of examples, which demonstrate some appli-
cations of the large deviations.

The first example deals with one of the simplest settings in the large
deviations theory, and it can be found in any introductory text in this

field (see e.g. [Var84, Sec. 3]).

Example 1. Consider a sequence {X,,n € N} of i.i.d. random vari-
ables with finite mean, and let

8



We regard the distributions of the scaled variables S, /n as a family
of measures on the probability space. The LDP for this family is known
as Cramér’s Theorem, and it states that

1 . .
liminf—logIF’<S— € r) > inf I(z),
n

n—oo N xel°
lim SupllogP(& er) < —infI(),
n—oo 1 n zel
where the rate function I(z) is calculated as follows:
M(0) = R Vo € R
I(x) = sup (91} ~log M(a)), Vz € R.

Example 2. Simple birth-death process [SW95, Sec. 4.2].

Imagine a population of species which multiply and die according
to some law. In this example we wish to define birth and death as
two independent Poisson processes with constant rates. That means,
at any given moment, a member of population would be born or die
after some random exponentially distributed time. This model allows
negative population.

We can associate the size of population with a random process z(t)
on the integer set, with each birth or death event corresponding to a
jump in either positive or negative direction. Formally speaking, z(t)
is a process with generator

Lf(a) = Mfla+1) = f(@) + p(fla=1) = f(a)), a€R,

where A and p are the rates of the birth and death Poisson processes
respectively.
Now let us define the family of scaled processes {z,(t)} by taking

z,(t) = %x(nt), n € N.
A scaled process x,, is basically the same jump process as x, but with
jumps n times shorter, occurring at rates n times faster.

Assume for the sake of simplicity that the initial population is zero
species (a very realistic assumption indeed), and the birth rate A is
larger than the death rate p. As the time passes, the population size
would then exhibit a drift to the right. Moreover, in any unit of time
there would be on average A births and p deaths, amounting to popu-
lation increase of A — p per unit.

This mean behavior is formally described by Kurtz theorem, which
appears in a more generalized form in [SW95, Th. 5.3]. For our case
the theorem states that the average path for the birth-death process is
the linear function

Too(1) =9(A — n)t,



and the probability of z, to escape from the e-neighborhood of z., by
some fixed time T satisfies

2) P(sup lenlt) = aeclt)] > ) < €120,

where C is some positive constant, and Cy(e) ~ O(e?).

Note the exponential decrease of the right-hand side of (2) with
respect to n.

The rate function, or namely the cost, is defined for any path r :
[0,7] — R by the means of the local rate function I_q of the birth-
death process:

lh-a(y) = ?,2]%3(91" — A" = 1) —p(e™ = 1))

00 otherwise

J

I (r) {fOT lb—a (r’(s))ds, if r is absolutely continuous
o\") =

(see [SW95, (5.2)-(5.5)]). One can check that [(A — g) = 0, and thus
I§ (2o,) = 0. This stresses once again that following the average path
bears zero cost.

The basic birth-death process presented above is subject to various
generalizations. The most immediate one allows for multidimensional
process, where at any moment a jump can occur in one of many di-
rections, not necessarily axial. A further generalization talks about a
multidimensional random process Z(t) in terms of its generator

k
3) LIE) = Y MBI +8) - @),
i=1
where €; is any multidimensional vector, and log A;(Z) is a bounded
and Lipschitz continuous function.

The latter generalization is extensively discussed in Chapter 5 of
[SW95], and it stands as the basis for this entire paper. In particular,
for the family of scaled processes Z,(t) the rate function is presented
and the Large Deviations Principle is shown.

Our careful readers have undoubtedly noticed that all the above
examples bear some similarities in their spirit. Indeed, all of them
feature some sort of time-space scaling. This sort of scaling is necessary
in order to bring things into right proportion. For instance, take X,
from Example 1 to have strictly positive support. You will immediately
obtain that the support of 5, shifts to infinity, making any attempt to
apply LDP directly to S, meaningless.

Remark. While all the examples also involve a Markovian dependence
of some kind, this is not necessarily the case. Large deviations treat-
ments do exist for more general stationary processes, and they are

discussed in [GV93] and others.
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Let us now examine Example 2 a bit closer. It describes a sort of
birth-death process, where some quantity (namely, a size of population)
increases or decreases according to given rules. This model involves a
discrete state set Z and a continuous time scale. Note that instead of
considering ever-increasing time intervals, we achieve by scaling that
the time of evolution T' remains the same, but births and deaths occur
at increasing rates and affect decreasing “units of life”.

Now let us become a little more realistic. As a first step away from
the model described in Example 2, we disallow negative populations.
In order to achieve that, we just need to alter the rules, such that
no death is allowed for a population of zero size. But the resulting
scenario is still quite fantastic, since we allow a birth to happily occur,
even when there are no species to give it. For this reason we introduce
the server-queue model.

Example 3. M/M/1 [SW95, Ch. 11].

Consider a server which operates on a queue. Clients arrive and join
the queue at some rate, and server serves the queue at some other rate,
as long as the queue is not empty. When the queue is empty, the server
naturally stands idle.

Observe, that if the arrival rate A is larger that the service rate p,
then as the time passes, there would be more and more clients in the
queue, and eventually the size of the queue will tend to infinity. On
the other hand, if y is larger than A, then the number of clients will
decrease from the initial state, and once the queue is exhausted, it will
tend to stay nearly empty. The latter case demonstrates a so-called
stable queue, with empty state being the steady state.

The M/M/1 queue is formally defined as a jump Markov process (1)
on Z% with jump directions

e1 = +1, with rate )\(x) =

0
ez = —1, with rate pu(z) = {Ig’ i i 07

This definition can be alternatively expressed in the terms of gener-
ator

Lf(a) = Ma)(f(a+1) = f(a)) + p(a)(f(a = 1) = f(a)), a€R.

Note that log pi(a) is neither bounded nor Lipschitz continuous func-
tion, so the model M/M/1 can’t be regarded as a specific case of (3).
Discontinuities of jump rates as functions of queue size commonly
appear in queue theory models, mainly as a result of server start-
ing/finishing serving a particular queue or queue exhaustion. Their
presence is what makes a particular model non-trivial.

Nevertheless, M/M/1 has been extensively studied, and all the reg-

ular questions were answered. Many of them can be addressed using
11



the terms of the simple birth-death process (Example 2), due to the
apparent relation between the two models. In particular, the local rate
function [ for M/M/1 can be defined in the terms of the local rate
function [,,_q for the birth-death process (see [SW95, (11.6)]) as

lb—a(y), forz>0o0rz=0andy >0
[(z,y) =<0, forz=0and y =10
0o, forz <OQorz=0and y <0

The rate function [ is defined as

otherwise.

I (r) {fOT l(r(s), T'(S))ds, if r is absolutely continuous,
o\T) =
00

Y

The described model is one of the simplest models studied in the
scope of large deviations applied to the queue theory. In what follows
we shall briefly describe some of the many models based on this simple
approach, and mention achieved results, whenever such results exist.

A typical model in the queue theory involves numerous servers and
queues, and a flow of arriving clients. These interact between them-
selves with various modes of behavior. For example, a server may be
defined to give preference to some “VIP” queue by serving it with first
priority, regardless of whether there are clients in other queues. On the
other hand, clients may always choose the shortest queue upon their
arrival. Another complication which is quite common in the real world,
is the need to reconfigure the server every time it changes the queue
being serviced, causing an idle time on each such change.

1.3. The polling system. Polling systems have been extensively stu-
died over past thirty years, and many their aspects were explored to
great extent. A wide range of practical applications prompted authors
to address issues such as stability, escape problems, comparisons be-
tween various policies, and more. Among examples of polling systems
in engineering applications there are papers by Borst, Boxma and Levy
on local network control [BBL95], by J. Misi¢ and V. Misi¢ on Blue-
tooth technology [MMO03], and many others.

Among the multitude of polling disciplines, commonly considered
are the exhausted and the gated policies in various forms. The in-
terest in these two policies is reasonable, as they represent two basic
approaches: the exhaustive service policy instructs the server to pro-
cess a certain queue until it i1s empty, and the gated policy considers
only those customers, who were present in a certain queue at the mo-
ment the server switched to it. The two mentioned basic policies are
compared together and with other models in numerous surveys, using
various criteria. Levy, Sidi and Boxma [[.SB90] conclude that the ex-

haustive discipline is most efficient with respect to the total amount of
12



unfinished work found in the system at any time. Another recent pa-
per by Bischof [Bis01] compares policies applied to the model of single
queue and non-negative setup and vacation times. According to it, the
gated policy may sometimes have an advantage over the exhaustive one
in terms of mean waiting time, for some choice of input parameters.

As one of leading candidates for the position of ”the best policy”,
the exhaustive policy received some special attention from researchers.
An aspect which is crucial to the applicability of a certain model is its
stability. Several papers are devoted to the question of stability of the
polling system with exhaustive service discipline. Coffman, Puhalskii
and Reiman demonstrate in [CPR95] the asymptotic behavior of the
total unfinished work, and address the waiting times in limit under
some sort of scaling. Foss and Last [FLI6| establish a simple criterion
for stability of a multiple-queue system with zero switch-over times. In
this paper we present in a rather heuristic manner a stability condition
(14¢) which is surprisingly similar to the one by Foss and Last.

Unlike the above fields, the area of large deviations, as they apply to
the exhaustive policy, received rather little attention. Numerous results
on related areas consider the limited polling, where the server moves to
a new queue after serving some predefined number of customers. As an
example one can mention Delcoigne and de La Fortelle [DALF00], who
study Markovian routing among queues and the extreme limit of just
one customer per session. The model employed by these two authors
bears some similarity to ours, but its transition policy is probabilistic
in nature and is applied uniformly after each service event. Another
paper by Massoulié [Mas99] addresses a family of models with constant
service times.

In this paper we present the analysis of the exhaustive service model
by the methods of large deviations. As we noted earlier, there exist
numerous treatments of Markov random walks using large deviations.
Yet, none of them can be easily applied to polling systems. There are
two main reasons for that. First, the change in server state, when it
leaves one queue and goes to another, creates a highly abrupt process,
which cannot be generally addressed by methods developed for contin-
uous changes in service rates. Second, at any moment the behavior of
the system is dictated not only by the length of each queue, but also
by the location of the server. This creates a complex topology on the
event set, in the sense that one cannot easily say whether two states of
the system are close or far from each other.

The main achievement of this paper is that is demonstrates how
to overcome both these obstacles and to obtain the large deviations
bounds for the exhaustive policy, and outlines the methods which may
perhaps help in study of polling systems with other governing policies.

13



2. INTRODUCTION

We consider a polling system consisting of two queues served by a
single server, with exhaustive service. Each queue is filled by a Poisson
process, with arrival rates Ay for the first queue and A; for the second.
The server serves each queue until it is emptied, and then passes im-
mediately (i.e. without setup delay) to serve another one. The service
times are i.i.d. exponential with service rates g for the first queue and
g1 for the second queue.

2.1. Geometry of the model. Our first major task is to define a set
of states and a topology that would properly represent our system. As
the system consists of two queues, each holding some number of clients
at any given moment, one might naturally think of a two-dimensional
plane R? as a possible state set. Of course, we note that the number
of clients in each queue is always non-negative, so the aforementioned
plane can as well be reduced just to its first quadrant, namely (R*)%

Furthermore, we observe that merely giving the state of both queues
doesn’t convey all possible information about the state of the system.
The missing element is the information about the queue which is being
served right now. By adding this information to the stack, we arrive at
a need to employ a set of a kind (RT)* x {0,1} to fully describe each
possible state of the polling system.

FEach state of the system can be represented therefore by a triple of
numbers (z,y,s) € RT x RT x Z,, where z and y denote the level of
each queue, and s denotes the queue being served (either 0 or 1).

Finally, we observe that the transitional states of the system, namely
the states with at least one empty queue, in fact do not allow us to
specify explicitly the queue being served. Indeed, at any such state one
queue has just been exhausted, and the other is about to start being
served. Thus, we can understand at the intuitive level that there is a
need to establish an equivalence between states (z,0,0) and (z,0,1) or
between (0,y,0) and (0,y,1) for any z,y. We therefore consider the
set D of equivalence classes on RT x Rt x Zj:

{(z,y,9)}, Vz,y € RT\{0},s € Zy;
(4) D=<¢ {(2,0,0),(z,0,1)}, Vze R
{(ana())?(oaya])}’ Vy € R*

From now on we will permit a slight abuse of notation: a triple
(z,y,s) would be identified with its equivalence class, and a pair (z,y)
would be identified with the equivalence class {(z,y,0), (z,y,1)} when

either of x,y is zero.
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The above definition effectively constructs D as a stack of two panes
which we shall denote as follows:

DO = {($7y70)7 T,y € R+}?
(5) _ +
Dl —{(mai‘hl)a :U,yER }

For the sake of convenience, we shall also denote their common
boundary as

(6) oD = {(2,y), =,y €R* and =0 or y =0},

Note that each of Dy, Dy by itself is merely a positive quadrant in the
Euclidean plane R% Thus when two members of D belong to the same
pane, they can be treated just as ordinary vectors, disregarding the
third component. In this manner the addition and the multiplication
by a constant can be readily defined for any (x1,y1,s), (22, y2,s) € D

(Ihyhs) + (I%y?vs) = ('xl + L2, + y275)7
C- ('rlayla5> = (C'rl’cyl"s>'

Sometimes we shall attempt to add an element in D and a vector in
RZ2 In this case the result would inherit its third component from the
element of D

(z1,91,8) + (22,y2) = (21 + 2, 41 + Y2, 9).

Remark. For two elements in D which belong to different panes, the
notion of addition is meaningless. Therefore, and expression of the sort

(-Tlayla[)) + (l'?ay?a 1)

with neither of the elements belonging to the boundary 9D, should
never be employed.

In order to define a metric on the state set D (which in turn will
induce a topology), we need to understand how the system gets from
one state to another. The obvious situation involves two states which
reside on the same pane. In this case, we can naturally induce on them
the Euclidean metric |- | on the plane R

For two states which reside on a different panes, a more delicate
treatment is required. We see, that in order to arrive from one state
to another, one needs to change the queue being served, and this can
only happen on the boundary. Therefore, we are tempted to define
the distance between two such states as the length of some path that
touches dID somewhere in-between. One may notice, that in order to
get from some state in Dy to another state in Dy, the system must pass
through the y-axis, while in order to get back, it must pass through the
z-axis. But since the distance is a symmetric function, there is no way
we can incorporate this information in the topology. Thus, we define
the distance between two such states just as the shortest path between

them which touches the boundary 9D.
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Definition 3. d is the distance on D defined as follows:
d((xoa Yo, 0)) ('rla Y, 0)) = d(('roa Yo, 1)) ('rla Y1, 1))

(7a) = |($0,yo) - ($17y1)|7
d((70,90,0), (x1, 91, 1)) = d (20, Y0, 1), (21, 1,0))
| min{[(zo, y0) = (2, 0)] + [(2,0) = (1, 91)1},
)y = ”““{ min] (0. y0) = (0,)| + (0, ) = (1, 90)]} }

= min{(eo,0) = @] +1d — (e1, 1)1}

i.€. the shortest path from one point to another over the two-fold surface
Rt x Rt x Zg, glued at the azes.

Remark. The minima in (7b) are indeed attained, as shown later in
Proposition 25.

The distance d obviously satisfies the axioms of positivity, symmetry
and identity of indiscernibles. The triangle inequality for d is estab-
lished below in Proposition 1. Thus the space (D, d) is a metric space.

Proposition 1. The distance d defined in (7) satisfies the triangle in-
equality.

Proof. Let A, B,C' € D. We need to show that
d(A, B) +d(B,C) > d(A,C).

Note that the relative placement of A, B, C' can belong to one of the
following four cases:

[. A, B, C belong to the same pane.
IT. A and B belong to the same pane, and C belongs to the other
one.
ITI. A and C belong to the same pane, and B belongs to the other
one.
IV. B and C belong to the same pane, and A belongs to the other

one. This case is similar to II.

In the event of either point belonging to the boundary, we can include
it arbitrarily in any pane.

Before we proceed, let us recall that if two points X and Y belong
to the same pane, they satisfy

d(X,Y) = [ XV

and if two points X and Y belong to different panes, then by Proposi-
tion 25 there exists 7 € dID such that

d(X,Y) = |XZ|+ |2V,

Now we shall address the three cases I-111 separately.
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I. In this case the distance d coincides with the Euclidean distance
on the pane which accomodates A, B, (', and the triangle inequality
obviously holds.

I1. As we noted earlier, there exists D € 9D such that

d(B,C) = |BD| + |DC|.
Therefore,
d(A,B)+d(B,C) = |AB|+ |BD| + |DC| > |AD| + | DC],
and by the definition of d(A, C)
|AD| +|DC| > d(A,C).

ITI. Since B belongs to the pane different from the pane of A and C,
there exist D, £ € 0D such that

d(A,B)=|AD| + |DB|,
d(B,C)=|BE|+ |EC]|.
Therefore,
d(A,B)+d(B,C)=|AD|+ |DB|+ |BE|+ |[EC| > |AC| = d(A, C).
O

2.2. The random process. Consider the set
X ={(z,y,8) €D, =x,yecZt}

Our polling system can be represented by a jump Markov process
Z(t) with the state space X. It would be difficult to define Z(¢) as
a “mixing” of Poisson processes of arrival and service, as the service
of each queue is interrupted every time the client pool of that queue
is exhausted. Therefore we prefer to characterize the process by its
total event rate at any state and the probability of jump in a certain
direction.

Let @ € X' be some state of Z(t). Consider first the case of the non-
empty first queue being served, namely @ = (a,, a,,0) with a, > 0. At
this state the process Z(1) is a “local” sum of the two arrival processes
with directions (1,0) and (0,1) and rates Ay and A; respectively, and
the service process of the first queue with direction (—1,0) and rate
po- We can therefore define the generator L of Z(t) as

Lf(@) =Xof(@+(1,0,0)) + M f(d@ +(0,1,0))
+ Hof((_f‘l' (_13030)> - ()‘0 + )‘1 + /’I’0>f(a>?
a= (afa:aa’ya())a az > 0.

(8a)

Furthemore, if the second queue is being served, i.e. the state d is

chosen to have a;, = 1 and a, > 0, the processes in effect are the two
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arrival processes again, and the service process of the second queue
with direction (0, —1) and rate p;. Accordingly,

Lf(a)=Xof(@+ (1,0,1)) + M f(@+(0,1,1))
+uf(@+(0,-1,1)) = (Ao + A1 + 1) f(@),

d=(ag,ay,1), a, > 0.

(8b)

The last possibility is that of @ = (0,0), namely when both queues
are empty. In this case none of them can possibly be served, and

(8c) Lf(@)=dof(@+(1,0)) + A f(@+(0,1)) = (Ao + M) /f(a),
i = (0,0).

2.3. The free motions. In the previous section we described the ran-
dom process Z(t), and noted that it changes its behavior aburptly each
time it touches the boundary dID. This prompts us to introduce the
notion of the free motion to describe the behavior of Z(t) during each
service session, i.e. between two consecutive changes of served queue.
The free motion with constant rates is well-explored and will greatly
assist us in the development of the theory.

Consider the free process ((t) which describes the model with only
the first queue being served forever with the rate ug, while clients arrive
to both the first and the second queue with rates A\g and A, respectively.
We allow each queue to hold any number of clients, even negative.

The process ((t) can be defined in the terms of its generator

Lef(@) =Xof(a+(1,0)) + M f(@+(0,1))
+ pof(d@+ (=1,0)) = (do + A1 + po) f(),
acR*x{0,1}.

We return now to Z(t) and observe that, given the same initial con-
ditions and s = 0, Z(¢) would behave just like (() as long as the first
queue is not empty. This observation can be formalized using the no-
tion of coupling as explained below.

Recall that both 2z and ( can be represented as counting processes
for i.i.d. exponentially distributed random variables. Therefore we
can couple z and ¢ by considering a probability space with countable
number of i.i.d. exponentially distributed waiting times, and by repre-
senting both Z and (¢ as deterministic functions of these times.

Furthermore, given some set of paths, all whose members are con-
fined to the first pane without the boundary, the distribution of z" and
¢ 1s deterministic conditioned on that set, with respect to the waiting
times, and hence probabilities to stay in the same set of paths coincide.

Strictly speaking, let @ € Dy \ 0D be the initial state, and let A(t) C
Dy \ 0D, t € [0,T] be some measurable time-dependent subset of the
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first pane without the boundary. Then
(9a) Pa(Vte[0,T] Z(t) € A(t)) =Py(Vt € [0,T] ((t) € A(1)).

In a similar fashion we can analyze the behavior of Z(¢) on the second
pane Dy, by coupling it to the free motion £(¢) defined by its generator

L‘Ef(‘_i) :/\of(a + (L 0)) + /\1f(5 + (0, 1))
+paf(@+(0,=1)) = (Ao + M + ) f (),
acR*x{0,1}.

The result similar to (9a) would now take the form
(9b)  Py(Vte[0,T] Z(t) € A(t)) =Pa(Vt € [0,T] £(t) € A(1)).
for any @ € Dy \ 0D and A(t) CDy \ 9D, ¢t € [0,T].
Remark 4. While the coupling is a very general concept by itself, we
intend to apply it only in the way shown above. Therefore, whenever
the readers encounter in this paper a derivation based on “coupling”,

they should realize that it stands for the very specific coupling described
above together with the result (9).

2.4. The scaled process. Once we obtained the strict definition of
the random process Z(¢) in terms of its generator L, we can further
consider the family of scaled processes {Z,(¢)}, as described in Section
4.3 of [SW95].

We know that the generator L, for z,(¢) can be defined according to
[SW95, (4.13)] as

(10)
n (Aof(a + (%, 0)) + A f(a@ + (0, %))

Fpof (@4 (=1, 0)) = (o A+ o) f(d)

for d@ = (az,ay,0), a, > 0;

n</\0f(c_i+ (%,0)) + A f(a@ + (0, %))
b+ (-0 = D+ A+ ) D)),
for @ = (az,a,,1), ay, > 0;

n(Aof((z + (%, 0)) + )\lf(a: + (07 %))

- o 2@

for @ = (0,0),
and will yield the scaled process



For smooth functions f the limit of L, f(d@) as n tends to oo, exists
at all points of D except the origin, and it is equal to (see [SW95, p.
76]):

af af .

) (AO_MO)%‘I')‘Ia_y; a = (az‘yayvo)v a; > 0;

(11) Lo f(a) =
)\ﬁ—l-()\— )ﬁ i=( 1) >0
Oa$ 1 M1 aya 4 = (Ug,ydy, 1), Ay .

Now we are tempted to employ the theory developed in [SW95,
Cor. 4.15] and to declare that the most probable path Z(t) can be
constructed as the solution of some differential equation derived from
(11), and that it is a deterministic process. Indeed, by that corollary,
the process Z. () should satisfy

(12&)
Ao (1,0,0) + Ay - (0,1,0) 4 o - (—1,0,0),
d if Zo(t) € (0,00) x [0,00) x {0};

%EOO(t) B Ao (1,0,1) 4+ Ay - (0,1,1) 4 g - (0,—1,1),
if Zo(t) € [0,00) x (0,00) x {1}.

Unfortunately, this attempt lacks the required rigorosity, as the ex-
pression (11) doesn’t quite define a differential operator on R? Yet
we may take the liberty to neglect this objection and notice that (11)
does define a generator which is locally a differential operator on R?
for all non-boundary points of D, and therefore most of the theory can
be applied to obtain at least the intuition for how Z.(¢) does really
behave.

The components of (12a) describe the behavior of each piece of Z,
by a separate differential equation. The continuity of Z, is achieved
by setting the initial value at each time interval to be equal to the final
value of its predecessor.

Note that (12a) implies that Z, is generally piecewise linear. Jump-
ing a bit forward, we also observe that ., may tend to zero (see Figure
1), so it consists of a countable number of ever-shrinking linear pieces,
whose total length is bounded. In Section 3.1 we will provide the so-
called “stability conditions”, which ensure such behavior.

In the course of the proof of Theorem 3, we will show that once
Z, arrives near zero, it tends to stay there, under the same “stability
conditions”.

Passing to the limit n — oo, we obtain that if Z,(49) = (0,0) then
Vi >ty Zoo(t) = (0,0), i.e.

(12h) %500 = (0,0), if Z(t) = (0,0).
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x

FiGUuRE 1. The most probable path.

To complete the treatment of scaled processes, we also introduce the
scaled processes (,, and &, generated by

Lo (@) = n(Qof @+ (1.0)) + M F(@+ (0. 1)

oS 0+ (1, 0) = O+ s+ ) (@) ).
Lea (@) = n (W (@ + (1,0 + M+ (0,7)
b+ (=10) = o+ )@ ).

i € R*x {0,1},
respectively.
By [SW95, (5.7)], the limit processes (s, and , satisfy the differen-
tial equations
d
(13a) 776e0(1) = (Ao = 10)(L,0) + A: (0, 1),

%500@) = Xo(1,0) + (M — 11)(0,1).

and therefore define some motion with constant velocity across R2.

(13b)

Of course, one must provide some initial conditions in order to deter-
mine (,, and £, uniquely. In what follows, we shall denote the solution
of (13a) with an initial condition (,,(0) = 7, as (% . The notation £Z
shall be employed as well.

The discussion of coupling of z° with either ( or £ remains of course
valid for the scaled processes. The coupling equalities (9) can then be
restated in an identical form, with 2, ( and £ replaced by 2, (, and &,
respectively.
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3. MOST PROBABLE BEHAVIOR

3.1. Stability. As we come to study the stability of the differential
equation (12), it could be useful to give first the empirical view of
the model in order to understand its expected behavior on a long-time
scale.

We understand intuitively, that in a well-designed model the capacity
of the server should be sufficient to empty both queues over time, and
to maintain them in nearly empty state.

The most basic requirement from the system (expressed in terms of
its arrival/service rates Ao, A1, po, p1) is for the server to be able to
handle each queue separately. That said, for each queue its service rate
must exceed its arrival rate. Clearly, this condition is essential in order
to ensure at all that the server is able to exhaust one given non-empty
queue before it passes to serve the other one. This requirement yields
the conditions

(14a) fo > Ao,

Furthermore, in order to understand the mutual dynamics of the
server and both queues, we consider the situation where there is a
large number N of clients in the first queue, and the second one is
empty. The server starts serving the first queue, and it takes roughly
M]j time to exhaust it, as the server faces simultaneous arrivals at
rate \g, as it works Wlﬂ’l the rate pg. Meanwhile, the second queue
N/\1

was populated by " clients. Now the server comes to serve the

N
(ho=20)(H1—A1)

this time the first queue acquired again % clients, and we

face once again the situation when the second queue is empty, and the
first contains some large number of clients. We observe that a “good”
system should have reduced its total load by now:
N Ao
(o — Xo)(p1 — A1)
Ado < (po = Ao)(p1 — A1)

foA1 + iAo < fofti-

second queue, and naturally exhausts it in time. During

<N

This condition can be restated as

A A
(14c) T

Ho [
Remark. Since Ao, A1, po and py are all taken to be positive, one can
immediately see that (14c) implies both (14a) and (14b).

We now claim that the list (14) of conditions implies the stability of

the equation (12).
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Proposition 2. [If the parameters Ao, M1, po, p1 satisfy the stability
condition (14), then the differential equation (12) is stable, and the
origin (0,0) is a stable critical point. Moreover, for each initial value
Z0o(0), there is a unique solution Z...

Proof. If either coordinate of Z,,(0) is positive, then (12a) can be solved
uniquely, and the stability until the arrival to zero can be verified ex-
plicitly. We therefore only consider the case Z.(0) = (0,0,0).

It is our purpose to show the stability of (12) at the origin. We shall
use the Liapunov stability theorem [BD97, Thm 9.6.1].

Consider the Liapunov function
Vie,y,s) = V(z,y) = mw + poy.

Trivially, V' is continuous, positive definite on D and has continuous
first partial derivatives % and %. Moreover, the derivative V of
V' with respect to the autonomous system (12) is negative definite,
because

: COWV(z,y) dzeen | OV(z,y) dzeoy
Vi) ==~ + oy  di

(12) {Hl()\o — o) + podr,  Zao(t) € (0,00) x [0,00) x {0}

o F oM = ), Zeo(t) € [0,00) x (0, 00) x {1}
= p1o + porr — pof

(14¢)
< 0, for any z,y > 0.
Therefore, by the Liapunov stability theorem, (0,0) is a stable critical
point. O

Remark 5. In this paper we shall only deal with the stable case, so
the stability conditions (14) are always assumed to hold. In order to
assist the reader, we shall note explicitly for each significant result,
whether it requires stability, and identify the points in the proof where
the stability conditions are applied.

3.2. The theorem. In what follows, we shall formalize the above dis-
cussion and establish the most probable behavior scheme of the process
Z,(t) starting at a given point. Indeed it will turn out that for very large
n, Zy(t) behaves nearly deterministically in the sense that it follows the
path Z(t) with a very large probability.

Strictly speaking, we shall prove a variation of Kurtz theorem [Kur78]

[SW95, Thm 5.3] for the given model:

Theorem 3. Let Z(t) be the random process defined by its generator
L in (8) and let {Z,(1)} be the family of scaled processes, as defined by
the generators L, in (10). Let Z(t) be the limil process which is the
solution of (12) with the inilial condition
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Then for each T > 0 there exist a positive constant Cy and a function
(', both independent of dy, with

(15) lim Ca(9) € (0,00) and lim CQ—(G) =00
=0 € e—o0 €
such that for alln > 1 and ¢ > 0
16) a0 - el0)] 2 ) < O
0<t<T

Remark. As we noted previously, the theorem is being proven under
the assumption of stability. In fact, this assumption is quite essential
to our proof, especially in Section 3.8. Nevertheless, we believe that the
statement of the theorem may stay valid even without such assumption,
provided, of course, that the initial point dq is chosen to differ from the
origin.

3.3. Notation. In this section we will introduce the geometry of the
problem, and establish the connection between our model and the
model of free two-dimensional Poisson process.

Yy

ifo—_ 1
\\

N

€ S Ty \\

AN SQ \\\
\\ \\

X2 X] X

FIGURE 2. Geometric notation of Z.,.

We have already concluded from (12), that Z.,(¢) is a piecewise-linear
path which flips between the panes Dy and Dy, spending on them ever-
shrinking amounts of time until it arrives to the origin (0,0) in a finite
time T.

T can be easily computed from the simple observation that the
d’j"" on the axis (ji1, o) is the same constant for both

projection of
panes, so the projection of Z.,(¢) moves along that axis with a constant
velocity until it arrives to the origin. For the sake of completeness we
present here the exact value of T.:

(17) T. = <(a0,m,a0,y),(,u1,,uo)> _ Qg1 + o ytio '
<d§? s (s o)) floft1 — Aofth — M fho

We also define the series of time intervals {7y, Sy, Ty, Sy, Ty, ...},

that Z, spends on a single pane (see Figure 2). T; will denote the
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interval between i-th hitting of the z-axis and ¢ + 1-th hitting of the
y-axis. Similarly, S; will denote the interval between i-th hitting of the
y-axis and i-th hitting of the z-axis. Ty will denote the time from the
beginning (¢ = 0) till the first hitting of the y-axis.

Remark. This setting assumes that dg is located on Dy. This assump-
tion can be obviously taken without any loss of generality.

In addition, we define {Y},Y,,Y5,...} to be the series of points at
which 7, hits the y-axis, and { X, X3, X3, ...} to be the series of points
at which 7., hits the z-axis.

Strictly speaking,

Yi - Zoo,y(TO)

Vi=200y(To+ ...+ Timy + Si4...+ 5i21)
Xi = zoop(To + S1);
Xi=zwpw(To+ ...+ Tici + Si4...4+5)).

(18)

The above quantities are related in a simple manner:
)
o — Ao

Ti=——r, Si= —,
o — Ao =M

TOZ

i=1,2,...

Obviously,
YT+ 8 =T
=0 =1

3.4. Overview of the proof. Here we shall outline the proof in some
detail and provide two auxiliary lemmas.

Our proof will be primarily based on the fact that as long as the
random process Z, stays on one pane, it behaves like a free motion,
and thus its probability to stay around some linear segment of zZ,, can
be estimated using Kurtz theorem [SW95, Thm 5.3] for the appropriate
free motion.

The straightforward approach meets, of course, several obstacles that
must be addressed separately. For example, as 2, hits the boundary,
it changes behavior. Furthermore, as 2, arrives to the vicinity of the
empty state, it is expected to stay there and therefore changes panes
very frequently. Naturally, the examination of this state would require
a whole different approach.

For the sake of clarity, the proof will go in several parts:

3.5 First step. We define a stopping time as the first hit of the bound-
ary by 2Z,. Since until that time 2, remains on the same pane as it
was 1n the beginning, it will behave like a free motion and there-

fore will stay close to Z,, until then.
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3.6 Second step. Here we examine the behavior of Z, between the
first and the second “collision” with the boundary. The major
difference between this step and the previous one is that while
there 7z, started at a specific point dy at the zero time, now it
starts at some random point in the vicinity of Y; and at some
random time.

3.7 Third step and further. We observe that the third step, the fourth
step, and so forth, can be evaluated very similarly to the second
step. But now there arises a problem that the number of steps
Zso makes until it arrives close to the origin, may be very large.
Therefore we also take care to find a simple bound for the proba-
bility of z, to stay close to Z,, during all these steps.

3.8 Staying around the origin. This part shows that once z, is near
the empty state, it stays there with a very large probability.

3.9 Finalizing the proof. Although we have shown by now that the
probability stated in the Theorem is bounded appropriately on
each interval of time. we still need to obtain a uniform bound in
the form of (16). This part is rather easy.

We wish to introduce two short notations related to the free motions
¢ and £.

Let ¥ € R? be the initial state of the scaled process (,, for all n.
Recall the definition of (% as the solution of (13a) with the initial
condition (. (0) = Z, as stated at the end of Section 2.4. We denote

@) P =P (s 160 - 0> ).
0<t<T
Naturally, P doesn’t depend on the initial position 7, and therefore
¥ can be chosen arbitrarily.
In a similar fashion we denote

(20Db) Q(T,e,n) = Pf( sup |£,(1) — ffo(tﬂ > c) .
0<t<T
Remark. P and Q denote, in fact, the probability of an appropriate
free motion to escape the allocated region of width 2¢ in the allocated
time T
By the mere monotonicity of measure (or set inclusion principle), P
and @ decrease as ¢ increases, and increase as T increases.

Now we present a useful lemma concerning infinite series of P(T' ¢, n)

and Q(T,¢,n).

Lemma 4. Let {T:}32, be a set of strictly posilive real numbers with
a finite sum

S = ZTk < .
k=1
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Then for any ¢ >0 and n € N

= P(S, 2,n)
(21a) ;73 (Ty,e,n) < 1_7)(5727 7

= (S, 5?”)
(21b> £ Q(Tk7€7n> < Ts,%,n)

Proof. We shall prove only the result for P’s; the one for Q’s is similar.
Denote the partial sums

Sm:iTiy m € N.

k=1

Let € > 0 and n € N. We wish to prove by induction that for any
m € N

- P(Sm, <,
(22) > P(Ty,e,n) §<—25">
P P(S, 3:m)
The base of induction holds trivially, as for m =1
€ P(Ti,5,n)
2 Ti,e,n) < P(T,=n) < —— 2~
(3> ,P( 1?6777)—IP< 172’77)—1_7)(5’%7”)

We assume now that (22) holds for some specific m € N. We need
to prove that it holds for m + 1, i.e.

m+1
P(Sm+1,5,1)
24 E T < — 22
( ) k:lp( k’€7n)_ 1_73(*9’%’”)

Let Z € R? be the initial state of (,,, and let (., be the “most probable
path of (,,”, i.e. the solution of (13a) with the initial condition (. (0) =
Z. Let also ¢ € R? be some point such that |7 — (o (Sm)| < §

By the Markov property of (,,

@) P w0 60— 0] < 5 0 Gl =)

t<Sm41

—p( s [G0) - el < § | G(S) =a>
Sm_t§5m+1
< By sup [Gul1) — ColD)] < § <n<5m>=f>
< Sy

[T

Consider the solution

(1) of (13a) which satisfies

((Sm) = 0.
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It can be easily seen from Figure 3, that
(e

ap 16a() — Colt)] < 5}

Sm<t<Sm41
L

s [6(0) - G=l0) < -

Smstssm—{-l

FIGURE 3. (s versus (uo.

Thus,

IP( sup |Cn(t) - | <3 ‘ (n m :77>

Smstssm-}-l

< u»( sup [Ga(t) — Calt)] < €

Sm Stssm-}-l

éﬂn( m) = >a
and by shifting the time by —5,, we further obtain
(n(Sm) = '17> =1—=P(T, e, n).

P(S sup [Calt) = Cool8)] < €

m Stss’rn-{-l

Therefore, it follows from (25) that

ol sup 1) = G0 < 5 1 G(5) = 7)

t<Sm+1

< (1= P(Tseem) - Po sp [6l0) — D] < 5 1 G1(5) = 7).

Summing over all possible @ such that |t — (. (S)| < §, we obtain

Pf( sup |G (1) = G (1) < §>

1<Sm41

< (1= P (o)) Bo( 0 60 = (0] < § ).

t<S,
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and thus
1—wah;)<@—ﬁmmwmo—Pwm;m)
€

€

P(Sm‘f'l? 27”) Z 'P(Smy
,P<Sm+17§7n> 2 P

and by the induction assumption (22)

P(Smt1, %, n) > (1 - —,n) ZP Ty, e,n)
k=1
+ ( % )) m,e,n
€ o
Z (1 _P(Sv§777>) P(Tk767n>7
k=1

and (24) follows.

Now since the base (23) holds, and the assumption (22) implies (24)
for any m € N, the inequality (22) holds for all m € N. By bringing m
to infinity we obtain the desired result (21). O

3.5. First step. First we will show that 2, stays near 2z, until it
arrives to the point Y; at the boundary, with sufficient probability.

Let n > 1, 6 > 0. Define the stopping time of the arrival to the
y-axis:

o =inf{t >0: z,,(t) =0}.

Consider the free motion (, starting at @ € Dy (with the third coor-
dinate stripped). ¢, is coupled with 2, (see Remark 4), and its limit
process (s coincides with Z, until time Tj:

VE< Ty Zolt) = Coolt).

Let To = Coo,x(TO> = —0 (see Figure 4).

FiGURE 4. First arrival to the boundary.
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Denote 7y as the stopping time for (,, similarly to 74:
To=1inf{t > 0: (,.(t) =0}.
Let sup, .z [Ca(t) — Coo(1)] < 8. Then

1o (T6) = Goon(To) < 6
|§n,x(f0) + 5' < 5

Cnw(To) <0
To > 7o(Ca)
sup |§n(t) - COO(t>| > sup |§n(t) - C’oo(t)L
t<T, t<F0(¢n)

and thus SUD <5 () |Ca(t) — (o (t)| < 6. This implies immediately, that

(.

and accordingly,

sup 6.0 - -0 < 6 2 {.

<7

up |6a(t) — Guolt)] < 6}

t<To

(26) Ps (sup Galt) = Coal8)] 5) <P, (p Call) = Coalt)] = 5) .

<o t<Ty

Therefore
(27) P(To, 8,m) = Ba(suppges, 16a(1) = Go(0)] 2 6)
> Pa(subogicr, |Gn(t) = (1) 2 8) by (26)

P

d’(supogtgm d(gn(t)v Zoo (t))

Vv

v

5) by coupling.

3.6. Second step. Now we need to estimate the probability for Z, to
stay around Z, during the time interval [0, T + 5], i.e. along the first
two linear pieces of z,. Using the strong Markov property of 2, we
can reduce this problem to a problem of estimating the probability for
Z, to stay around Z,, during the second time interval, provided it did
stay around Z, during the first interval.

Let Ag be the set of points on y-axis which fall inside the §-neigh-
borhood of (., as defined in the first step (see Figure 5).

We denote also «, 3 as the angles between the y-axis and two adjacent
M) The quantities

sin o

pieces of Z,, respectively, and define 6y = ¢ (1 —
a and ( can be readily obtained from

Ho — )\0 )‘0
, tanp = .
)\1 ﬂ M1 — )\1

It also follows from the stability condition (14) that o > 3, and thus
0 < do < 6.

tan a =
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Ag

FIGURE 5. Geometry of the second step.

Remark. This reference to stability is crucial for our proof. From now
on, we shall extensively use the fact that 3 is smaller than « in order
to deduce that Z,, indeed does arrive to the empty state, and that it
stays there.

Note that under these settings Z,(79) € Ay, i.e. located at most
—— away from Y} along the y-axis. Therefore its initial distance from
the straight line [, which contains the second piece of Z,,, is at most
- % = & — dg. We can allow 2, to start at any point inside Ay, and
stay at the distance dg from the line starting at the same point and

parallel to /. Thus we will ensure that z, stays at the distance ¢ from

L.

We repeat the reasoning we applied in the first step with regards to
the point X; located on the z-axis (see Figure 2).
Define the stopping time of the arrival of 2, to the z-axis:

o1 = inf{t > 70 : z,,,(t) = 0}.

Now we recall the free process ¢ coupled with 2 on ID;. In order to
formalize our discussion, we denote the process which starts at (0, p)
as P, and 1its limit process as 2, respectively.

We wish to allocate S large enough, so that any limit process of
the kind &, originating on Ay would reach at least § below the z-axis.
Clearly, y1 = Y1, + o= corresponds to the process ¥! which has the
longest way to go. So we can put

~ 1 )
S1 =51+ ( +5>-
1 — A1 \sina
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Furthermore, we consider
oy =inf{t > 0: £ (t) = 0}.
Let p € Ag. Then, similarly to (26),

(28)
P(o,m(sup |6 — &) = 50) < P(o,p)<suP |€2(1) — €8.(1)] = 50>.
1<y t<5)
Therefore,
(20)
Q(§1,5o,n) = ]P’(O,p)<sul) €2 (1) — E2.(1)] > 50>
<5
=z P(O,p)<s<ug & (1) — €L (1) = 50) by (28)

= P(Tosup d(é'n(t),é'oo(t)) > g

Stgal

Zny(T0) = p) by cpl.

> ]P’(T sup d(z_'n(t),goo(t)) >0

Stgal

) =)

By the strong Markov property [Nor97, Thm 6.5.4],

Pg(sup d(é’n(t),é'oo(t)) <0 N Zy(ro) =(0,p) N 70 < ﬁ))

tgal

= IF’(T sup d(é'n(t),é'oo(t)) <4

0<t<on

2 (m) = (0.9))

X Pg(sup d(.?n(t), Eoo(t)) < 8§ N Zy() =(0,p) N 1< 7:()).
fS’T()
We can take the infimum over p € Aq of the first probability in the
righthand side, and sum up the result over p € Ag again. Thus we will
obtain

(30) Pa(SUp A1), 2a(1)) <6 O 7 < c’r“)

tScrl

> inf IF’( sup d(z_'n(t),é'oo(t)) <o

T p€Ag <t<ay

X P5<sup d(En(t),Eoo(t)) <d N < T()).

tSTO

() = (0.0))

Recall that in the first step we obtained that

sup |Cu(t) — (o (t)] < & implies To > 70(Cn)-
t<Th
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Similarly one can see that

sup d(z_'n(t), z_'oo(t)) < 0 implies Tvo > T9.
t<To

Therefore,

Pa<sup d(é'n(t),é'oo(t)) <o N < TO>

tS’TO

> Pa<sup d(Z,(1),Z0(t)) <6 N 79 < TV())

t<To

> Pﬁ'(sup d(Z.(1), 7 (1)) < 5).

t<To

Furthermore, in a similar fashion sup,, d(é’n(t), Eoo(t)) < & implies

again To > 7.
The statement (30) can thus be restated as

(31) ]P’g(sup d(Z,(1), Z0 (1)) < 5>

tScrl

> inf IF’( sup d(z_'n(t),é'oo(t)) <0

T pEAg <t<oy

x IP(;(sup A(Z,(1), 2o (1)) < 5).

tSTO

() = (0.0))

Before we proceed, let us denote for simplicity of notation

AV
o,

v

[ = Pa(?}: d(Z,(t), Z(1)) 5),

my = IF’(T sup d(z_'n(t),é'oo(t)) >4

0 <t<o

() = (0.0)).

It now follows from (31), that
1 —k> inf (1 —m,)(1-1)

PEAQ
> (1 = sup my)(1 =1)
PEAQ
>1—1— sup m,+ [ sup m,
PEAQ PEAY
>1—1—supm,
PEAg
kE<Il+ sup m,
PEAQ
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and thus

(32) Pg(sup d(Z,(t), Z0(1)) > 5)

t$crl

< Pg(sup d(Z.(t), 20 (1)) > 5)

tSTO

+ sup IP( sup d(En(t),Z_'oo(t)) >4

PEAQ <t<oy

(29) ~
2§9 Pg(sup d(i’n(t),.?oo(t)) > 5) + Q(S1, 00, 1)

tS’TO

2 (m) = (0.9))

@n - _
< P(To, 6,n) 4+ Q(S1,00, 7).

3.7. Third step and further. Continuing the direction established
earlier, we now wish to estimate the probability of Z,(¢) to stay around
Zoo(t) until the time Ty + S7 4+ T, i.e. during the first three linear pieces
of Z,(t). For this purpose, we define the stopping time

™ = inf{t > 0y Zn,m(t> = 0}'

Then we can define variables like we did in the second step, with
appropriate changes, as the panes Dy and Dy switch their roles:

5= 1_s%n(g—oz> :5<1_cosa>'
sm(%—ﬁ) cos 3

~ 1 )

TIZTI—I-ILLO_/\O (Cosﬁ—l_(s).

By the similar approach, as the one we used in the second step, we
can now obtain

Pg(sup d(Z,(1), Z(1)) > 5>

fS’T1

< ]P’g(sup d(Z(1), Zoo(t)) > 5) +P(Ty, 61, n)

tgal

(32) o - .
S ,P(T(), 5, TL) + Q(Sh (S()7 n) + P(Tl, 517 n)

We thus continue to advance further towards the origin, until we
approach close enough.

Let us elaborate on the notion of “close enough”. As far as X Y14
doesn’t intersect the d-neighborhood of (0,0), the behavior of Z,(¢) is
quite predictable while it is itself confined to the d-neighborhood of
Zoo(t). Otherwise, Z,(1) may change pane several times during a single
step of 2, (1), and so the reasoning we employed until now may not
apply anymore.
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Therefore we consider X;Yi,1 as the last interval in the sequence
{V1X1, X1Y2, Y2 X5, XuY5, ... } (see Figure 6), which doesn’t intersect
the §-neighborhood of (0,0). (Of course, this last interval could as well
be of the kind Y, X, but we can assume the former without loss of
generality.)

Y

5 X;c+1 Xk xz
FI1GURE 6. Approaching the origin.

A simple geometric calculation yields the following results:

)
(33) Xy >,
COSs &
34 Yig < d X1 < d
( ) k+1 > sinﬂ’ k41 > COS/B.

We also see that, by further applying the reasons outlined at the
beginning of this step, for the appropriately defined stopping time

_fdy Zn,» = 0 for the
Tk =10 "k + 1-th time

one can derive

(35) Pg(sup d(Z,(1), Zolt)) > 5)

tSTk

k
T0,5 TL Z |: T“(S], + Q(SH(SOa ) 9

where




We observe that for any 7 € {1,2,3,... ,k}
(19) XZ > Xk

T; =
o — Ao — fo — Ao
(3>3) )
cos a(py — Ao)
1
T, =1T; 1
* fo — Ao < * COSﬂ)
< T+ <1 ! )
Ho — Ao COs o
) 2
<T; +
fo — Ao COs &
< 37;
Therefore,
k _ k 00
Z'P(Tia(slan> SZ' 3Tza($17 Z 3Tza($13
i=1 i=1 i=1

Note that > T; is a geometric series, with sum smaller than T.
Therefore by Lemma 4,

k )
oot P Ta _17
ZP(Tm(shn) S ? 2 5n)
— — P(T, > n)
In the similar fashion,
k )
~ T <
ZQ(SZ'7507”) = Q( ’ 2’n> :
i=1 - Q(T, % 5 1)
It now follows from (35), that
(36) Pg(sup d(fn(t), Eoo(t)) > 5)
tSTk
~ P(T, %, n) Qﬂ,)
< P(Ty,6,n) + ; ;
< P bt T oy T T o, By

Consider two cases:

L P(T,% n) < ! and Q(T,% n) < I. Then

’ 92 5 9

P(T, %, n)
1—73(T,52—1,n)
Q(T,‘;o, n)

— Q(T,%,n)

< 2P(T, (;—],n),

< 29(T, %,n).
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and (36) implies

(37) ]P’g(sup d(Z.(1), Z(t)) > 5)

t<Ty
~ 51 50
S P(To, 5, n) + QIP(T, 5, n) + 2Q(T7 57 n)
IT. If either of P(T, 52—1, n) and Q(T, 570,72) is at least £, then

(1, 2 n) + 201, 20y > 1,

and (37) holds trivially again, and thus it is valid in both cases.

3.8. Staying around the origin. In this part of the proof we show
that if Z,(¢) starts in a close vicinity of the origin, its chances to travel
far away are very small.

Specifically, we consider two neighborhoods of the empty state whose
radii are small (order of €), but differ by a significant constant factor.
We model the escape by a sample path Z,, which starts inside the smaller
neighborhood, and after some time arrives to the outside of the larger
neighborhood. We show that for any such sample path there must exist
a period of time when Z,({) stays on a single pane (i.e. is supposed
to behave like a free motion), but nevertheless it doesn’t stay in the
vicinity of its most probable path. The most probable path in this case
is a solution of (13) with an appropriate initial condition. Second, we
show that the probability of the latter event is small.

For the purpose of further discussion we define the term of “~-
escape”. We shall say that a sample path (,(¢) (or, similarly, &,(t))
starting at  performs a y-escape, when its distance from (Z (1) ex-
ceeds v without respect to the time (see Figure 7), i.e.

F1,t, >0 [Ga(th) = CE(12)] > 7.

FIGURE 7. A ~-escape.

Furthermore, we shall say that a sample path Z,(¢) performs a -
escape starting at ¢y, if Z,(¢) remains on a single pane during some
time interval (4;,¢;), and the sample path of the free motion associated

with Z, on that pane performs a y-escape during that time.
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We wish to define some auxiliary variables, which are merely mul-
tiples of ¢ by some specific constants. Like in many e-d-style proofs,
these definitions look quite artificial, and in fact so they are.

Let
(38) €, > 0 such that ¢ <

€
5 s { Vi A }
40 ’ H1

Consider the straight line [ which is perpendicular to the vector
(g1, p10) and passes at the distance €; from the origin O (see Figure
8).

€
1 é:oo f

£
0] A /2
FIGURE &. The definition of .

Naturally, the points of intersection of [ with the axes are

2 2 2 2
Y (LWO) 5 (07\/u+u>
M1 Ho

By choosing ¢; as in (38) we ensured that the segment AB lies en-
tirely inside the S-neighborhood of O. The line [ also has the nice
property, that for any # € [, the paths (£ and £Z both lie below [ (see
Figure 8).

Consider a sample path Z,(¢), which starts at some Z and reaches
outside the Z-neighborhood of the origin. Since the segment AB lies
inside that neighborhood, there is a moment ¢y of the first crossing of
[ by Z, on either pane.

We intend to prove that any sample path Z,(¢), which starts inside
some ez-neighborhood of the origin (€3 is to be defined later), and
crosses [, performs an e;-escape on its way.

We can assume without loss of generality, that 2,({y) € Dy, and
denote 7,(t9) = (a,b,0).

Let

. [€e1 cosacos sin 3
— ——(|OA| - |OB
(39) 62<mm{2’cosa—|—cosﬂ<|0 =10 |cosﬁ)}’

. €1 €9 €9
(40) €3 < mln{i,cosﬁ(|OA| — — )} .

cosa  cosf3
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On the technical side, we need to consider three different possibilities,
depending whether Z,, escapes without touching the boundary 0D (case
I), with touching it just once (case II), or more than once (case III).
Let us do that now.

I. The sample path Z,(¢) arrives from 7 to (a,b,0) without touching
the boundary 9. In his case Z obviously belongs to Dy. Moreover,

40
A, (0,0)) < s < &
o o €1 (39)
d(Z,1) > d(1,(0,0)) — d(Z,(0,0)) > 5 > €.

As (% advances, it further recedes from [. Therefore the e;-neighbor-
hood of (% doesn’t reach /, and Z,(¢) obviously performs an e,-escape
starting at the time 0 (see Figure 9).

3 €2
r

o0

€3

FiGURE 9. Case I: Z,(1) goes straight to [.

IT. The sample path Z,(t) touches 0D just once before arriving to
(a,b,0). Then the encounter of z, with the boundary must have hap-
pened on the z-axis at some moment ¢; < to, and we know that z,(¢1)
lies on OA.

It follows from (40) that

€9 + €3 €9
_I_

cos (3 Cos «

< |OA],

and we can easily see from Figure 10 that if 2, tries to follow the
path ¢2 it must touch OA within distance e, from ¢Z, so the distance

between Z,(t1) and the origin would not exceed %

Furthermore, if 2, continues and follows the path (fg;‘(“), it would
unavoidably miss the segment AB altogether. Thus, as we know that
Z,(to) € AB, we surely conclude that it performs e;-escape either start-

ing at the time 0, or starting at ;.
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o0

W2

FIGURE 10. Case II: Z,(t) touches the boundary once.

III. Z,(t) touches 0D at least twice before arriving to (a,b,0). Then
we can denote ¢; and ¢y as the moments of z,’s last two encounters with
the boundary. Obviously, Z,(t1) € OB and Z,(t;) € OA. We apply
reasoning similar to the previous case: if Z,(t) follows gig(“) after the
moment ¢y, it touches OA at the point Z,(t;) which satisfies

|BO|sin 3 + €3
<
cos 3
But (39), (40) imply that €,, €5 satisfy

|BO|sin 3 + ¢, N € _ 04,

cos 3 cos

d(Z,(t2),0)

(see Figure 11).

so Z,(t) must perform ey-escape starting from ¢, in order to reach
(a,b) € 1.

The above discussion was dealing with the case Z,(to) € Dy. The
case Z,(lg) € Dy would lead us to similar results with e, €3 defined ap-
propriately. We conclude therefore, that there exist constants ¢y, ¢y > 0
which depend only on the system parameters Ao, A1, p0, p1, such that
any sample path Z,(¢) which starts in ¢;e-neighborhood of the empty
state (0,0) and escapes outside its S-neighborhood, must perform a
cye-escape in the course of its movement.

Now we wish to find an upper bound for the probability

IF’(()sup d(zn(t),(0,0)) > % ‘ d(zn(O),(0,0)) < cle).

<t<U
40



\\\\ Zn(t)

Ficure 11. Case III: Z,(t) touches the boundary twice
or more.

Define the following sequence of stopping times:

po =0,

p1 = inf{t > po: Zy(t) € ID)O},
p2 = inf{t > p1: Zn(l) € ]Dl},
ps = inf{t > p2: Zp(l) € DO},

Note that z,,(px) lays on the z-axis for odd k, and on the y-axis for

even k.
As we saw earlier, for any # such that d(Z, (0,0)) < cie

(41) IF’;;( sup d(zn(t),(0,0)) > %)

0<t<U

< Pf(5n<t> performs c26—escape)

= Z,(t) doesn’t perform cye-escape until py
= IFDi-‘ h . .
Z N Z,(t) performs cye-escape starting at py
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By the strong Markov property, for any even k

Z,(t) doesn’t perform cye-escape until py
(42) Pg N Z,(t) performs cye-escape starting at py
N Zu(px) = (0, p)

() = 0.9))

" IF’»( Zn(t) doesn’t perform cye-escape until py >
} N Zu(pe) = (0,p) '

=P (Zn(t) performs ¢ye-escape starting at py,

As we defined cye-escape, the probability for Z,(t) to perform it
equals the probability of &, to perform cye-escape starting at the time
pr from the initial state Z,(px). Also, prt1 — pr is obviously smaller
than U, and thus

P <5n(t) performs cye-escape starting at py | Z,(pr) = (0,p))
< Q(U, cz¢,n).
Therefore, (42) now implies

P Z,(t) doesn’t perform cye-escape until py
“\ N Z,(t) performs cye-escape starting at px

< Q(U, c2e,m) X Pf(é’n(t) doesn’t perform cye-escape until pk>.
In the similar fashion, for odd &

P Z,(t) doesn’t perform cye-escape until py
“\ N Z,(t) performs cye-escape starting at px

< P(U, cze,n) X Pf(é'n(t) doesn’t perform cye-escape until pk>,
and we can unify these bounds as
(43) P Z,(t) doesn’t perform cye-escape until py
“\ N Z,(t) performs cye-escape starting at px
< ('P(U, cre,n) + Q(U, ch,n)>
X Pf(é’n(t) doesn’t perform cye-escape until pk>, Yk > 0.
We notice a simple fact, that 2,(¢) must perform at least one jump

in the direction (1,0) or (0,1) between two consecutive stopping times
42



pr and pry1. Therefore
(44) Pf(5n<t> doesn’t perform cye-escape until Pk)
< Pf(é’n(t) changes pane at least k& times until time U)

< Pg(z_'n(t) jumps at least k times until time U)
<P(N(U) > k),

where N(t) is a Poisson process with intensity max{Ag, s }.
It now follows that

Pf( sup d(z(1),(0,0)) > E)
0<t<U 2
(41) < Z,(t) doesn’t perform cye-escape until py )

< P 5, .
= P ; N Z,(t) performs cye-escape starting at py

(43

)

< (P(U, cre,n) + Q(U, (;Qc,n)>

X Z Pf(é'n(t) doesn’t perform cye-escape until pk>
k=0

(44)

(P(U, cz6,n) + Q(U, eze, n))

X iIP(N(U) > k).

INE

Furthermore,
iP(N(U) > k) = i(k + D)P(N(U) = k)
=1+ i kP(N(U) = k)
14 EN()

=1 4+ U max{Ag, \ },
and thus for any 7 satisfying d(f, (0, 0)) < e

@

(45) Pf( sup d(z,(1),(0,0)) > 5)

0<t<U

S(P(Ua cze,m) + QU ch’n)) (1 + U max{o, /\1}>'

(46) P<Osup d(zn(t),(0,0)) > % ‘ d(zn(O),(0,0)) < C]é)

<t<U
S(P(U, cze,m) + Q(U, ez, 77)) (1 + U max{ o, )\1}).
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3.9. Finalizing the proof. Recall that we have shown by now that
Z, (1) stays sufficiently close to Z(¢) until it arrives to a neighborhood
of zero, and that z,(¢) stays sufficiently close to zero once it reaches it.

Now we can turn to our ultimate goal of providing an upper bound
for

P(;(sup d(é’n(t),é'oo(t)) < e).
t<T '

We shall perform some preparatory work. Recall that we can choose

¢1 in (45) as small as we wish, so we require

1
CI<Z.

Let also

. [sinf cosa
d = ¢emin .

2 72
The choice of § was made in such a manner that the -neighborhoods

of Y11 and Xj4; (see Figure 6 for reference) lay entirely inside the ¢;e-
neighborhood of the origin, namely satisfying

{CE € D : d(f,X}c.}_l) < (S} U {.f € D: d(f, )/]H_l) < (S}
C{ZeD: d(7(0,0)) < cie}.
That says, if Z,(¢) follows the most probable path Z(t) closely
enough, and ultimately arrives to the vicinity of the point Yi41 (or
Xk+1), then it should find itself by than resting sufficiently close to the
origin. For the purpose of this discussion, “sufficiently close” means

the ability to apply the results of paragraph 3.8.
Recall the definition of 75, in paragraph 3.7. We assert that

€
A7) 42, supd(Z,(1), 70 (1)) < 8, sup d(Z,(1),(0,0)) < =
(1) {5 supd(2u(0) 2e(0)) <6 swp d(,(0),(0,0)) < 3}

C {Zn :osup d(é'n(t),z_'oo(t)) < 6}.

<T
Indeed, we know that § < ¢ and thus

Vi<t sup d(gn(t),é'oo(t)) <d<e

t<Ty

On the other hand, note that for any sample path z,

d(Zoa(7e(2)), (0,0))
< d((0,0), Yisr) + d(Yisr, Za(mr)) + d(Zn(78), Zoo(72(20))

<cle—|—5+5<§.
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Therefore for any ¢ > 7

d(goo(t), (0, 0)) < % (see Figure 6)
A1), 2 (0)) < A(E (1), 0,0)) + d((0,0), 7 (1)
< % + g = €.

and this proves the assertion (47).
The most immediate consequence of (47) is the following relation:

(48) ]P’g(sup d(Z,(1), 70 (1)) < e>

t<T

> P5<sup d(z_'n(t),é'oo(t)) <d N sup d(En(t),(0,0)) < g)

tSTk TkStST

For any ¥ satisfying d(f, (0, 0)) < c¢1€ we can state using the strong
Markov property:

sup d(Zn(t), Eoo(t)) <4

t< Ty

N sup d(Zn(t),(0,0)) <in Zo(mp) =7
W <t<T 2

(49) P;

Z.(m) = :z)

- p(T sup d(Z,(t), (0,0)) < %

k<tST

x Pg(sup d(Za(1), Zo(1)) <6 O Zo(mi) = z)

1<,

Denote Z,(t) = Z,(mx +t). Obviously, 2, is a jump Markov process
with the same generator as 2, and thus

Z(ri) = ?)

IF’( sup d(z_'n(t),((),())) < %

T <t<T

> ]P’(T sup  d(Z.(1),(0,0)) < %

kStST-l-Tk
= P5<sup d(%n(t), (0, 0)) < E)
t<T 2
(45)

> 1—(73(T, cze,n) + QT cqe, n)) (1 + T max{ Ao, )\1}).
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By summing (49) over & we further obtain

(50) Pg(mp d(z_'n(t),é'oo(t)> <d N sup d(En(t),(0,0):) < %)

L‘STk TkStST

> Pg<sup d(Z,(t), Z(1)) < 5)

t<Ty
X (1—(73(T, cze,n) + QT eqe, n)) (1 + T max{ o, )\1})).
and thus
Pg(sup d(zn(t),gm(t)) < c)
t<T
(48),(50)
> (1—(73(T, cz6,n) + Q(T, cqe, n)) (1 + T max{ )\, /\1}))

x Pzl sup d(Zn(t),Eoo(t)) < 5)

tSTk

(37)
> (1 (P T,cze,n) + QT cze, 77)) (1 —I—Tmax{)\o,)\l}))

< (1= P(To.6,m) — 2P(T. %,n) —20(T, %n))

Pg(sup d(Z,(1), Zo(t)) > e>

t<T
S(P(T, cae,n) + QT cae, n)) (1 + T max{ o, )\1})

+ P(T,8,n) +2P(T 52 n) +2Q(T 52”>'

The right-hand side of the last expression is a finite sum of probabil-
ities of the form (20). As ( and ¢ are free motions with constant jump
rates in each direction, these probabilities can be bounded in the terms
of Kurtz theorem:

P(T,e,n) < AyemnA2(e)
Q(T,e,n) < B,e~"B2(c)
for some constants A;, By and functions A,(e), Bs(e) satisfying (15).

Therefore Lemma 27 ensures now that
Pa(supd(zn@),zm(t)) > ) < Cyeneal0
t<T '

for some Cy, Cy(¢) as required in the statement of the theorem.
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4. THE RATE FUNCTION

It was stressed in Chapter 2, that our model exhibits, at large, two
major modes of behavior, which correspond to the motion z' being
on each of the two panes. In this chapter we are going to address
the question of cost for a given path i over D. This requires us to
build a rate function which would assign such cost to any path . We
know, that at the intuitive level, the rate function somehow reflects the
probability of a scaled motion Z, to stay near ¥. Thus, the purpose of
this chapter would be to introduce the proper rate function, which will
later be shown to satisfy the Large Deviations Principle.

Judging on the general theory, we guess that the property of cost may
bear some local meaning, depending whether 7 is located on either of
the panes, or on the boundary at any given moment.

For the purpose of further discussion we wish to introduce the nota-
tion for the set of paths over D.

Definition 6. Consider the set of all paths 7(t) which travel on D
during the time t € [0,T]. This set, equipped with the sup melrics,
forms a metric space, and will be denoted as D?[0,T).

Definition 7. For any firzed ¥ € D, the subsel of D?[0,T] which con-
sists of paths beginning at ¥ will be denoted as D30, T].

Remark 8. The reader surely noticed, that we equipped D?[0, T| with
sup metrics, contrary to the usual practice of using the Skorohod met-
rics in this sort of models. The explanation, why it doesn’t matter,
appears later in Remark 11. Throughout this chapter the topologic
properties of D*[0,T] will be used only in Proposition 13, and even
that result holds equivalently for both sup and Skorohod metrics.

4.1. Structure of a path on D. In this section we wish to discuss
the structure of a given path 7. This requires an insight into the way 7
travels over D, with emphasis on how it moves from pane to pane, how
it visits the boundary and the empty state, and so forth.

When discussing various paths over D), it is essential to distinguish
between two core situations. We ask for each path 7, whether some
random motion can follow it with positive probability. As one may
guess, the paths for which the answer is negative, can be ignored as
they are largely irrelevant to the probabilistic discussion.

In Definition 9 below we attempt to introduce the notion of feasibility
which aims to address the question of such relevance, but let us first
present some examples which will hopefully clarify our intentions.

As a first example, consider a path which starts at a point (1,1,0)
and moves straight towards the origin. If we consider a motion which
keeps close to this path, we ultimately come to the conclusion that as
the time passes by, its value decreases over both coordinates x and vy,
thus indicating that the service occurs in both queues, without having
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our motion touch the boundary. This situation is, of course, forbidden
by the terms of our model, and therefore the aforementioned path is
not feasible.

Another situation involves a point of discontinuity of 7. Whenever
7 is not continuous, we can find a positive ¢ small enough, such that
the e-neighbourhood of 7 would also contain a gap in the sense that
it contains no other continuous paths on the same domain of time
as 7. In this case a desire to keep some n-scaled motion 2, in an e-
neighbourhood of 7 will force us to choose a relatively large n. But
then each single step of Z,, would be just % long, and in order to stay
just ¢ away from 7, z,, would have to perform a larger step right at the
moment of discontinuity of . This means that Z, incorporates two or
more arrival/service events which occur simultaneously, and thus the
probability of Z, must be zero. Once again we see that such a path
must not be feasible. The conclusion of this paragraph is formalized in
Proposition 5.

On the contrary, the most probable path discussed in Chapter 3,
has the property that for a scaled motion 2, staying along it is quite a
likely event. This property speaks in favour of its alleged feasibility.

Having seen all these examples, we now proceed to the rigorous def-
inition of feasibility.

Definition 9. A path 7 € D?[0,T] is feasible, if for any ¢ > 0 there
exists N € N such that for anyn > N

(51) P(Oiljde(z_'n(t),F(t» < 6) > 0.

Proposition 5. A feasible path is continuous.

Proof. Consider a feasible path 7. Assume to the contrary, that 7 is
not continuous, i.e. there exist s € [0,7] and a sequence {s,}>_,
converging to s, such that

77}1_{%0 sm) =& £ 7(s).

Choose some positive € such that

e < id(F(s),i).

Let M € N such that for any m > M
d(F(sm),f) < €.
Let also n € N, and consider a sample path z,, which satisfies

sup d(é’n(t),f'(t)) < €.
0<t<T
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Then for any m > M

A(Za(5m)s 5a(5)) 2 d(7,7(5)) — (d(Za(5).7(5))

Since {s,,} converges to s, we unavoidably conclude, that Zz, is not
continuous in s. Therefore, 2, performs a jump at the moment s. But
since 7, 1s comprised of Poisson processes, its probability to jump at a
specific moment is zero. Thus for any n,

IF’( sup d(z_'n(t),f'(t)‘) < 6) < P(Z, jumps at the moment s) =0,
0<t<T )

contrary to (51). This contradiction shows that the initial assumption
was wrong, and thus ¥ must be continuous. O

Now we turn to determine the structure of a feasible path running
over D. This would allow us to better understand the dynamics of a
random walk which runs near that path.

Recall, that we have defined our space D roughly as a set of two
quadrant layers with glued boundaries, i.e. D &~ Rt x Rt x Z,, where
the boundary points (z,0,0) and (z,0,1) are viewed as the same (and
similarly for the y-boundary).

As a matter of convenience, we shall identify several distinct areas

of D. Denote

z,y,0) €D | 2,y > 0},

Y,
z,y,1) €D | z,y > 0},
0

(
(
(z,0) €D | z > 0}
(0
(0

{
{
={
9D {(0,y) eD [y >0}

={(0,0)}.

Note that 9, D and 0, D are basically the z-axis and the y-axis, without
the origin which deserves a set of its own.

Consider a feasible path 7. At the moment, we don’t require " to be
absolutely continuous. Its continuity, which follows from the feasibility,
will satisfy us for the purpose of the coming discussion.

Our next duty will be the classification of various time intervals
within [0, 7], which are characterized by different modes of behavior of
r.

More precisely, we consider a scaled motion Z, for some n, which lies

close to 7, and its behavior is the criterion we actually apply.
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First let us consider the time that 7 spends on Dy. We denote it as
follows:

(52a) Ao(F) = 77Y(Dy) N (0,T).

Note that since 7 is continuous, and Dy is an open set, zzlo('r_") is an open
set too (see Remark 10 below). This domain has the nice property that
if we take an interval [sq, s2] C /NIO(F), any 2z, which is close enough to
7, would behave on [sy, s3] just like a free motion.

Remark 10. While the points 7(0) and 7(7') may reside on Dy, we
explicitly remove them from consideration when building AO(F) (and
later, Ao(7)). That ensures that Ag(7) is an open set in R, with all the
nice properties stemming from this.

We further consider the situation when 7 walks over Dy, visits the
boundary d,D and leaves back to Dy (see Figure 12). Now if we take
an interval [sq, s3] on which it all happened, it should be clear that a
scaled motion Zz, near ¥ must not touch the boundary 9,D, because
then by definition of the model, it would have to move to D;.

Y

8

FiGUuRrE 12. The rationale behind Ay(r)

For this reason we can state that such z, can be coupled with the
free motion (, (see Remark 4).

Another special case arises when 7 starts at the boundary d,D (i.e.
7(0) € 0.D), and stays on it for some positive amount of time. This
situation corresponds to the scenario which begins with an empty sec-
ond queue, and has no arrivals occur in that queue for some period of
time starting with ¢ = 0. It is clear that in this situation 2z, would also
behave like (,,, and we can further expand Ay(r) with some interval
starting at 0 and ending as soon as 7 first touches d,D or 0. Formally
speaking, there is an interval

(0,t0), s.t. to=inf{t € [0,T] | ro(t) =0}.
Therefore we define

. t lies inside some [sy, s9]
A()(F) = A()(F) U t € (O,T) s.t. F(S]),F(SQ) € DO and
(52b> F([81,82]> g DO U ayD

U(0,t0), when 7#(0) € 9,D
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and we expect that Z,, would behave like (,, over the time domain Ay(r),
conditioned on both not touching the boundary d,D in-between.

It is easy to check that Ag(r) is an open set, provided the set /Nlo(f')
is open.

In a similar fashion we define

A7) =77Y(Dy) N (0,T),

) ¢ lies inside some [sq, $3]
A (7)) = AP Ut e (0,T)| s. t. 7(s1),7(s2) € Dy and
F([51,52]> g D1 U axD

U (0,¢1), when r(0) € 0,D,
tl—lnf{tE[OT | ry(1) =0}

Now we turn to discuss yet another mode of behavior of 7. Consider
the situation where 7 arrives from Dy to d,D, stays on this boundary
for some time, and then leaves to D; (or, possibly, to 0). Our desire
to deal with this setting separately emerges from the following obser-
vation. Whenever 7 behaves as described above, and z,, is some scaled
random walk near it, z, obviously arrives to a neighborhood of d,D
together with 7, and also leaves together. But as long as 7 stays on
04D, Z, can first spend some time at Dy, then touch the boundary at
some moment, and spend some more time still near d,D and r, but on
D;. Needless to say that in such case it would be difficult to know in
advance at what moment 2, is most likely to cross the boundary, and
respectively, its probability to stay around r.

Therefore, we define the collection of sojouring times of 7 on 9,D
as the complete set of its visits to d, D, without intervals already in-
cluded in Ay(7) and without momentary visits which will prove to be
insignificant for us. Denote

Ao(7) = (F7H(9, D) \ Ao()”
i. e. the interior of ¥~1(9,D) \ Ao(F).
In a similar fashion we denote
A7) = (FH0.D)\ A7)’
Note that by construction, all the sets Ay(7), A1(r), A2(F) and As(7)

are disjoint open sets. By the characteristic property of open sets on
R, each A;(7) can be represented as a countable collection of disjoint

open intervals:
o0
Z
Yy

k=1
For our convenience we denote
Ai(F) = {(sh 1) 1o
(53) A(7) = AoF) U AL (7) U Ay(7) U As(7).
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Now in order to achieve a complete classification of points in [0, T,
it remains to define the last two sets.

Let A4(7) be the collection of endpoints of the intervals making up
either of the sets Ay(7), A (7), A2(7), As(7), together with {0,7}; and

for whatever remains:
4
As(7) = [0, 1\ | Ai(7).
=0

As a final note on the structure analysis, we bring here a statement
regarding As(7). It turns out that whatever moments of time belong
to As(r), 7 spends them in the origin.

Proposition 6. Let 7 € D?[0,T] be a feasible path. Then
Vi e As(F) (L) = (0,0).
Moreover, if 7 is absolutely continuous, then
7'(t) = (0,0)
almost surely in the sense of the Lebesque measure in As(7).

Proof: Let ¢t € As(r). Clearly, #(t) € Do U Dy, as otherwise ¢
would belong to either Ay(r) or A;(r). Assume to the contrary that
7(t) # (0,0). Then we can assume without loss of generality that
F(t) € 0,D, 1. e. (t) = (z,0) for some z > 0.

Since ' is continuous and ¢ is not an endpoint of [0, T'], we can choose
some € > 0 such that

Vs € (t—et+e)C[0,T] 7(s)¢0,DUO.
7((t — ¢, 1)) must also not lie entirely in Dy U0d , D, or otherwise ¢ would
belong either to A;(7) or to A4(r). Thus there exists t; € (¢ — ¢,1)
such that r(t;) € Dy. But now it comes out that during the time
[t1,1] 7 travelled from some point in Dy to (z,0) without touching the
boundary d,D, and such a path can’t be feasible.

From the contradiction we conclude that 7(¢) = (0,0).

Furthermore, by [Jon93, p. 550], the absolutely continuous path 7
is almost surely differentiable. Assume that /() exists for some ¢ €
As(7). Then there exists the limit from above

(1) = lin 2D =) (i)
el0 € i -

Since r,(t 4+ €) > 0 for any € > 0, we conclude that r/(¢) > 0.
But on the other hand, there also exists a limit from below:
r(t) = lim re(t 46 —ra(t) = lim L(t + 6).
€10 € 10 €
Since r,(t + €¢) > 0 for any € < 0, we conclude that r/(¢) < 0 and
therefore /(1) = 0.

Similarly, 7 (t) = 0 and 7'(¢) = (0,0), as required. [
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We now prove one more simple, yet useful statement about A(r).

Proposition 7. Let 7 € D?*[0,T] be a feasible path. Let (u,v) C [0,T]
be such that for anyt € (u,v), r(t) € DoUJ ,D. Then (u,v) is covered
by at most three members of A(r), except for a finite number of points.

Proof: We split the proof into two cases.

I If #((u,v)) € 0,D, then we can consider some arbitrary point
to € (u,v). If there exist s; < tg < sz such that 7(s1),7(s2) € Dy and
([s1,$2]) € Do U 0 ,D, then obviously ¢y € Ag(F), and so are all the
other points in (u,v). Thus, (u,v) C Ag(r) and it is covered by a single
member of Ay(7).

Otherwise, to € A3(7) and again, so are the other points in (u,v),
and (u,v) is covered by a single member of Ay(7).

IT. If #((u,v)) € 04D, then the set {t € (u,v) | F(t) € Dy} is not

empty, and we denote

uy = inf{t € (u,v) | 7(t) € Dy},
uy = sup{t € (u,v) | F(t) € Dy}.

Then there exist points located arbitrarily close to wu;, uy with images
under 7 lying in Dy, and therefore

(ug,uz) C Ag(7).

Thus, (us,usy) is covered by a member of Ay(r).
Moreover, obviously

F((u,ul)) c ayD’
™((uz,v)) € 04D,

and, as we have already seen, each of (u, u1) and (uz,v) is covered by a
single interval from Ag(7) or Ay(r). Therefore, the entire interval (u, v)
is covered by at most three members of A(7) except for, possibly, the
points u; and us. [ |

Lemma 8. Let 7 € D?[0,T] be a fived feasible absolutely continuous
path, and let § > 0. Define Bs as the collection of all intervals in
A(F) = Ao(r) U A1 (F) U A3(F) U As(F), on which 7 travels at least &

away from the emply state:

(54) Bs = {(u,v) € A() | (v, 0)) € Bs(0)} .
Then Bs is finite. Moreover, ms = |Bs| satisfies
(55) %i_r}ré ms -0 = 0.

Proof: Let § > 0. Note that
Bs = (Bs N (Ao(r) U Ax(7))) U (Bs N (Ar(F) U As(7))),

and so we can assume without loss of generality, that |Bs N (Ay(7) U
As(7))| = 5. At this point, we allow mj to be infinity, and if this
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happens, the last statement would simply mean that Bs N (Ay(r) U
A,(7)) is infinite.

Consider four intervals located inside [0, 7] in this order:

(u17 Ul)) (u27 U?)) (u37 U3)7 (u47 U4)7

where each interval belongs to Bs N (Ag(F) U A2(7)), and uy # 0. From
now on we shall neglect the interval (0,u) € A(r), whenever it exists
at all. Obviously, such neglection doesn’t affect the asymptotic result
(55).

If 7((u1,v4)) € Do U 3y D, then by Proposition 7, (uy,vs) is covered
by at most three members of A(7), and this leads to contradiction.

Therefore there exists tg € (uy, vy) such that (tg) € Dy U0, D UO.

If 7(to) € Dy, then there must exist {y < t; < vy such that 7({;) €
0D U0, or otherwise 77 would be unable to travel from Dy to 9 ,D and
retain feasibility. Obviously, t; € [vy, u4).

Denote

ty = inf{t € [v1,uq] | 7(t) € 0,D UO}.
Since 0 ,D U0 is a closed set, 7(ty) € 0,D UO.
Now we have the following setting:
(u;) € 9,DUO,
ds € (ur,vy) 7(s) € Bs(0),
(ty) € 0,D U0,

and u; < s < {q.
By a simple geometric reasoning we obtain

(56) d(7(uq), 7(s)) + d(7(s),7(t2)) > 6.
Recall that by Proposition 6, 7(As(7)) = (0,0), and therefore by defin-

ing {7 as an infimum, we ensured that (u,s) and (s,{;) are covered
by the members of A(F) almost surely in the sense of the standard
euclidean measure.

Assume to the contrary, that ms = oo. Then we can choose arbi-
trarily large finite subset

B' C Bs N (Ao(r) U Ag(7)).

We can divide B’ into quadruples of consecutive intervals and obtain the
same result (56) for each of the quadruples. Summing up. we obtain
that for some finite collection of non-overlapping intervals {[s;, ¢;] }ier,

(57) > d(7(t), 7(s:)) > {'i—'} 5> ('lfl—| - 1) 4.

el

The right term of (57) (and therefore also the left) can be arbitrarily

large, thus contradicting the absolute continuity of 7.
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Now when we know that ms < oo, by substituting B = BsN(Aq(r)U
As()), (57) transforms into

(58) S d(#(1), 7(s)) > (% ~1) -4

el

With this result in mind, we proceed to finalize the proof.

Let a > 0. As 7 is absolutely continuous, we can choose € > 0 such
that any finite collection {(s;,1;)};cr of non-overlapping intervals with
total length below e satisfies

Z d(r(t;),m(si)) < a.

el
Denote

L = Z |U—u|.

(1) EA()

For any (u,v) € A(7) there exists § > 0 such that (u,v) € Bs. There-
fore we can choose dg in such a manner that

Z v —u| > L —e.

(u,’u)EB,;O

Consider dg > ¢ > 0. Obviously, Bs, C Bs.
We enumerate the members of Bj, according to their order on the
real line:

Bs, = {(ui, i) 1Y -

Between each two consecutive members (u;, v;) and (wiq1,vi41) of Bs,
there are m} members of Bs \ Bs,. In addition, there are m? members
of Bs\ Bs, between 0 and w;, and m;néo between the last interval of Bs,
and T. According to (58), for each ¢ there is some finite collection of
non-overlapping intervals {[s;,;]};es,, satisfying

> ) o) > (’% DK

Recall, that we chose the intervals (s;,¢;) in such a manner that they
are almost surely covered by A(r). Therefore their total length doesn’t
exceed e.

Taking sum over 7 = 0,... ,ms,, we obtain
Mg i
m

> d(F(t), 7(s;) > —2_1).4

> St > Y (- 1)

1=0
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or equivalently,

m,;o
€ > g-;m5—5(m50+1)
)
= g(ms —ms,) — d(ms, +1)
d-ms 9
= — (= 1
Bringing 4 to zero, we obtain
. ms
lim <€
50

for all € > 0. Therefore,
imd-ms =0
5—0

4.2. Definition of the rate function. Recall that in Section 2.3 we
defined the two free motions which comprise the base of our model,
and denoted them as ¢ and £. To remind, ( described the service mode
on Dy (first queue served), and ¢ described the mode on Dy (second
queue served).

The behavior of a free motion has been extensively studied, and
appropriate estimations derived. Tt will be our goal to describe the
behavior of the exhaustive service model in terms of ( and £.

In Section 4.1 we discussed the structure of a feasible path on D and
divided any such path " into pieces of different nature. Now we need to
define the rate function Z7 () in a manner that would reflect correctly
the bounds set by the Large Deviations Principle. We understand
intuitively that the total value of the rate function of ¥ over the interval
[0, T'] should be the sum of partial rate functions over smaller intervals
[u, v] which together comprise [0, 7] (up to some degree of neglection
as we will further see). We rely on our dissection of [0, 7] into A;(r)’s
to provide such collection of smaller intervals. On each of them, 7 has
a structure simple enough to allow for an easy definition of Z on it.

Remark. While in Section 4.1 we were primarilly dealing with general
feasible paths, in this section we wish to consider only paths which are
also absolutely continuous. As we noted earlier, absolutely continuous
paths are differentiable Lebesgue—a.e. [Jon93, p. 550].

We now turn to describe each set A;(7) of intervals in terms of the
good rate functions [ and J related to ¢ and ¢ respectively. The latter
reflect in turn the probability of a scaled random walk 2, to stay around
7 during the given interval of time.

Take for example, an interval (u,v) € Ag(7). As far as we are con-

cerned with (u,v), 7 travels on Dy, possibly spends some time on d, D,
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and returns back to Dy by the time v. One can observe that a random
walk Z,, which stays near 7 during the time [, v], must not cross d,D,
or otherwise the setting of the model would force it to run away to D;.
Therefore Z,, actually behaves like a scaled free motion (,, and it would
be natural to define

(59a) 77 = 127 = [ 1)

where the integral definition is valid due to the a.e. differentiability of
7. Similarly, for (u,v) € A;(r) we define

(59b) 717 = 27 = [ 1)

Now we consider an interval of another kind: (u,v) € Ay(7). During
the time [u, v], 7" stays on 0, D, and it can travel back and forth on it.
This time we observe that a random walk Zz,, which stays near 7 during
the time [u, v], may originate either on Dy or D;. In the simpler case
of Z,(u) € Dy, we observe that Z,, must stay on Dy, since the definition
of the model wouldn’t allow it to move to Dy. In this case, the cost of
moving on Dy along 7 is JY(r). On the other hand, if Z, originated on
Dy, it has just one chance to cross the boundary 9,D during the time
[u, v], and then it must continue moving on Dy. If we force the moment
of crossing d,D to be some s € [u, v], the cost of such behavior for Z,
would be

L(r) + JJ(r).

But since the moment s is not forced, and the highest probability
for 2, to stay around 7’ is reflected by the lowest cost, we need to alter
the above expression and define

Tu(7) = min {1(7) + T ("}

s€[u,v

(59¢) o {/ [C(.;f(t))dw/y l&(F,(t))dt}.

s€[u,) s

Remark. T!(F) is not local, in the sense that a change in ¥ at ¢, < ¢
such that Zj () remains unchanged, may still change T} (). See (60b)
and (61) below.

Note that whenever I}(r) and JJ(7) are finite, the minimum is at-
tained because the integral is a continuous operator and s varies over
compact set [u,v]. It turns out that in fact the minimum of (59¢) is
attained regardless of the finiteness of I and J, as we show below.

Proposition 9. Let (u,v) € Ay(F). Then there exists so € [u,v] such
that
min (305) 4 J26) = 12(7)+ T2,
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Proof. Let
it = sup{s € [u,v] ‘ I$(F) < 0o},
b = inf{s € [u,v] ‘ JY(F) < oo}

If & < 0, then any s € [u,v] satisfies either s < ¢ or s > @, and
therefore at least one of the values I5(7), J?(r) is infinite, and by (59c¢),

IZ(F) = 0.

The minimum of (59¢) is thus attained at any point s € [u,v].

Otherwise, the expression I}(7) + JY(r) is finite for any s € [7, 1],
and is infinite for any s € [u,v] \ [0,@]. Bt in this case the expression
I3(r) + JY(r) is a finite integral operator over the range s € [0,1].
Therefore it is continuous and attains a minimum over the compact set
[0, 1], as required. O

Despite its apparent naivety, the definition (59¢) successfully ad-
dresses all complications that may emerge. For example, if 7 moves
forth, back and forth as described in Figure 13, any 2, that stays
around 7 with positive probability, must travel during [s;, s3] over Dy,
because during that time the service occurs in the second queue. This
effectively restricts the crossing time s to [u, s1]. But for any s > sy, it
can be easily seen that I3(r) = oo, and the minimum operator in (59b)
effectively removes all such times from consideration.

Y

51 52 T
FIGURE 13. Graph of 7 changing direction several times
while on 9, D.

Back to the definition, we now similarly treat the collection As(r)

and define for (u,v) € As(r)
ZU(r) = min {J(F)+ IJ(r)} =

s€[u,]

(58d) — min {/ Zg(F'(t))dt+/v lc(F’(ﬂ)dt}-

s€[u,] s

The sets A4(r) and As(F) are discarded, because A4(r) is countable,
and As(r) denotes the sojouring time of 0, which comes free of charge

as it is the most probable behavior.
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Remark. While we don’t make any rigorous statements at this moment,
it is clear that the path 7 can stay at the empty state “free of charge”
only on condition of stability. The zero cost of A5(F) becomes evident,
once we recall the probability of the scaled motion Z, to stay near the
origin, as stated in Theorem 3.

As promised, we now sum up the pieces of (59) to obtain
(60a) TH= Y T
(uv) EA(T)
For all 7 which are either not absolutely continuous or not feasible, we
define
(60b) TH(7) = oo

Remark. Tt follows immediately from the definition, that any path with
finite rate function value must be feasible and absolutely continuous,
and thus a.e. differentiable.

In order to simplify some further calculations, we also define the
“local” rate function [z. Obviously, [ is not a local rate function in the
true sense of the word, because it doesn’t depend solely on 7(t) and
7'(t). Any attempt to define a true local rate function for Z would
surely fail, as it loses the required information about the past and the
future of 7, which must be retained.

Therefore, we construct the following definition:

Le(7'(2)), t € Ao(F)

Le(7'(1)), € Au(F)

[e(F'(t)), te€ (u,v) € Ay(r) and u <t < s,
where s is the minimum at (59b)

le(F'(t)), t€ (u,v) € Ay(r) and s <t < v,

(61) [At) = where s is the minimum at (59b)

le(F'(1)), te€ (u,v) € As(r) and u < t < s,
where s is the minimum at (59¢)

le(F'(t)), t€ (u,v) € As(r) and s <1 < v,
where s is the minimum at (59c¢)

0, t € Ay(r) U As(7).
The most important property of [ is that

V(u,v) € A(F) TU(F) = / ()i

I (F) = /0 ) 1#(t)dL.

This allows us to extend the definition of Z to any u,v € [0,T]:

(62) T0() = / Cla(t)dt.
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4.3. Properties of the rate function. In this section we shall show
that the function Z! defined in Section 4.2 is indeed a rate function on
the metric space D, in the sense of definition in [DZ93, p. 4]. Moreover,
we shall establish some basic properties of ZI, which will serve us later.

The first property says that the level sets of Z] are uniformly abso-
lutely continuous collections of paths. As a point of interest, its proof
demonstrates an idea of path cost comparison using an arbitrarily built
free motion. A simple lower bound (64) for Z[ (7), expressed in terms
of that motion, is provided as a corollary.

Proposition 10. (uniform absolute continuity)
Let 1 () < K, and fix ¢ > 0. Then there exists § > 0, uniform for
all 7, such that for any collection of non-overlapping intervals in [0, T

N
{[snrt, n=1,... N} with ¥ tn—s, <6

n=I1

it holds
N

> d(7 (), 7 (tn)) < €.

n=1

Proof. Consider the free motion w with the following jump directions
and rates:

(1,0) with rate Ag
(—1,0) with rate o
(63) (0,1) with rate \;
(0,—1) with rate y;

We attempt to estimate the cost of a given absolutely continuous path
7 in the terms of the motions w and (.

Define
9(d, §> = gw(g) = Xo(e”™ = 1)+ po(e™ = 1)+ A (e = 1)+ py (7 — 1)
and [, w[g accordingly. Since for any 0

pi(e™™ = 1) = pe™™ — > —p,

we conclude that

9.(0) > g¢(0) — pn
Lc(b) = sup{(6.5) — g (0)}
> sup{(0,b) — g.(0) — ju}

= sup{(0,6) — g.(0)} —

= lw@) !
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Similarly, L¢(b) > L,(b) — po and

minle(B), ()} > Lu(B) — max{uo, 1 }.
It follows from (61) that for any ¢ € [J7_, A;(7)
la(t) = min{le(7'(1)), (7 (1))} = Lu(7' (1)) — max{po, pa }-
Also, if t € A5(7), then by Proposition 6,
1) = 0 = 1, (7'(t)) — 1,(0)

almost surely. Since A4(7) is a zero set, we obtain that

La(t) > 1(r'(1)) — lw(ﬁ) — max{ o, 41} a.s.
707 > /0 LF(0)dt — T (max{pao.n} + L(0))
= LI (7) = T (max{po. i} +1.(0))

and therefore

(64) ) STEE) + T (max{po, m} + (D))

Now since IT( ) < K, we have

]T( )< K +T<maX{,Lbo,/~Ll}+l ( ))

and by Lemma 5.18 [SW95] for the free motion w, there exists &
which satisfies the requirements of the lemma for the bound K +

T (max{po, t1 } + 1,(0)).

Choose a collection A of non-overlapping intervals with total length
below 4. For each [s,¢] € N such that #(s) and 7(¢) reside on different
layers of D, choose u such that (u) € 9D and replace [s,t] with
[s,u] and [u,t]. Thus we obtain a new collection N of non-overlapping
intervals with total length below 4. By the triangle inequality for metric
d and the mentioned lemma,

> (7 < Y d(F = ) it s)| < e
[s,tleN [s,t]€N [s,{]eN
O

Corollary 11. The rate function ,IT of the free motion w defined in
(63) salisfies

TV(7) > WIL () = T (max{pe, i} + 1(0))
for any path 7 : [0,T] — D.

Proof. For the case I (F) < oo the objective is proved in the preceding
proposition in form of equation (64). On the other hand, for the case

ZT(F) = oo the objective holds trivially. O
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The next property is a rather arbitrary statement, which can be
viewed as a sort of lower bound for the rate function over small dis-
tances and time intervals. While this property will only be used in
Chapter 5, with regards to small movenets of 7 over small time in-
tervals, we still chose to present it here due to the generality of its
statement.

Proposition 12. There exist positive constants Cy, Cy and Cs, such
that for any path 7: [0,T] =D

(65)

[7(T) — 7(0)] log > —Ch|F(T) — 7(0)| — C.T — C5Z; (7).

T
|7(T) = r(0)]
Remark. The distance applied in this proposition is not the distance
on D, but rather the Euclidean distance between two points, without
regards to their respective panes.

Proof. For any 7 such that Il (¥) = oo the estimate (65) holds trivially
with any C3 > 0. Therefore we can restrict our discussion to paths
with finite rate function value. Obviously, such paths are feasible and
absolutely continuous.

In the course of the proof of Proposition 10 we showed that for a free
motion w defined in (63), a relation (64) holds.

Moreover, Lemma 5.17 [SW95] asserts that there exist constants C
and B such that

(66) VIfl 2 B L(5) = Clyllog |dl.

Although not stated explicitly, the proof of this lemma implies that
we can choose C' to be positive. We can also choose B to be larger
than 1, simply because narrowing the range of |y| will not impair the
conclusion of the lemma.

Yet another result, Lemma 5.16 [SW95], states that for an absolutely
continuous 1’

(67) JT(F) >T -, (M) :

Let us first assume, that
and (67), we obtain
I 2 ) - Tmax{uo, i}

>T-1, <w> — T'max{po, 1 }

A(T) — #(0) ‘

F(T)T;F(O) > B. Bringing together (64), (66)

— T'max{po, p1}

= —C|A(T) —7(0)| log m — T'max{ g, jt1}-
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Thus,

FT) = 7O o o = — ) — 7 bt

< B,

In the other case, namely when w

[7(T) = 7(0)] log > [7(T) = 7(0)] log %

[7(T) = (0)]
= —|F(T) - (0)|log B,

and the righthand side of the last statement is negative, because B > 1.

Note also that the constants B and C only depend on the param-
eters of the free motion w, and so do their derived constants C,, C},
(3. Therefore, the objective now follows immediately from the two
discussed cases. O

The last three propositions show together that Zj () is a rate func-
tion by proving its lower semicontinuity.

Proposition 13. Let 7 be some fized point in D, and let ¥ € D30, T
be a feasible absolutely continuous path. Then for any sequence {7, } C
D20, T with limil ¥ under the Skorohod metric,

(68) liminf ZZ (7,) > IX (7).
n—oo

Proof. Let {F,} be a sequence of paths in D%[0,T], converging to 7.
Naturally, it would suffice to consider only sequences of continuous
paths, as the non-continuous paths are not feasible, and their costs are
always infinite. Thus we can assume that {r),} converges to " under the
sup metric, which is equivalent to the Skorohod metric for continuous
functions.

Consider the splitting A(r) of [0,T], as defined in (53). It follows
from (60a), that the value of ZI'(7) is determined as a sum of ZY(r)
over (u,v) € A(r), a countable collection of intervals.

The notion of convergence to Zg (7) differs with respect to the finite-
ness of ZX'(7). If Z1 (7) < oo, then we consider ¢ > 0 and choose a finite

subset C C A(7) such that
(69a) Y TN > I (F) — e
(u,v)€C

On the other hand, for ZI(F) = oo we consider some M > 0 and
choose again a finite subset C C A(7) such that

(69b) Y T > M.
(u,v)€C

Recall, that the rate function Z?(¢) can be defined for any feasible

path ¢ as an integral of some function /7 over the interval (u,v) (see
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formulae (61)-(62)). Therefore,
. . T = > . . Y > . . [ =
(70) hgr_l}g)lfl'o (7n) > hgr_l)g)lf Z ZU(r) > Z llgglqu(T‘n).

(uw)ec (u,v)eC
Thus it would be sufficient to prove that for each (u,v) € A(7)
(71) liminf ZV(7,) > IV(7),
n— 00

and the proof of the proposition will be completed.

Let (u,v) € A(F). We proceed separately with each of the cases
where (u,v) belongs to either Ao(7), A1 (r), A2(7) or As(F).

I. Let (u,v) € Ao(r). When u £ 0 or #(u) € 0,D, i.e. the special
case mentioned at the end of (52b) doesn’t hold, we can choose a
strictly increasing sequence of points {u,, }mez such that

lim u,, =u
m——00

Iim u,, =v
m—r00

Vm €Z un € Ao(F).

It is easy to build such a sequence by induction, as we shall now see.

Choose vy € (u,v). By the definition (52b) of Ag(r), there exist
points up < vg < uy such that wug,u; € /NIO(F), and [ug, u1] lies inside
(u,v).

From this base we can build an increasing sequence {u,, } as follows:
given u,, € AO(F), we can set v, = “=” and select w4, € AO(F) in
such a manner that w,, < v, < @41, and [ty,, Uy,41] lies inside (u,v).
Note that the distance of u,,+1 from v is less than hald of the distance
between wu,, and v, so {u,, } indeed converges to v, as m goes to infinity.
Similarly, we can build the sequence {u,, } downwards, as m decreases
towards —oo.

For any m € Z,

\V/t - [um,um+1] F(t) - Do U 0yD g Do U D1 U 0yD

Since the latter is an open set, and 7 is a continuous function, it
follows that there exists § > 0 such that

Vi € [ty timgr]  d(F(1),0 DU 0) > 4.

As both 7(uy,) and (um41) lie in the open set Dy, we can safely
choose § such that it also satisfies

d(M(upm),0,D) > 6,
d(F(ums1),0,D) > 6.
Moreover, as 71, converges in sup to 7, we can find N such that
V>N, VO<t<T d(7(t),r(t)) <.

Note that for any n > N, r, can’t visit D; during the time inter-
val [ty, Upmt1], because 7, (U ), Tn(tms1) € Do, and 7, doesn’t visit
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d:D U0, so visiting D; would make 7, a non-feasible path. Therefore
P ([t Umg1]) € Do U0y D and [y, tmy1] C Ag(rh,).

In the case u = 0 and 7(u) € 0,D, it follows immediately that
mo(u) = 7,(0) € 0,D. Using the same technique as before, we obtain
the very same result, namely that for any m € Z there exists N such
that

Vn > N (U s Um1] € Ag(7).

The main conclusion of the above discussion is that starting from
that N, 7,’s belong to the domain of the free motion ¢ on Dy U d,D.
We conclude therefore that the general theory applies, and by Lemma
5.42 [SW95] the rate function of ¢ is lower-semicontinuous, which allows
us to state:

Umt1
72 liminf Z'+1(r,) = lim inf RGN
u ¢

n—00 m n—00

Um+1
> [y
= I+ (7).
Furthermore,

liminfZ!(r,) = liminf Z Tt (7

n—oo n—00
m=—00

> Iim mfI“’"“( ")

n—00
m=—00

E U«m+1 "
> Iunz r

m=—00

=Z,(n),

as required in (71). The case of (u,v) € A;(F) is treated in the same
fashion.

IT. Let (u,v) € Ay(r). Consider some subinterval [&, 9] C (u,v). As
@ > u and © < v, it follows that for any ¢ € [u,?], 7(t) € 0,D, and due
to the compactness of [, 0], the distance of 7 from 0,D U 0 attains a

minimum value v > 0 over [, 7).

Thus there exists N € N such that for all n > N, 7, doesn’t visit
0 DUO during the time [@, 9], and therefore it may cross the boundary
04D at most once during that time.

As 1, is feasible, we can denote

Spo = sup{t € [a, 0] ‘ m(t) € DO}a
Sp1 = inf{t € [u, 7] ‘ m(l) € D1}7
and they satisfy

Sn,O S Sn,l .
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Then it follows from the definition (59) that

7i() = [ o)+ [ o)
= 127 + 0 ()

for some s, € [$p,0,5n,1]-
Choose a subsequence {r,, }72, of {r,}, such that n; > N, and

(73) lim inf(Z5(7)) = lim (Z5(7, ))-

Since for each r,, the value of s,, is determined and it belongs to
a compact range [, 0], we can further choose a subsequence of {s,, }
that converges to some 5. In order to avoid a mess of subindices, we
assume that we made the choice of {7, } at the first hand in such a
manner that {s,, } converges to 3.
Then for any 6 > 0
lim (Z3(7, ) = Jim (I3 (7,) + T3, (7))

k—o0 k—

> lim (I37°(7n,) + Jiy5(7n,)

k—oo

> hl}nmf]?_‘s(f'nk) + lig(i)ng§+5(Fnk)
> I7(7) + J3s(7),

where the last inequality follows from the lower-semicontinuity of I and
J (see [SW95, Lemma 5.42]).
We can now take d to zero and obtain
: ? g > 5 0]
lim (T3(7,)) > 1) + T30
Using (73), we further obtain

(74) liminf(IZ(Fn)) > liminf(l'g(f’n)) (>) L(7) + J2(F).

n—oo n—oo

Let us elaborate a little bit on this important intermediate result.
The lefthand site of (74) is equal to the lefthand side of (71). The
righthand side involves the interval [, ©] which can be taken arbitrarily
inside (u,v), and the value § € [&, 0] which depends solely on @, ©.

Now we proceed as follows: choose sequences {u} — u, {0x} — v.
Since for any [y, 0], its appropriate value §j is confined to the compact
range [u, v], we can choose from {3;} a converging subsequence. Again,
we assume for the simplicity of notation, that {ty}, {05} were chosen at
the first hand in such a manner that {3;} converges to some sg € [u, v].

But then for any 6 > 0, for any £ large enough

liminf(Z3(7)) > FH(7) + J3(7) = 137" (7) + 05 (7):

Now we take k to infinity and obtain

lim inf(Z;/ (7)) > 137" (7) + T3, 45(7),
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and, as we already said, this holds for any 6 > 0. By taking in turn §
to zero we further obtain

S vi2 V) > S0 (7 v (=
hggglf(lu(rn)) > [2(r) + S ()
> m[in]{I;(F) + JU() }
se|u,v

= I:j(??)v

and (71) holds. The case of (u,v) € As(r) is treated in the same
fashion.
We have shown that (71) holds for any (u,v) € A(F), and thus it

now follows that

PV () PO o
]Iﬂgf(Iu(Tn)) > Z hggflfu(rn) > Z . (7)
(u,v)€C (u,w)€C
for any finite subset C of A(F). By bringing ¢ to zero, or M to infinity

in (69) we reach the required conclusion (68). O

Unlike in the continuous model, we can’t establish lower semicon-
tinuity of Z without fixing 7(0) first. Indeed, one can perhaps find a
setting of Ag, A1, po, g1 and a special path

7:[0,T] = 9,D,
such that
Jo(7) + I (F) < Ig (7) = Iy (7).
Then it could be possible to choose a sequence of paths 7, starting
on D; near 7(0) and converging to ', such that

Ty (7) & Jo(7) + 15 (7).

and the lower semicontinuity would not hold.
In the scope of this paper we don’t demonstrate any specific case,
but the reader must be aware of such possibility.

Proposition 14. Let 7 € D?*[0,T] be a feasible and not absolulely con-
tinuous path. Then for any sequence {r,} C D*[0,T] with limil 7 under
the Skorohod metric,

(75) lim Z7 (7,) = o0 = Z2 (7).

n—oo

Proof. Assume to the contrary that there exists a sequence {7, } such
that (75) is not satisfied. Then it has a subsequence {7, }?2, such that

. T/ — e
kll)rgolo (7n,) = K < 0.
Obviously, the set {Z[(r,,)}:2, is bounded by some finite constant
Ky, and therefore by Proposition 10, the sequence {r,, } is uniformly

absolutely continuous.
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Since 7, and 7 are continuous, their Skorohod distance equals to
their sup distance, and thus {7, } converges to 7 in sup metric. There-
fore, by Proposition 28, ' is absolutely continuous, contrary to the con-
ditions. This contradiction completes the proof of the proposition. [

Proposition 15. The rale function I} (7) is lower-semiconlinuous.

Proof. We need to show that for any 7 € D*[0,T], and a sequence
{Fn} € D*[0,T] which converges to ¥ under the Skorohod metric,

(76) 1&&&3(@) > IL (7).

Note that this result has already been achieved for all feasible paths
7 in Propositions 13 and 14. Thus we only need to address the non-
feasible paths in D?[0, T.

Let 7" be a non-feasible path. Then by (60b),

I () = .

Moreover, by Definition 9, there exist ¢ > 0 and N € N such that
forany n > N

(77) IF’( sup d(Zn(t),F(t)) < 6) = 0.
0<t<T ‘

As {r,} converges to r, we can choose M € N such that for any
m> M

sup d(f'm(t), F(t)) <
0<t<T

DN | o

Consider a sample path z, such that

sup d(Z,(t), Fn(t)) < =
0<t<T ' 2

By the triangle inequality,

sup d(Z,(1),7(1)) < sup {d(zn(t),fm(t)) —|—d(Fm(t),F(t))}

0<t<T 0<i<T
< sup d(Zu(1),7m(1)) + sup d(7u(t), 7 (1))
0<t<T 0<t<T '
€ + € .
STy To

and therefore

{Zn ‘ sup d(Zn(t),Fm(t)> < %} C {Zn ‘ sup d(En(t),F(t)) < e}.

0<t<T 0<t<T
By using (77) we now conclude that for any n > N and m > M
IF’( sup d(Z,(1), () < f) < IF’< sup d(Z,(1),7(1)) < e> =0,
0<t<T 2 0<t<T
and thus for any m > M, r,, is not feasible, and it satisfies

Ig(f’m) = 00.
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It is now obvious that

liminf Z7(7,,) = co = I (7),

m—r00

and (76) follows.
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5. THE LOWER BOUND

In this chapter we shall establish one part of the Large Deviations
Principle, namely the lower bound. Our ultimate goal therefore will be

Theorem 16. For every open sel G C D?[0,T]

1
(78)  liminf —logP#(%, € G) > —inf {IJ (7) | 7 € G,7(0) = 7} .
n—oo N
When comparing (78) to the general Large Deviations Principle
[SW95, 5.1(ii)], one can notice that our formulation lacks the state-
ment about the uniformity for ¥ in compact sets. A corresponding
statement on our part would assert that

(79)
1
lim_liminf —log Pz, (7, € G) > —inf {Zg (7) | 7 € G,7(0) = 7} .

Ep—E n—0 N

The uniformity holds in our model only when # € 9D, but we shall
not provide a rigorous proof in this paper. Paragraph 5.3 provides a
more in-depth discussion on this matter.

To establish Theorem 16, we shall first prove a seemingly weaker
local statement. Nevertheless, as we will see at the end of this section,
the theorem is actually its trivial conclusion.

Consider a path 7 and a small neighborhood B(7) of radius e. We
wish to establish the following “local” lower bound statement for this

neighborhood:
Proposition 17. For any ¥ € D*[0,T] and ¢ > 0

(80) lim infllog Px(Z, € B.(7)) > —I4 (7),

n—oo n,

where 7 = (0).

Remark 11. Recall that the set of paths D*[0, T] is equipped with sup
metric (see Definition 6 at the beginning of Chapter 4), and thus both
Theorem 16 and Proposition 17 are formulated in terms of the topology
induced by that metric. This contrasts with the usual formulation of
the LDP which comes in terms of Skorohod metric with all its useful
properties such as completeness and separability.

We point out that the LDP holds equivalently for Skorohod and for
sup metric. The reason for this lies in the fact that any sample path 2,
can be approximated by a piecewise-linear continuous path z,, which
lies at most % away from Z,. The LDPs for Z, and Z, are therefore
equivalent due to the exponential equivalence of the appropriate distri-
butions, and once we employ continuous sample paths, their Skorohod
distance coincides with their sup distance.

Let us elaborate on the idea behind the proof of Proposition 17.
We employ the splitting of 7 into pieces according to A(r), that was

introduced in Section 4.1.
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First, we choose a finite subset of A(7), which includes only those
intervals which are most significant in terms of their length and con-
tribution to Z (7). These subintervals cover A(F) almost completely.
Thus the entire interval [0, T'] becomes splitted into subintervals which
nearly coincide with A(7), and the transitions between them. It will
be our goal to show that the “significant” subintervals supply the bulk
of the cost of path 7, while the transitional intervals bear negligible
cost. For this purpose we will split intervals belonging to either Ay(7)
or A3(7) in two pieces, separated by another transitional interval.

The task of estimating the cost of a significant interval is rather
straightforward. During any such interval 2, can be restricted to a
single pane, and thus its probability to stay near 7 would be easily
estimated by comparison with an appropriate free motion.

On the other hand, it would be necessary to show that the total
cost of all transitional intervals is negligible. Two issues complicate
this task. First, as we refine the splitting of [0, 7], more and more
transitional intervals may emerge. Second, the sojouring time of 0 is
not covered by A(7), and thus it is always contained in the scope of
transitional intervals. Both these issues are addressed in the course of
the proof of the proposition.

The rest of this chapter is mostly dedicated to the proof of the local
lower bound, as stated in Proposition 17. Tt is divided into sections as
follows:

5.1 Small movements. The results obtained here are mostly concerned
with the mentioned transitional intervals. It is common for auxil-
iary statements to be formulated in a very cumbersome way, which
tailors them specially to the needs of a specific proof, and the re-
sults of this section are not exception to this rule. The reader
may choose to skip this section and proceeds directly to Section
5.2. Upon finishing the latter, the reader should return back to
complete the missing pieces.

5.2 The local lower bound. This section is mostly dedicated to the
proof of Proposition 17, according to the structure we outlined
above. At the end, the lower bound is proved in its canonical
form, thus completing the discussion.

5.1. Estimating small movements. In this section we will be deal-
ing with the transitional intervals, during which 7 changes its behavior.
Due to the momentary nature of such change, these intervals generally
correspond to some small movements of 7 around the point of change.
Before we proceed, let us elaborate on the meaning of a "small move-
ment”.

Let ¢ > 0. We take some § > 0, which is sufficiently smaller than e.
Since 1 is absolutely continuous, we can find some 7 > 0 such that

lu—v| <7 implies d(7(u),7(v)) <é.
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If we take some particular u,v € [0,T] which satisfy |u —v| < 7, it
follows that the entire path r|" lays inside a d-neighborhood of 7(u).
Now consider the expression

(81) ngglf%log P (5, € Bi") | d(Za(u), 7(u)) < 6).
Since ¢ is quite large relatively to 4, any sample path z, that starts
sufficiently close to 7(u), ends sufficiently close to r(v) and doesn’t
walk too far away, would stay inside the e-neighborhood of 7% (see
Figure 14).

This allows us to restrict the event in (81) to some smaller set, which
probably would be easier to estimate.

FIGURE 14. A small movement of ¥

The figure shows that under certain conditions on ¢, a sample path
Z, may look very differently from 7, and still stay in its proximity.

To begin with, we study a random walk 2, of a very specific nature.
Specifically, consider the event where 2, advances a distance of ¢ in a
time 7 solely by means of clients arrival to the first queue. This event
woud occur if we observe roughly ne arrivals to the first queue, while
the second queue and the server are stalled. In the following lemma we
treat this situation in more detail and in a more abstract manner.

Lemma 18. Let Ni(t), Na(1),..., Nu(t) be m independent Poisson
processes wilth intensities Ay, Ag, ..., Ay respectively. Let k € N and
m,e > 0. Consider the following event expressed in terms of scaled

pT'OCCSSCS.’
0. — Ni(nT) B [ne] Nz(nt) B B N, (nT) 0
o n - on n S n - '
Then
82 lim ~log P(0,) = zm:x L4 log 27
(82) Jim ~log (n)——TZ_:1 i+e(1+log =



Proof. Since the processes {N;} are independent, it follows that
P(O,) = P(Nl (nT) [ne H IF’ )

Mol 5
L
1 u | o
Elog PO, = -7 ; i + E[ne] log(AynT) — - ;logi.
The sum of logarithms can be estimated integrally:

[ne]

ne—1 ne+2
log zdx < logs < / log xdx
/ 2 el )

e
(6 — l) (log(ne—1) = 1) Zlogz < (6 + )(log(ne +2)—1)

[ne]
-1 +0(22)

- n
=1

Therefore,

1 i log n
;log P(O,) = —T; Ai + elog(AnT) + O( ) + €

n

— elog(ne) + O(loin)

_ _Tg& +e(l +log L) +O(loin),

and the conclusion follows. O

Let us now interpret the result we just obtained, as it applies to
our model. Consider a path 7 which starts at the moment 0 at some
point 7(0) € Dy, and goes at constant velocity to some other point
(1) = 7(0) + (¢,0).

Let m = 3 and let the Poisson processes Ni(t), Ny(t), N3(t) have
the intensities Ao, Ay and pg respectively. Then the event O, from
Lemma 18 corresponds to the situation where ne clients arrive to the
first queue, while no clients arrive to the second, and no service occurs.
Figure 15 shows the z-coordinate of the path 7 together with several
sample paths Z,, which belong to ©,. One can notice that the sample
paths begin at 7(0), end at r(7), and remain in the proximity of 7
during the time [0, 7].

The expression (82) provides an estimate for the probability P(0,)

in terms of time 7 and displacement e. Furthermore, the definition
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3

r:(0)

FiGure 15. A short linear path 7

(59a) allows us to compute easily the cost of i as follows:
T(7) = I3 (F) = 71:(5) = Celog =,
T T
and therefore (82) can be restated as
1
lim —logP(0,) = Cie 4+ Cor + C3I; (1),
n—o00 1
where the constants C, Cy, C5 depend only on Ao, A1, po. Now we
wish to establish an estimate of a similar form for the general case of
small movement.

Lemma 19. Let 7 : [0,7] — D be a feasible absolulely continuous
path. Then there exist posilive constants Cy, Cy and C5 such that

] Zn € BT,
(83)  liminf ~log Pru+s, ( Za(ut 1) =u+ 1)+ G

> —017' — 025 — CgIZ-I-T(T_")
provided the following conditions are met:

1. |qi| < 27.

2. |(72| < 2T.

3. there exists a feasible path from 7(u) + ¢i to F(u + 7) 4+ ¢G> which
belongs also to B.(r|“t7).

There exists a posilive § < = such thal

10
4 1qs |2l <6,
5. For any ty,13 € (uyu+ 1), d(F(t1),r(ly)) < 4.

Proof. We shall employ the following strategy. Instead of allowing 2,
to move freely under the given constraints, we tightly restrict it to
move piecewise linearly, in the fashion described by Lemma 18. More
specifically, we consider the start point 7(u) + ¢;, and the end point
(u+ 7) + ¢ of the motion Z,, and construct a piecewise linear path
from 7(u) + ¢ to r{u + 7) 4+ ¢» with each piece parallel to some axis.

Then we allow Z, to move strictly along each piece of the path in turn
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by freezing all arrival /service processes except one each time. With this
setting, we would be able to estimate the probability for z, to follow
our scheme using (82).

Our model allows for a great deal of different initial conditions.
Specifically, #(«) and (v + 7) may be located on the same pane, or
on two different panes, or perhaps even on the boundary. We will not
discuss every single possibility, but it is worth mentioning that even
in the worst-case scenario the piecewise linear path will consist of just
four pieces.

To illustrate this approach, consider the following situation: r(u) €
Dy and r(u+ 7) € Dy. By the rules of vector addition on D, 7(u) + ¢
belongs to the same pane, as r(u), and the same holds for 7(u+ 7) + .
Then the feasibility of " implies that there is some o € [u, v+ 7] which
satisfies

o) =€ d,D.

Now we construct a piecewise linear path as follows (see Figure 16):
T .
L€ Ju,u+ Z] :
Z,(t) moves from 7(u) + ¢ to (rz(u) + qiz, py,0);

Lefu+ —u+o]:
ut put ol
Z,(t) moves from (r,(u) + ¢, py,0) to p;

(84> . T 37
€ [U+§,U+Z]-

Z,(t) moves from p to (r.(u + 7) + Gow, Py, 1);
37
t e [U+T’U+T]:
Z,(t) moves from (r(u 4 7) + g2, py, 1) to 7w+ 7) + G>.

ol LA
0y F F(u + 7')
FIGURE 16. Approximation of a small movement of 7
by a linear path.

It’s easy to see that this path is indeed located inside B.(7]“*7), be-

cause the length of each single piece is at most 2§, and correspondingly,
75



the length of the entire path 2, makes is at most 84. Therefore the dis-
tance between any point of this path and (1) doesn’t exceed 10§ for
any u <t <wu-+r.

An event of having z, move along a particular piece is precisely the
one described in Lemma 18, with appropriate substitutions.

As an example, we shall treat just the first interval among the four
described in (84), to show how we deal with it. Others can be treated
similarly. For convenience, we denote the displacement of z,, as

Ay =py = (ry(u) + q1y)-
Indeed, note that the event

0 — { Z,(1) moves from r(u) + ¢ to (rz(u) + gz, py, 0), }

as t advances from v to u + i

can be equivalently described as:

{Nl (nf) _ I8 Na(n) _ Na(n]) ZO}

n n n n
where
N Pois(A1), A, >0
! Pois(p1), A, <0
Ny o~ Pois(p1), Ay >0
2 Pois(A1), A, <0
N3 ~ POiS()\0>.
By Lemma 18,

(85) lim ~P(6))

n—oo N

— (Mo + A1+ ) + Ay (1 + log 4%) ., Ay >0

—00+ M )+ 1A, (14 log £25) A, <0

and by consolidating the branches, we further obtain
min{ A, ,u1}7'>
4[A| '

Before proceeding further, we shall perform a rough estimation of the
movement of Z,. Specifically,

Ayl = [py = (ry(u) + q1y)]
< d((u) + 1, p)
< d((u) + G, 7(w)) + d(7(u), p)
< [q[ + d(7(u), p)
< 2max{27,d(r(u), p)}.
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If 1+ log % > 0, we can further obtain

1
lim —P(©,) > —i(xo + M )

Otherwise, if 27 > d(7(u), p) then |A,| < 47 and

.
- Z(/\O + A+ 1) + A <1 + log

167

min{ A,y }
16 '

in{ A
> ~T(h 4 M ) 47 (Hlogw)

= —2(/\0 + M 4 ) + 47 (1 + log

And finally, if 27 < d(7(u), p) then |A,| < 2d(F(u), p) and

- %()\0 + A ) A <1 +log —minl{lgﬁ]}v
T . . min{ Ay, p1 b7
> —Z()\o + A+ pa) + 2d(r(u), (o)) <1 + log W)
T . . min{ Ay, p; } (o — u)
> —Z()\o + A+ pa) + 2d(r(u), (o)) (1 + log N CORC) )

(Ao + M+ p1) + 2d(7(u), 7(0)) (1 + log %ﬂtﬁ)

4

+2d(r(u), (o)) log m

Note, that since (o) is located on the boundary, the notions of
d(7(u), (o)) and |F(c) — 7(u)| coincide. Therefore we can use Propo-
sition 12 to conclude that

(86)  lim ~P(6,) > —Cl7 — Cld(#(u), f(o)) — CLIZ (7).

n—oo 1

for some constants C7, C'y and C%, uniformly in 7.
Now we recall the construction we made in the beginning of the
proof. Since the requirement for 2, to move along the given piecewise

linear path was a restriction of the original event, we may state, using
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the Markov property of Z,, that
2, € BT,
Prwy+a ( Zou+7)=fut1)+ ¢
> Pruwy+a (Zn goes directly to (rz(u) + qis, py, O))
X Pry(u) 410,04 :0) (En goes directly to ﬁ)
X Pﬁ(,?n goes directly to (r.(u+ 7) + Gow, Py, 1))

X P r(utr)+a20,00:1) (Z_}L goes directly to r{u + 7) + (j’g)

Consequently,

1
lim inf — log P?*’(u)+q"1

n—oo N

Zo(u+7)=7r(u+71)+ ¢

( 571 € BE(F|Z+7)7 )

1
> lim —log Piu)+4 (En goes to (r.(u) + qiz, py, 0))

n—oo N

1
+ lim —log P, (u)+415,p,,0) (En goes to ﬁ)

n—oo T

+ lim : log Pﬁ(gn goes to (ry(u 4+ 7) + g2z, Py, 1))

n—oo 1,

.1 " . .
+ lim —log P (utr)+450,p4,1) (zn goes to r(u+ 1) + q2>.

n—oo N

Using the estimate of the form (86) for each of the terms of the
righthand side, we obtain

.1 Zn € B(r*7),

fim inf > log Pru+: ( Zo(u+7)=(u+71)+ G
> —Ch7 — Cod(7(u), /(o)) — CsTLF7(7)
> —Cy1 — Oy — C5 T (7).

Note that the righthand estimate is uniform with respect to qi, gs.
O

Corollary 20. Under the assumptions of Lemma 19, the following
conclusion holds:

ol Zy € B(T]2F7), .
(87) hgg)lfn log P ( Z(utr) = Ut ) + Zn(u) € A

> —017' — 025 — CgI:j-I-T(F),

where A is any subsel of the open ball Byyings (F(u))

5.2. Proof of the lower bound. Now it is the time to turn to the
proof of the main result of this chapter, namely the local version of the

large deviations principle, which was stated in Proposition 17.
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Let us return once again to the overview of the proof, this time with
more technicalities. We have shown that for each r, the time interval
[0, T is basically composed of intervals of various nature, namely A(r).
We attempt to single out the most significant members of A(r), whether
by their length, or by the length of the walk 7 makes during them. We
assert, that these intervals bear the significant part of ZI'(7), and the
rest is negligible. For this purpose we need to evaluate three different
situations.

First, when (u,v) € A(r) is a significant interval, we need to verify
that the behavior of 7 on (u,v) is simple enough for its cost to be
estimated using the general theory. Second, when (u,v) is a period of
time during which 7 stays near the origin, we must apply Theorem 3
to show that Z, can stay near 7 at a negligible cost during that time.
Third, we need to estimate the total cost of all transitions between the
above two states, and show once again that it is negligible.

Now let us proceed with the proof.

Proof of Proposition 17. Note that the claim (80) becomes trivial in
the case Z] () = oo. Thus we can safely consider only the paths 7
which bear finite cost, and are thus feasible and absolutely continuous.

Our first goal is to define a finite subset of A(7) which will contain
the most significant part of it. For this purpose we consider the total
length of the intervals in A(7):

L= Z lv—u| <T.

(u,v) €A(F)

Choose a > 0 and let By C A(7) be a finite collection of intervals
with total length exceeding I — . Obviously, such a collection exists,
as L is a countable sum. Furthermore, for any interval (u,v) € By, 7
doesn’t visit the origin during it. Therefore it is possible to choose a
positive § small enough such that ¥ wanders away from Bs(0) during

any interval in B;. Fix ¢ and choose a positive § < ¢/10 such that
Y(u,v) € By 3t € (u,0) d(F(1),0) > 6.
Then By C Bs, where B is defined in (54).

Let us elaborate on the above discussion. We have chosen B; in such
a manner that it contains almost all the contents of A(F) in terms of the
total length. Then we expanded it with intervals which walk far away
from the origin, and received the set Bs, which is more comfortable to
work with due to some of its known properties.

As we know from Proposition 8, Bs is finite and contains non-overlap-
ping intervals. Therefore its members have a natural order on the real
line. Consider the collection of all endpoints of B; together with {0, 7T'}.
This collection is finite, and it can be enumerated as follows:

O=u <uy <...<Up < Upqr =1T.
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Fach interval (u;,u;41) either belongs to Bs, or constitutes a gap
between two members (u;—1,u;) and (u;q1, uq2) of Bs. Of course, the
leftmost interval (us,uy) and the rightmost interval (t,,, ty,41) may
stay out of Bs and have just one neighbor in Bs, but this exception is
not critical for the further discussion.

Note also that since for all « = 2,... ,;m wu; 1s an endpoint of some
member of Bs, one can immediately see that

m — 1 < 2|Bs]
(88) m < 2mgs + 1,

where ms is defined in Lemma 8.

Our next step is a bit complicated. We decompose the interval [0, T']
into pieces by cutting it at the points w; & 7, where 7 is some small
increment which accomodates the transition state (see Figure 17). At
each point u; + 7 we force z,(u; + 7) into a position ¢ which is close
enough to 7(u; + 7). This setting leaves us with intervals of the form
(wi—1+7,u;+7), where any such interval incorporates the range (u;—1+
7,u; — 7) of homogeneous behavior and the range (u; — 7,u; + 7) of
transitional behavior. Our choice of 7 and ¢; is quite artificial, and it
is dictated purely by technical reasons.

0 Uy + T Uz + 7 T
F \J/ \¢ | | | | W
t T T T ™ T J
U1 U9 Uz Ug Um Um41

FIGURE 17. The decomposition of [0, T] by Bs.

Referring back to the explanation we provided right after the for-
mulation of the proposition, the reader can already see the splitting of
[0, T] into pieces. Indeed, the time axis is almost entirely covered by
intervals of Bs, with small “gaps” remaining between them. One can
guess from Figure 17, that there are two kinds of transition intervals:
27-long ones, like near uy, and larger intervals like (usz, uq). As 7 and &
vanish, the set Bjs covers larger and larger parts of A(F), and the tran-
sitional intervals of both kinds become smaller. Consequently, as we
seen in Corollary 20, the cost of staying in e-neighborhood of 7 during
a single transitional interval become smaller and eventually vanishes.
With some extra work, we shall see at the end of the proof that the
total cost of all such transitions vanishes too, despite their increasing
number.

Recall that due to the absolute continuity of 7, we can find 7/ > 0
such that for any u,v € [0, 7]

(89) lu—v| <7 implies  d(F(u),(v)) < 4.
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For each 2 =1,... ,m let

0 T« u2 — Uy U — Ugy U1 — Um
90 = .. )
) remn{f TS mm mot e |

Define also

Mui +7) 4+ (1,7,0),  (uisuigr) € Bs N (Ao(r) U Ay(7))
G = Qi+ 1)+ (7,7, 1), (ui,uipa) € Bs 0 (A () U As(7)
(i 4+ 7), (ui,uit1) € Bs.

Now the probability in (80) can be estimated as follows:

Pf(gn c BC(F)>

Z, € B.(7) and
ZR’(O)(Zn(uﬁ-T):cj}forallz’:l,... ,m)

Z, € B.(FIgt7) and Z,(uy + 7) = 1,
o | Bt ma s -
— A0 foralli=1,....m
Zn € Be ( et r)

= Pxo (zn € B.(7 u1+7) and Z,(u; + 7) = (ﬁ)

X H[Pq*i_ (Zn € B. (
=2

XPQ‘ (ZHEB< Um -I-T))
We shall denote the terms of the righthand side as Py, Py, ..., P!,

Pr. ., respectively, and using this notation, the last equatlon takes the
form

b

S and 2w+ 7) = )

Pf(zn € BE(F)> > ProPr PR
Furthermore,
1 m+1
ool > 1 n
(91) 117{I_1>(1)£1f - log Pz (zn € B.( ) Z hgr_l)(l)glf - log P7.

Now it is our goal to estimate the expression

lim inf ! log P;*
n—oo M
foreach:=1,2,... ,m+ 1.
We shall first consider the regular cases, i.e. © = 2,... ,m, and then
the two extreme cases 1 = 1,m + 1. For this purpose we first consider
three different cases, depending on the nature of an interval (u;_1,u;)

corresponding to P?.
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I Let (wi—1,u;) € Bs N (Ao(r) U A (). Obviously, Ag(r) and A;(7)
are treated in a similar way, so without loss of generality we may con-
sider only the possibility (u;—1,u;) € Bs N Ao(F).

P! is defined over the interval (u;_; 4+ 7, u; + 7). Consider the subin-
terval (ui—1 + 7,u; — 7). On this interval 7(¢) is generally located on
Do N0 yD, while in the case of ¥ € 0, D, as addressed in (52b), it can
also reside on 0,D at the beginning If we translate r by (1,7 0) the

(see Figure 18). Furthermore, the 7- nelghborhood of the translated
path would be located entirely in Dy, and so the probability of Z,
being inside it could be estimated by the general theory.

~ eneighborhood

- 7-neighborhood

FIGURE 18. The case (uij—1,u;) € Ao(7).

More specifically,

ZZ+1T+T) and Z,(u; + 7) (Z)

ZP*_( 5 € BTy, + (7,7, 0)), )

h Z, € Be(ry: T) and zn(uZ +7)=¢q

+(r,7,0))

d( an?zéu_—T)T) + (7,7,0) > < T) '
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Pr =P, (zneB(

- Pi"(m 1+7)+(7,7,0 (
z+7>’

T

Zy € B(T
P
Zo(ui+7) =G




Consequently,

92) lim infllo Pr
g Fi

n—oo N

1 :
> liminf — log Pf"(ui—l +7)+(7,7,0) ('gﬂ € BT(F Zz__:-+7 + (7-7 T, 0)))

n—oo 1
<5n € B.(7]

U;—T

N wsr);
+ liminf — log P ’

n—oo N

—

Zo(u;+7)=¢

d ( 5"%; _T>T’) T (r,7,0) ) < T)'

Since any z, € B, (r],:=7,, + (7,7,0)) is located on Dy, z, can be
coupled with the free motion (,, and the first term of the righthand side
of (92) can be estimated using the general Large Deviations Principle

[SW95, 5.1(ii)]:

|
(93) Tliminf —log Priu,_, +7)+(r.r0) (5n € B (7

n—oo 1

T+ (1m0))
> -1y (F+ (7,7,0))

Ui —1+T
= — 17 (F) = =L 77 (7).

Note, that the first equality is due to the fact that Ao, Ay and g are
fixed over Dy, and thus a translation of a path doesn’t change its cost.

The second term of the righthand side of (92) deals with the behavior
of Z,, during the transition state (u; — 7, u; + 7). Therefore we will have
to estimate it by means of Corollary 20 of Lemma 19. Let us verify the
conditions of Lemma 19.

1. The vector qy, as referred in Lemma 19, denotes the displacement
between 7(u; — 7) and Z,(u; — 7), for any sample path 2, which
satisfies the conditional part of the probability expression. Thus,

|| = d(f’(ui —7), Zn(u; — 7'))
< d(f’(ui — 1), — 1)+ (7,7, 0))
+ d(f’(ui —7)+ (7,7,0), Z, (u; — 'r))
< T\/§+ T < 4.

2. The vector ¢, denotes the displacement between 7(u; + 7) and
Zp(u; + 7) accordingly, so

1G] = d(Fwi + 7), Zului + 7)) = |(7,7,0)] = 72 < 47,

3. The existence of the appropriate feasible path is illustrated by
Figure 19. Obviously, only one among several possible situations
is shown, but the other possibilities can be treated similarly. We
leave it as an exercise to the reader to verify that the shown fea-
sible path does belong to B.(r|i¥7).
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-:\----———>oz_'n(ui-|—7')
\

\\\\. m(ui + 7)

FiGURE 19. The transitional interval (u; — 7, u; + 7).

4. As 7 < %, and |¢1], |¢2| < 47, this condition holds immediately.

5. Any t1,ty € (u; — 7,u; + 7) satisfy [t; — {2 < 27 < 7/, and thus

The desired estimate now follows, and it takes the form

Zn(u; — 1),
d( u; — 1)+ (7,7,0) > <T>
> —Ch 21 — Ch — Cqui-l-T(F).

Therefore, (92) together with (93), (94) implies

(94)

1 winy,
liminf —log P ' z

n—oo N

—

Zo(ui+7) =G

(ae&w

(95)
1 , .
lim inf —log Pl > —TY7, (7) — C, - 27 — Cy6 — C5T 47 (7)
n—oo N
= _TUHT () = 20,7 — Cy6 — (Cs — DNIUFT(7),

IT. Let (wi—1,u;) € BsN (Aa(r) U As(r)). Without loss of generality
we assume this time that (wi_1,u;) € Bs N As(7F).

Recall the definition of I;‘Z_l(F) in (59d) and let s € [u;_1,u;] be
some point at which the expression in (59d) attains its minimum, with
respect to the interval (w;_q,u;).

While discussing the definition, we already noticed that during the
time (u;—1,u;) a sample path Z, which stays near 7, may move once
from Dp to Dy by crossing 9 ,D. We wish to select s; in order to define
a transition state around it, but we don’t want it to interfere with the
transition states at the beginning and the end of (u;_1,u;), in case s is
too close to one of them.

Therefore we define (see Figure 20

)
wi—y + 37, s € [uj—1,ui—1 + 37)
S; = s, s € [uj—y + 37, u; — 37]
u; — 37, s € (u; — 37, u4].
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U;_q Uiy + 3T u; — 3T U,

FIGURE 20. The definition of s;.

Like we did in part I, we restrict the “habitat” of allowed sample
paths 2, to force them to stay in the interior of some pane most of
time, by restricting the transitional intervals. Specifically, we define

p= T_"(SZ' + 7') = (7', T,O),

and state
(96)
Pr=P;_, (zn € B(FlyitT, ) and Z,(u; + 1) = Cf)
Z, € B ( le_z-ﬂ-ﬂ' (T’ 7, 1))
> Py, Zn € Be(rl517) and Zu(si +7) = 7,
Zn € B-(r557 + (7,7,0)),
Z, € B.(7 ZJ_’Z) and Z,(u; + 7) = ¢
=Py, (5 € BT + (17 1)
Zn € B(T :fi), Z(si — )
% ]P) i d ’)’L_‘Z bl <
(znsz—l—T ) =7 < r(si_7)+(77771)> '
X Pp(zn € B 1:1-|-:- + (Ta 7_70))>

Zn € B ( u; —7-)’ Z"n<u2 _ 7_>’
P(Zn(uz—l_’r):q_; d( F(ui_7)+<T,T,O)> <T>

As one can see from (96), we want 2, to stay near 7+ (7,7,1) during
the time (u;—147, s,—7), and this also implies staying on D; during that
time. The next interval (s; — 7,s; + 7) is a transitional interval, when
Z, moves from Dj to Dy, and then it stays on Dy near '+ (7,7,0). The
last transitional interval is (u; — 7, u; + 7). This approach is illustrated
by Figure 21.
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e-neighborhood
© m-neighborhood

\/ B (’Ta Ty 0') : ﬁ <F+(T’T71) ,,,,,, @—1

FiGure 21. The case (uj_1,u;) € As(7).

Now, the first and the third probability expressions in the righthand
side of (96) can be bounded as follows:

(97) lim 1nf—log Py 1(2,1 € B.(7];

n—oo

+(r.71))
—Ji:-_;r(?“ + (7,7,1)) = =377 (7)),
z:: +(r,7,0)))

— G (P (7,7,0) = =157 ().

The second and the forth expressions in the righthand side of (96)
can be bounded using Lemma 19, like we did in part I. The conditions
of the Lemma are verified in a similar fashion, and we obtain

hmlnf—log[F’ (zn € B.(F

n—o0

(98)
Zn € B ( L+T> En(5¢ - T)?
im nf - log P ( Zi(sit7) = d( Fsi—7) + (., 1)) =7
’U.L+T)

n € B
lim mf log PP <Z (¥

nTee n Zo(ui+7) =G

d<5”55<2f T+ ) ) ) )

2 —01 . 2’7' —_ 025 —_ 031';?1-;(7)
Putting (96), (97) and (98) together, we further obtain

lim mf— log P! > —J;i” 1T_|_T(F) — Oy - 21 — Cy8 — C3T5EI(7)

n—oo N S
_T +; L(F) — 40, — 20,6

= (Cs = (T3 + ZiE(7).

ITI. Let (w;—1,u;) € Bs. In this case it follows from the definition
(54) of Bs, that

Vit € (wimr,us)  d(F(1), (0,0)) < 8.



As we know, once at the origin, the most probable behavior of z, is to
stay near the origin, and this can be achieved at a zero cost. Therefore,
we seek to restrict Z, to some small neighborhood of (0, 0).

We shall consider two cases.

a. Assume, that ¥ doesn’t visit the origin during the time (u;—y +
T,u; — T), le.

{t € (wicy +7yu; —7) | 7(1) =0} =0.
Note that the interval (u,_; + 7,u; — 7) is entirely covered by intervals
in A(r) \ Bs.
We apply Lemma 19 to the entire interval (u;_q + 7, u;+7) and obtain
1
(100) liminf—log P’

n—oco N
1 .
= liminf —log Py _, (En € B(Flyt7.) and Z,(u; + 1) = (j;)
n—oco 1
> —Cr- (uﬁ - Ui—l) — (20 — 03117;:7-}-7(7?)
= —Iuﬁ-T (F) - Cl . (u¢ - Ui_1> - CQ(S - (03 - 1)qu‘+7' (F)

U;—1+7T U;—1+7T

b. If 7 does visit the origin during the time (w;_y + 7,u; — 7), then
we can define

s =inf{t € (wmy +1u; —7) | F(1) = 6},
siz = sup{t € (uj—1 + 7,u; — 7) | 7(t) = 6}
Like we noted in the previous case, the intervals (u;—q + 7,s;1) and
(812, ui — 7) are entirely covered by A(7) \ Bs.
By the continuity of 7, (s;i1) = r(si2) = 0. This time we denote
(u;—1 + 7,8;1) and (s;2,u; + 7) as transitional intervals for the purpose
of application of Lemma 19, and write

Pr =P (5 € B

sz'f_l_T) and Z,(u; + 7) = (j;)

5’7’1, E BE(FZ:1_1+T> and 571(821) = 6’
> Py, Z, € B.(0]2?),
Zp € B(7|5F7) and Z,(ui 4+ 7) = q;
(101) . " . S
= Ptfi—l (Zn € BE('[- "S‘Zi1—1+7) and Zn(sﬂ) = 0)

X Pﬁ(gn € BT(ﬁ
(aeﬁﬁ
P

Siz)
Si1

ui-|-7'>’

Si2

ﬂa@m®<7).

It readily follows from (12b), that the initial condition Z.(s;1) = 0
implies
Vi>sn Zao(t) = 0.
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Moreover, by Theorem 3

1> Py (%, € B(0))
> ]P’a(s s d(Z,(1),0) < )

>1 - C{e“”oé(T),

for some C{ and C}(d), as appropriate. Therefore,

1) =0

The first and the third term of the righthand side of (101) are

bounded in the usual manner:

(102) lim mf— log P <En € B.(0

n—oo N

(103) lim 1nf—10g P;, 1(7;” € B.(75", 4;) and Z,(si1) = 6)

n—soo N Ui —1+7T

> —Cy-(si — (i1 + 7)) — C20 — Csz{j” 1+T(F)

Zn, € B.(r; ), . o
lim mf log P Lo d(Z(si2),0) < T
nee m Zn(ui + T) =

> —Ch - (ui + 7 = siz) — Cad — C3T 547 (7).
Putting (101), (102) and (103) together, we obtain this time
(104)
1i7£r_1>i£1f%10g Pl > —Ch - (si— (uimy + 7)) — Cob — CI3 ()
—Cy - (Ui + 7 — siz) — Ca0 — C5T47(7)
> —Ci((wi — wimr) — (8i2 — si1)) — 2056
AT o (7) 4 T (7)) — T2 (9

U;—1+7T Si1

— T () — Ch((ui — wimq) — (si2 — si1)) — 2056

U;—1+T
—(Cs = D(IEL, 4+ (7) + T3 (7).
IV. We have yet to deal with the two extreme cases P and P}, ;.

Regarding Py, we can note that its underlying interval is of length
7, and therefore it can be estimated directly using Proposition 19:

(105) hmlnf—log Pl > —Cit — C20 — C3IJ (7).

n—oo
The case of P} | seems to be a bit more complicated, but in fact it can
be related to one of the already treated cases I-111, depending on where
the underlying interval (um, T) belongs to. VVithout going into details,
we only notice that PJ ., is defined over the interval (tm 4+ Ty tm1),
and therefore its estimate would be similar to one like e.g. (95) or (99),
with I(u)'H( ) replaced with I(“;"( ), as appropriate, and 27 perhaps

replaced with 7.
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It is time now to finalize the proof. As we stated in (91), the desired
lower bound for the expression

liminf - log P+(Z, € B.())

n—oo 1

can be expressed as a sum of similar expressions involving Py, Pr,
...y Pr.y. The latter have been discussed in various situations, as
described in cases I-IV, and the appropriate bounds (95), (99), (100),
(104) and (105) were obtained.

Note that the constants (', (5 and (3 involved in all of them are
the same, since by Lemma 19 they are fixed for any fixed path r.

It has only left to sum up the particular bounds for P} to obtain the
total lower bound. Let us do that carefully step by step:

1. Each bound contains a term of either the form —C56 or —2C%4.
Since (' is positive, we can safely bound the sum of m + 1 such
terms by —2(m 4 1)C3d from below.

2. Fach of the bounds for Pg, ... ,P? contains the term —Z 7 _(7),

Ui —1+T
and the bounds for P and P}, contain the terms —ZJ(r) and
_IuTm+T(F> respectively. As we noted in (62), Z is an integral oper-

ator, additive with respect to the domain of integration. Therefore

the sum of these terms constitutes —Z (7).

3. In each of the cases I-IIT we defined the transitional intervals, as
appropriate for each particular case. For convenience we shall
define ¥V to be the collection of all transitional intervals. Each
transitional interval (u,v) is reflected in a bound of some P! in

the form —(C5 — 1)ZY(7) and in the form —C4(v — u).
It now follows from (91), that

o 4 ;
(106) h;gglfglog Pf(zn = Be(r)>
> Iy () = 2m+1)C26 = (C5— 1) Y IUH = Cr Y (v—u).

(u,v)€V (u,v)€V
Let us examine the contents of V in detail:

1. The case I defines a transitional interval of the form (u; —7, u;+7),
with length 27.

2. The case II defines two intervals (s; — 7,s;+7) and (u; — 7, u; + 7)
with total length 47.

3. The case II1a defines an interval (u;— +7,u; +7), of which (u;_1+
T,u; — 7) is covered by A(7) \ Bs, and the remaining part (u; —
7,u; + 7) has length 27.

4. The case IIIb defines two intervals (u;—y + 7,;1) and (s;2,u; + 7)
of which (u;—1 4+ 7,5;1) and (s;2,u; — 7) are covered by A(F) \ Bs,
and the remaining part (u; — 7,u; + 7) has again length 27.

Recall that Bs was chosen in such a manner, that the total length of

intervals in A(7)\ Bs would not exceed o. Besides that, the contribution
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of each case to the total length of the collection V doesn’t exceed 47.
Thus the total length of ¥V doesn’t exceed o + 47m, and thus

-4 Z (v—u)>—Ci(a+4rm).
(uv)€V
Furthermore, consider the union of all transitional intervals
V= U(u, v).
Vv
Obviously,
T
Y T = / Ly l#(t)dt,
(u,w)€V 0
where [z is defined in (61). Note that the set V' depends on «, ¢ and
7. Every function of a kind 1y/#(¢) is dominated by [#(t), and the
Lebesgue integral of [#(¢) exists and is finite. We intend to show that,
as a, 0 and 7 tend to zero,
lim1ylxt) =0 a.s. in [0,7].

Indeed, any ¢ € U?_jA;(), except the countable number of points of
crossing in Ay(7) or As(r), satisfies

7(t) # 0.
Therefore for some § and 7 sufficiently small, 7(¢) would belong to some
interval (u,v) € Bs, and the distance of ¢ from either u or v will be

larger than 7. When it happens, { would not belong to V', and it will
satisfy

1ylx(t)=0-1x(t) = 0.
On the contrary, for any ¢ € As(7) trivially
1yls(t) =1y -0=0.
Thus by the Lebesgue dominated convergence theorem,
T
Jim (u%:evzu(r) = /0 0dt = 0.

Now we shall see that except for ZJ (7), the remaining terms of the
righthand side of (106) converge to zero, as «, § and 7 vanish. Indeed,

by Lemma 8,
limdm < limé§(2ms + 1) = 0.
5—0 5§—0
Therefore,
02 fim (<01 3 (w=w) 2 lim (Cetmd)) =0,

(u,v)€V

lim (=2(m +1)C26) = 0.

a,8,7—=0
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The objective (80) now follows from (106) by bringing «, ¢ and 7 to

ZeTo. ]

Proof of Theorem 16. Once we have in possession the claim of Propo-
sition 17, the theorem becomes its trivial consequence.

Indeed, let 7 € G such that #(0) = Z. Since G is open, there exists
e>0 Such that B.(r) C (. Therefore by Proposition 17,

hmlnf—log[F’ 2, € G) > hmlnf—logIF’ (2, € B.(7)) > =TI (7).

n—oo 1,

As the above relation holds for all 7 in G with r(0) = Z, the statement
(78) follows immediately. O

5.3. A note on the uniformity of lower bound. In the context of
the Large Deviations, the uniformity of (78) in # actually means that

lim lim mf—logIF’ A7, € G) > —inf{Z; (F) | 7 € G,7(0) = 7} .

y—)x n—o0o

Since the general theory addresses such uniformity, we can easily
conclude that for any # laying in the interior of either pane, there is
also some small open neighborhood of # laying in the same pane, and
thus (79) follows from the general theory without complications.

For the case ¥ € dD the uniformity may sometimes not hold. The
appropriate counterexample may be derived from the discussion which
followed Proposition 13. Recall that there was considered the setting
of ¥ € 0D and a path 7 which starts at © and runs along 9,D for
some time. Then for a small neighborhood G of 7 it held

mf{IT |q€Gq —J:}NI
hmhmmf—log[P (zn € G) ~ Sy (7 )+[T( ),
y—)x n—oo

and the uniformity statement (79) fails.
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6. THE UPPER BOUND

This chapter concludes the proof of the Large Deviations Principle
by establishing the upper bound.

6.1. The local upper bound. Like we did in Chapter 5, we will
first establish some sort of local upper bound. We seek to prove the
following statement:

Proposition 21. For any 7 € D*[0,T],

(107) lim sup lim sup 1 log Pg(gn € EE('F')) < —Ig(f'),

e—0 n—oo N
where @ = 7(0).

The proof of Proposition 21 will basically follow the same scheme
that was applied in the proof of the local lower bound (Proposition
17). We consider an interval from, say, Ay(7). For small ¢, any sample
path Z,(¢) which belongs to the e-neighborhood of i on that interval,
would be confined to the pane Dy, except, possibly, for some small time
near the ends of the interval. Thus we would be able to couple 2, with
(n, and estimate its probability to stay near 7 in terms of the general
theory.

In this manner we will show that for each interval in A(r), as ¢
tends to zero, the probability for Z, to stay in e-neighborhood during
that interval becomes closer related to the cost of the interval. Besides
that, for the parts of [0, 7] which are not covered by A(7), the relevant
probabilities are simply bounded by 1, which naturally corresponds to
zero cost.

Proof. Let ¥ € D*[0,T]. If 7 is not feasible, then there exists ¢ > 0
such that

Ps(20 € Bul)) =0

for arbitrarily large n. In this case,

1 —
lim sup lim sup — log Pg(,?n € BE(F)>
e—0 n—oo 1
1
< lim sup — log Pg(i’n € BQE(F)> = —o0,
n—oo 1
and (107) trivially holds. Therefore it suffices to consider only the case
of a feasible path 7.
Now let i € D*[0,T] be a feasible path. Recall that A(7), as defined
in the section 4.1, is the collection of all intervals inside [0, T], during

which 7 somehow leaves the origin.
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Fix some a > 0 and let C, be the set of intervals in A(7), defined as
follows:

(108)
C, = {(u,v) € Ao(7) U A, (7) | 3t € (u,v): (1) > a,ry(t) > a}

U {(1,0) € A7) U AS(7) | 31 € (w,0)  d(7(2),(0,0)) >}

In other words, we choose from Ag(r) and A;(r) the intervals at
which 7 travels at least a away from both boundaries; and from A,(7)
and As(r) we choose such intervals, that i travels on them « away from
the origin.

Note once again, that we don’t consider the case of ¥ € D men-
tioned in the definition (52b) of Ag(7). Its treatment differs from the
general case in a negligible way.

The definition of C, implies, that C, C B,, and therefore by Lemma
8, C, is a finite set. For convenience, we enumerate the members of C,
in the increasing order:

Co = {(uiavi)}le’

0<uyi<vi<uy<v<...<up<vp <T.

Choose any positive € < a, and consider the expression
Pa(zn c R(F)).
By the Markov property, for any 7 € B.(7(vi))

Ps(2. € Bu(7) and Z,(01) = 7)



Proceeding further, we obtain in a similar fashion

Furthermore,
1 - 5>) —
— log Pg(zn € Bc(r))
n
& 1
< —1 P<—’n Fc P _’n 1) — _’>7
<Y s sioeP(5 B Blu) =7
and thus

1 —
(109) limsup — log Pg(é’n € BE(F)>
n—oo 1
: 1
< limsup Z sup  —logP (2'_'” € B(7

noeo ST #Be(7(w) 1

1) | Falw) = &)

).

Note that the lefthand side of (109) closely resembles the one of the
objective (107). Thus in order to prove the objective it would be useful
to obtain a separate upper bound for each term of the righthand side

1

=1 " #eB(f(u))

]y

) | Zn(ui) =

logIF’(Zn e B.(7

of (109). For this purpose we consider two principally different cases:
I. Let (u,v) € CoNA; (7). The obvious approach in this case would be
to show that Zj, behaves almost like £, during the interval (u,v). Since
the points 7(u) and 7(v) normally lie on the boundary, we will have to
take some subinterval (@, ?) of (u,v) in order to eliminate irregularities
at the endpoints. This would allow us to claim that z, stays near 7
during the interval (&, ), and also remains on the pane Dy throughout
that time. Using the coupling, we would be able to restate the problem
for the free motion &, instead of Z,, and then apply the tools provided

by the general theory.
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Let us now carry this out in detail. Define a subinterval (a,0) C
(u,v) as follows:

U= inf{t € (u,v): ry(t) > a, ry(t) > a},
0= sup{t € (u,v): ru(t) > a, ry(t) > a}.

The definition (108) of C, ensures that @ and © both exist and satisfy
it < 0. Note also that the case (u,v) € C. N Ay(r) is similar to the one
we consider, and thus it will not be considered separately.

We intend to establish an upper bound for the expression

limsup  sup llogIF’(?n € B.(7") ‘ Zn(u) = ;E')

n=00 #eBe(A(u) !

Obviously, an application of the Markov property gives us once again

(110) mpP@ﬁEﬁW‘M@:@
#EB(7(u))
< swp P(ZeBY | Z() = 7).
FEB.(7(11))
Let € B.(7(1)), and let Z, be a sample path satisfying
Zn(0) = 2,
7, € Be(73)-

Note that our choice of @ and ¢ implies that z,(@) and Z,(0) both
belong to Dy. Indeed, one can see that both (@) and 7(0) are at least
a away from the boundary 0D, and Z,(@) and Z,(?) are at most € away
from (@) and 7(0) respectively.

Moreover, since 7 is feasible, its x-coordinate must not decrease dur-
ing the time [u,?]. Therefore, Z, may not touch the boundary d,D
during that time, and thus it lies entirely on Dy (see Figure 22). Now

Z, can be coupled with the free motion &, on [&, ¥], and the following
equality holds:

(HUP@&Fﬁ@‘M@:@

_ o [ maxacecs|[a(t) = ()] < e, R
_P< Va<t<o Enylt) >0 ‘ ”(“>_$>'

The last expression contains the initial condition £, (%) = Z. In order
to bring it to the form suitable for application of the LDP for the free
motion £, we need to devise some path which also starts at 7. We use
for this purpose the original path 7, with appropriate translation on the
plane (see Figure 23). Since we discuss the motion £, the translated
path can be viewed in the realm of the Euclidean space R% In partic-
ular, there will be nothing wrong if it deviates from the 1st quadrant.

It is also worth noting that the translated path bears the same cost as
95



FiGUuRrE 22. The e-neighborhood of the path 7(t).

the original, due to the fact that the generator of ¢ is constant across

the plane.

N

T

FIGURE 23. The translated path 717 and its 2e-neighborhood.

Define the translated path 71y as follows:
() = 7t + ),

fu(t) = 71(l) + (7 = 71(0)).

Then

maxacicn|€n(t) — (1) < e, S
(112) P ( Vi<t <o Ey(t) > ‘ (W) = x)

o

< P(é??é;‘g”(t) r(t)| <e ‘ En(t) = :E')
_ P;(tr%_ﬁ‘fn(t) — ()] < e)



Moreover, for any ¢t < v — u, if ‘fn(t) -7 (t)‘ <'e, then

< |&alt) = 71 (1)] + |7(a) — &

and thus
(113)
— - (111),(112)
P(Z e B | Zali)=7) < Pe sup [6a(t) = ()] < )
t<0—1

< Pf( sup~‘§n(t) — fll(t)‘ < 26).

t<v—1

But since the generator of £, is constant across the entire plane, the
last expression doesn’t depend on Z, and thus one can take

Z=r(a), r(t)=r(t)

to get

Ing( sup [£,(1) — Fpi(t)] < 26>

t<i—ii

= ]P’;l(o)< sup ‘fn(t) — Fl(t)‘ < 26).

t<v—1u

Furthermore, using (113) we obtain

(114)  sup P(En € B(7I) | Zu() = :z)
#€B. (1)

< P sop [60(0) =71 (0)] < 2),

t<B—ii

and

1 _
limsup sup —10gP(5n € B.(ry) ‘ Zn(u) = f)
n=0o FeB((u)) 1t

(110) 1 .

< limsup sup —10gP<5n € B(73) ‘ Zn(t) = f)
n—eo FeB.((i)) !
(114) ]
< limsup — log IP,:l(O)( sup ‘fn(t) — fl(t)‘ < 26).
t<i—it

n—oo 1
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We can now apply the Large Deviation Principle [SW95, Thm 5.1(i)]
to &, and obtain

1
(115) lim sup - log P;l(o) (til}p~‘fn(t) — 7 (t)‘ < 26)

n—oo

< —inf{J77H@ : sup 1) — Fa(1)] < 26, §(0) = 71(0) ]

t<v—1

= —inf{JU@)  swp |q() = 7] < 26, (i) = (i)},
a<t<d
where J is the rate function associated with the free motion ¢ (see
section 2.3). The desired estimate thus takes the form

1 _
(116) limsup sup —logP(En € B.(7];) ‘ Zn(u) = 37)

n=e0 ZEB(7(u) !
< —inf{JU@ : sup (1) — 70| < 26, 3(7) = 7(@) }.
a<t<y

IT. Let (u,v) € Co N A3(rF). Once again, we consider some sample
path z,. We wish to confine it to a single pane, in order to be able
to perform estimation through coupling with a free motion. Unlike in
the previous case, this time we face some uncertainity regarding the
exact moment at which Z, touches the boundary d,D and passes from
Dy to Dy. We deal with this uncertainity by splitting (u, v) into small
subintervals and considering separately each case where Z,, touches the
boundary d,D within some specific small interval. This approach al-
lows us to confine 2, to some pane most of the time, with uncertainities
only near the endpoints of (u,v) and within the specific subinterval.
Besides that, the reasoning and the resulting estimate heavily resemble
what we have seen in case 1.

We choose (@,9) C (u,v) to be the largest possible subinterval of
(u,v) such that

Vi€ (a,0) ri(t) > o
Again, the definition (108) of C, ensures that (@,?) exists and is
non-empty. Note that in Figure 24 v and v coincide, but this need not
always be the case.

I
I
I
[ _ - .
RS LT __ Zﬁ:(é)
. I [P, I 1
. ~ | I I ~
U U ST - - v, v

FIGURE 24. A sample path Z,(¢) near the path 7(t).
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As in case 1,

(117) sup ]P’(En € EE(HZ) ‘ Zn(u) = a_c')
FEBe((u))
< sup P(Zm € ﬁe(ﬂg) ‘ 5n<a> = f)
FEB((@))

Consider 7 € B.(7()) and a sample path Z, such that

Z, € B.(71}),

Zp(0) = .

Since the distance between () and the origin exceeds ¢, it is clear
that Z, can’t arrive to the y-axis during the time (@, ?). Therefore
Z, may touch the z-axis at most once during that time, and then it
will move from D; to Dy. For the sake of simplicity we shall say that
Z, “touches” the z-axis at the moment %, when in fact it stays at Dy
all the time, and subsequently we shall also say that Z, touches the
x-axis at the moment v, when in fact it stays at D;. One can easily
check that such “cheating” would not affect either the reasoning or the
conclusions.

Let m = {t =wy < wy; < wy <...<wWp_y < wy, =0} be a finite
partition of (@, ?) with some small diameter. The above discussion
allows us to state, that

(118) P(2 € B(7)) | 2u(i) = 7)

Zy(0) =

m - /=5 - .
< ZP ( Z, € B.(7]%), Z, crosses the z-axis
=1

at a moment s € [wi_l,wi]

=11
~

Consider now the expression

P Zn € B.(7]}), Z, crosses the z-axis
at a moment s € [wi_l, wi]

mm:a

for some specific interval [w;_;, w;]. Each sample path Z, that satisfies
such conditions, obviously stays on D; at the time (@, w;_1), and stays

on Dy at the time (w;, ). Therefore, we obtain using the Markov
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property:

(119) IFD < Zn E BE(T|71)7 Zn Crosses the Tr-axis

at a moment s € [wi_l, wi]

Zn € B(73),
=P | Vi<t<wi_ Zy(t)€ Dy, |Zy(a)=7
Vw, <t <d Z,(t) € Dy
MP ZnEB(wtl)
SIED<\v’u<7‘<w21 Zu(t) €

), D 5n(a):.z>
(7

X max (zn €B

X max P < n € ?qu_,wi)’ ‘ Zn(wi) = 3])
JeB(Fw))  \ Ywi <t <®  Z(t) € Do

B ( wz 1) oo o
< Zn € : -
=F < Vi<t <wi_y Zy(t) € Dy | Zn(@) x)
Zn € EE(F?”‘ ‘ Zo(wy) =y
Vw, <t <0 Zy(t) € Dy n\Wi) =Y -

X  max IF’(

JEB(7(w:))

As long as z,, stays on a single pane, it can be coupled with an ap-
propriate free motion. Thus the related probabilities can be computed
in terms of that free motions. Specifically,

Zn € By ™), Ly
IFD<¥/a<t<wz_1 Zn(t) € Dy ‘Z”<u>_x>

= p (T ) I < € g i) = ).

Vi <t <wi—y Euy(t) >0
As we did in case I, we can define
(1) = 7L+ 1),
and then

LB | n -z

< P;1(0)< sup ‘fn(t) — fl(t)‘ < 26).
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The probability related to the second part of Z,’s movement, namely
that occurs during the time (w;, ), can be estimated accordingly. In-

deed, for any y € FE(F(wi))a
En S Ee(f‘ﬂwz% e N\ =7
(121) P ( Vw, <t <d Z,(t) € Dy | Zafowi) = y)

< m(o)( sup [Galt) — 72(0)] < ze>,

t<v—w;

where 75 is defined as
() = r(t 4 w;).

Since the last expression doesn’t depend on y, we can further state
that

Vw, <t <v Z,(t)€ Dy '™

< P;2(0)< sup ‘(’n(t) — F2<t>‘ < 26).

<0 —w;

(122) max P (
JEB(7(wi))

We now conclude from the above discussion, that

(123) ]P Zn E BE(r|ﬂ>; Zn Crosses the Tr-axis
at a moment s € [w;_y, w;]

Wi—1
[ )7 — ~ =
Vi<l<w Z()ep, |H=7

Z, € B(r2,), L
) g‘eE}T:(g();i))P ( Vw, <t <o Z,(t) € Dy ‘ Zn(wi) = y)

(120),(122) )
< Py sup ‘fn(t) — rl(t)| < 2¢

f<u}i_1 —1

U ( z € B.(7

X IP;2(0)< sup |§n(t) — Fg(t)‘ < 26).

t<V—w;
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As the last expression doesn’t depend on &,

(120)  swp P(3 € B | 2ulw) = 7)

#EB((u))

(117) .

< s P(Ze B | Zli) = 7)
FEB(7(11))

(118) m Zn € B. (7 gE ),

< sup ZP Z, crosses the z-axis at | Z,(4) = &
FEB((1)) =1 a moment s € [w;_y, w]

(123) ™

< Z(P;1(0)< sup ‘fn — fl(t)‘ < 26)
i=1 t<wi—1 —

X IED7:2(0) <t sup |§n - 7:2(75)‘ < 26))
<V—w;

< m- max (P;1(0)< sup ‘fn(t) — fl(t)‘ < 26)

1=1,....m t<wi 1 =i

t<v—w;

X P;2(0)< sup |Ca(t) — 72(t)| < 26>>.

Furthermore, we can obtain

1 _
sup —logP(En € B.(7],) ‘ Zn(u) = f)
#€B.(Fu))

—log P 0 )< sup ~‘f’n(t) — fl(t)‘ < 26)

—logm + max
n n

i=1,...,m

1
+ Elog IP;2(0)< sup ‘Q’n (t)‘ < 26)].

t<V—w;

Since the free motions ¢ and ¢ satisfy the Large Deviations Principle

[SW95, Thm 5.1(i)], it follows that

(125) llmsup—long(o)< sup ‘fn f](t)‘g%)

n—oo t<w;_1 =1

lim sup 1 log P50 ( sup ‘(’n fg(t)‘ < 26>

n—oo N t<D—w;

< —inf{[{j‘“’i((j’) L (1) — 7 (0)] < 2¢, (0) = @(0)}.
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Note, that as we make n tend to infinity, %bgm vanishes, so

1 _
(126) limsup sup —logP(En € B.(7;) ‘ Zn(u) = f)

n=00 ZeBe((u))

1
< limsup max [— log P;l(o)( sup ‘fn(t) — fl(t)‘ < 26)
n t<w;_1—1u

n—soo =1l,..,m

1
+ -~ log P;2(0)< sup ‘Cn(t) — fg(t)‘ < 26)]

<0 —w;
) 1 .
< max lhm sup — log P;1(0)< sup ‘fn(t) — T‘l(t)‘ < 26>
1=1,...,m n—oo 1 t<wi_1 =1
) 1 .
+ lim sup — log P;2(0)< sup ‘(n(t) — rz(t)‘ < 26)]
n—oco 1 < —w;
(125) . wioi—il . .
< _max {— mf{JO TG - \q(t) - Fl(t)‘ <2 ¢0) = 7:1(0)}

- inf{]g_wi((j‘) : |(j’(t) - 7:2(t>‘ <2, q0)= 7:2(0>}:|a

and this concludes the second case.

The important outcome of both cases I and II is that we successfully
bounded each of the probabilities at the righthand side of (109) in the
terms of the rate functions [ and J of the appropriate free motions.
Recall that the rate functions 7(§) and J(§) are lower-semicontinuous
with respect to ¢ (see [SW95, Cor. 5.50]), and thus for any a < b

limsup(—inf{[ﬁ((f) : sup ‘q_'(t) — F(t)‘ < 2¢, qla) = F(“)})

e—0 a<t<bh
S _[2<F)a
. . b . - - - oo
lim sup(—mf{.]a(cj) : sup |q(t) — r(t)‘ < 2¢, §(a) = r(a)})
=0 a<t<b
< —J,(7)

It now follows from (116) that for any (u,v) € C, N A;(r) with
appropriately defined (u, 0),

1 —
(127) limsuplimsup sup —logIF’(En € B.(7,) ‘ Zn(u) = j’)

e—0 n—00 feﬁé(;(u)) n

< —Ji(F) = ~TY(7).
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Accordingly, for any (u,v) € C, N A3(7) with appropriate subinterval
(@t,0) and its section m = {w; }7,, it follows from (126), that

1 _
(128) limsuplimsup sup —logIF’(ZHEBE(ﬂZ) En(u):f)

=0 n—+0o 2B, (7(u)) n

The results for the cases (u,v) € C, N Ag(r) and (u,v) € Cy N Ay(F)
are formulated in the same way, by switching I and J.
Now we shall perform the final step of the proof by taking a to zero.

Lemma. In the above terms,

1 —
(129) limsuplimsup sup —logP(z_'n € B7) | Zu(u) = j’)

e—=0 n—co  FeB(7(u)) ¥

Jor any (u,v) € A(F).

Proof. As one can see from (108), for any member (u,v) of A(r) there
exists some a small enougn such that C, contains (u,v). Moreover, for
any such (u,v), the subinterval (@, ?) converges to (u,v) as « tends to
zero. We shall prove (129) for all possible cases of (u,v).

Let (u,v) € A;(F). Consider a sequence of values of o which mono-
tonically tends to zero (to avoid cumbersome notation, we don’t employ
indexes at the moment). By the definition of @ and ©, they both con-
verge monotonically to v and v respectively, and thus the interval (@, 0)
grows to the outside towards (u,v).

Accordingly, the functions of form [x(t)- 1(4,5) constitute a monotoni-
cally increasing sequence of non-negative measurable functions. There-
fore we can apply to them the Lebesgue Monotone Convergence The-
orem and obtain

The objective (129) now follows immediately from (127). The treat-
ment of the case (u,v) € Ay(r) is, of course, similar.
For (u,v) € Ay(7) U As(r) the situation is somewhat more compli-

cated. Consider, for example, an interval (u,v) € As(7). It is sufficient
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to prove that

(130) 1i|gnrig;fi:rlr}.i“r}m{tfa" (7) + IZi(F)} > I, (),
™| —

and the combination of this result with (128) would immediately yield
(129).

Fix some partition 7. Just like we did in the previous case, we can
show that for any specific interval [w;_;,w;] in 7,

lim J2H (7) = J (),

a—0
lim 1%, (7) = 15, (7)

Furthermore,

lim (J3(7) + 12,(7)) = J= (7) + 12, (7).

a—0

(131)
liminf min {J3(7) + 10,7} > min {77+ 1,7) ]

a—0 i=1,...,m

It has remained to show that

liminf min {J;w—l(F) + Ijj,i(F)} > TY(7).

|r|—=0 i=1,...,m

Let us assume first, that Z(7) is finite. Since Z can be represented
as an integral operator of a.s. finite measurable function [#(¢), the
expression Z!(r) is increasing and continuous in {. Therefore for any
d > 0 there exists a partition m such that for any interval [w;_;,w;] in
m, Iy (F) < 6.

Recall the definition of Z/(7), and let s be a point at which the mini-
mum of the expression (59d) is attained. Without loss of generality, we
can assume that s is among the partition points of . Assume also that
rnin{J;U"_1 (F) + LJU/Z(F)} is attained for some 75. Now we shall consider
separately the cases w;, < s and w;,_1 > s. Let us treat only the first

case, and note that the second one is treated similarly.
105



For the case w;, < s, we have that

Juig - (7) :/ "ty

ig—1

- / L) dt

wig—+(7) <
IIlln{.]wl G )+I” (—»)} J o= (7 )+[U (f’)
= L)+ 1, (7) = g (7)
+

(
> T + 1(F) = Jugg -, (7)
> T)(r) — 6.
By choosing the appropriate m, the last inequality can be shown to

hold for any § > 0. Therefore, the result (130) follows immediately.
Now consider the case () = co. Then for any s € [u,v],

(132) J(F) + I(F) = oo.
Assume to the contrary, that
(133) hﬁﬁi%ﬂ:?i?m{J )+ T (7 )} < o0.

Consider a sequence of partitions {m;}?2, of (u,v) such that the
diameter || tends to zero and
lim min {ij*‘—l(F) + [;;.(F)} = K < .
j—=o0 i=1,...,m; :
Without loss of generality we can assume that each 7; is a refinement
of its predecessor, i.e. m;_y C m;.

Let

min {J;”"*(F) n 1;;,(7?)} = JLTNR) 4 TP () < oo
=1, ,m; i aj
We assert that the sequence {[waj_l, 'waj]} is monotone with respect
to set inclusion. Indeed, if w,, < w,,_,—; for some j (see Figure 25),
then

J 1
i | - |
wa7_1—1 wa,_1
J I
ﬂ-j}\\\\\\\\‘VA‘H\H\\\\\H\\\}
waj—l waj

FiGUuRrE 25. Monotone partitions of (u,v).

LT I, () S LT (R I, (F) < oo,
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contrary to (132). Similarly, if w,,_, < w,,_1, then

1

Wa,_ — v —
Ju () + [waj_l(r) < 00.
We have thus shown that the intervals [w%_l,wa]] indeed form a
nested sequence, and thus
lim w, -1 = lim w, =w
Jj—roo 1 j—roo J
for some w € [u,v]. Furthermore,

lim .7 (7) = JU(7)

J—ro0

Jlim 1, (7) = L,(7)

lim (17 (7) + 13, (7)) = SR + 1) = K < oe,
J—00 J

and this contradicts (132). The contradiction shows that the assump-
tion (133) is false, and this completes the proof of the lemma. O

By summing inequalities of the form (129) over all intervals (u,v) €
A(F) we obtain that

1 _
(134) lim sup lim sup Elog ]P’C—;(En € Be(F)> < —Ig(F),

e—0 n—00

as required.

6.2. Upper bound for general sets.

Corollary 22. Let F' C D*[0,T] be a compact sel of paths, and let
7 €D. Then

(135) limsup%log Pf(,?n € F) < —inf{Ig(F) ek, r0) = :E'}
n— oo
Proof. Note that we can safely assume that all paths 77 € F originate
in Z. Indeed, by neglecting paths that do not satisfy this condition, we
stay with a compact subset of F', and neither side of (135) is affected.
Let 6 > 0. Consider some 7 € F. By Proposition 21, there exists
some positive € such that

1 1 —
lim sup — log ]P’f(é'n € BE(F)) < lim sup — log Pf(gn € BE(F))

n—oo n n—oo n

< -II(F) + 6.

Thus, for any ¥ € F' there exists some small open neighborhood B(r)
which satisfies

1
(136) lim sup - log ]P’f(z_'n € B(F)) < —Ig(F) + 4.
n—00
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The collection of such neighborhoods for all paths 7 is obviously an
open cover of the compact set F, and therefore it has a finite subcover:

k
FclB().
=1

Then
k
Ps(Z, € F) <Y P2, € B(7))
=1
< k- max Pf(zn € B(Fz))7

- i=1,2,...,k

llog Pf(é’n € F) < llogk + llog' max Pf(?n € B(f;))
n n n :

i=1,2,....k

Furthermore,

1
(137) limsup —logP#(2, € F)

n—oo 1

1
< limsup —log max ]Pf(gn € B(ﬁ))

n—oo N 1=1,2,...,k
1
= max limsup —log Pf(Zn € B(ri))
i=1,2, 0k poseo N :
(136)

< max k{—Ig(f};) + 5}

i=1,2,...,

= — min I()T(ﬂ)—l—(S

1=1,2,...,k
< —inf{IOT(F) e F, F(0) = "} + 4.
Since the inequality (137) holds for any ¢ > 0, it follows that

limsupllong(En € F) < —inf{Ig(F) T eF, r0) = f}
" .

n—oo

O

In order to extend the result of Corollary 22 to any closed set, we
shall make use of the notion of exponential tightness (see definition in
[DZ93, p. 8]). In the following lemma we establish the exponential
tightness of {Z,}, as it is formulated for families of random walks.

Lemma 23. Let C' € D be a compact set. For each o < oo there exists
a compact sel K, € D*[0,T], such that for all ¥ € C

. 1 —

lim sup — log Pf(zn g /Ca) < —a.
n—oo 1

In this lemma we need to show that, roughly speaking, there are

compact sets which cover a very large portion of D*[0,T] on the ex-

ponential scale. For this purpose we convert our random motion to a

free two-dimensional random motion by simply stripping the service
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events. Clearly, if a sample path of the free motion stays inside some
large square next to the origin, then the appropriate sample path of
the exhaustive polling will also stay inside that square (simply because
it is being further slowed by service events).

We know that the family of scaled free motions is exponentially tight
and thus satisfies the lemma in the first place. Given that, comparing
the probabilities of the free motion and the exhaustive polling would
give us the desired result.

Proof. Consider the two-dimensional free motion ¢ with arrival rates
Ao on the z-axis and A; on the y-axis, i.e. the motion described by
generator

Ly f(@) = Xof(@+(1,0)) + M f(@+ (0,1)) = (ho + M) f(@), @R

and the appropriate scaled motions ¢,. By [SW95, Lemma 5.58], the
family of random motions {¢,}°% | is exponentially tight.
Fix o € R and let C; € R? be the “flattening” of the set C:

Cy = {5 c R? ‘ (az,ay,s) € C for some 3}.

Due to the exponential tightness of {¢,}, there exists a compact set

K C C?*[0,T] such that for all ¥ € Cy,

1
(138) lim sup — log [P;(t/)n g /C) < —a.
n

n—00

Let
Tmax = sup{l‘ ‘ x = q,(t) for some ¢ € K,t € [O,T]},
Ymax = sup{y | y = q,(t) for some ¢ € K,t € [0,T]},
and define
Ky = {q’e C?[0,T] ‘ Vie o T]0 < a:(l) < xm“}
’ 70 < gy(1) < Ymax

Due to the compactness of K, Zmax and ymax are finite, and thus £y

is a compact set too. Note that Ky contains K as a subset.
Define K, € D?[0,T] as the “two-fold instance” of the set K;:

Ko = {FE D*[0,T] ‘ (rm,ry) = ¢ for some ¢ € /Cl}.

The set K, is obviously compact. Furthermore, we can couple 2,
and v, by considering the probability space of arrival/service waiting
times and defining 1, as the motion which consists solely of arrivals.
By the virtue of this coupling,

Pi(Z, € Ko) > Pa(thn € K1) > Pa(ihn € K),

and therefore

lim sup%log Pf(?n g ICa) < lim sup%log P5(¢n g IC) < —a.

n—oo n—00
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Theorem 24. Let F' C D?*[0,T] be a closed set of paths, and let ¥ € D.
Then

(139) limsupl—long(En € F) < —inf{Ig(F) creF, r0) = f}
n—oo 1

Proof. We have already shown that (139) is satisfied for any compact
F (see Corollary 22), and that the family of scaled random walks {2, }
is exponentially tight (see Lemma 23). The objective of the theorem
now immediately follows from [DZ93, Lemma 1.2.18(a)]. O
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APPENDIX A. PROPERTIES OF D

Proposition 25. Let xo,yo,z1,y1 € RT. Then the expression
|(z0,40) — (2, 0)| + |(2,0) — (21, 41)]

atlains a minimum over x € R at the point

(140) (x,O)z(x AR 0).

0 1
Yo + 11 Yo + 1

Proof. We shall present the reader with a simple geometric proof. De-
note the points A = (zq,y0), B = (z1,y1) and let C' = (z,0) for some
x € R*. Consider the point B’ which is the reflection of B relatively

Y
B

to the z-axis. By the triangle inequality,

(20, y0) = (2, 0)[ + |, 0) = (1, 91|
= |AC|+ |BC| = |AC| + |B'C| > |AB'|

and the equivalence is attained only when C' lies on AB’. The point of
intersection of AB’ with z-axis is precisely the one defined by (140). O

APPENDIX B. SOME ELEMENTARY RESULTS

Lemma 26. Lel o € [0,1] and k € N, such that 1 — (1 —a)* < 1/2.

Then "
- (1—a)> 7“

Proof. For the case k = 1 the statement is trivial. For any & > 2 let
f(x) =1—(1 —=x)* - strictly increasing and concave function on [0,1].
Then "
F) = k(1 -2 = (1= pa))
Let ag € [0,1] such that 1 — (1 — ag)* = 1/2. Clearly, a < aq, since
f(z) increases on [0,1]. Then

flao)= 21 —1/2) = st > %

1 — [a7y) 2(1 - OZ()>
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We further note that f/(z) decreases on [0, 1], so for all € [0, ayg]

, k
f(x)Zg-

Now we can integrate both sides of this inequality over  and obtain

/Oaf’(x)dq:z/ gdx
/

0
k
> —.
(0) 2
]

Lemma 27. Lel {a;}5_,, {a;}o, be positive constants and {A;(e)}r,

1=1:
be functlions satisfying

A; A
Vi<i<k lim ge>€(0,oo) and  Tim 219 _ o

e—0 € E— OO €

Then there exist a posilive constant ¢ and a function C(¢) salisfying
the same conditions as A;(€), such that for alln > 1 and ¢ > 0

k
Zaie_nAi(aiE) < ce~"0)

=1

Proof. Define

¢ = k- max a;

1<i<k
C'(e) = min A;(oye).
() = min Ai(ase)
It can be easily shown that C'(e) satisfies both required conditions.

Now, since ¢™" is a decreasing positive function, we obtain

a;e” %) < max a, - E e~ Aieie)

k k

1<i<k -
1 - =1

k3

< max a; - ke mim i<k Ai(oie)

1<i<k
= e 00,
O

The next proposition demonstrates a simple exercise in analysis.

Proposition 28. Let {f,.(z)} be a uniformly absolutely continuous
sequence of functions with values in some metric space (X, d), converg-
ing in sup to some function f(x). Then f(zx) is absolutely continuous.

Proof. Let € > 0. By the property of uniform absolute continuity, there
exists & > 0 such that any collection of non-overlapping intervals

N
{[snrtal, n=1,... N} with Y (1, —s,) <6
n=1
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satisfies v
€
Vm e N ;d(fm(sn),fm(tn)) <3

We intend to show that

Z d(f(sn)v f(fn>) < e,

and the absolute continuity of f will follow immediately. Indeed, as
{fm} converges to f, we can choose some m € N such that

sup d(f(t), /(1))
Then for any n =1,2,... ,N
A(F50), 1(12)
< d(f(sn); fn(sn)) + d(fon(50), fn(tn)) + d(fin(tn), £ (£n))

< % + d(fm(sn)van(tn))

By taking sum over n we obtain

ST d(f(sn), f(ta) < N % + Y " d(fn(5n)s Fn(tn)

< €
4N~

<(:—|_(:_
7 T3 T

as required. O
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