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These notes are intended for curious and motivated students who have taken a first course in Fourier
transforms, for example as part of the course Fourier series and integral transforms at Technion—Israel Institute
of Technology.

I have written these notes because several of my colleagues in the Technion’s Department of Electrical
Engineering asked me whether it might be possible to provide a more solid mathematical foundation for some
notions and ideas which play important roles in the courses their students take after learning about Fourier
transforms. Well, almost everything is possible, but only if you have enough time (extra hours of lectures)
and energy and determination to do it.

As far as I can see, these notes use only material or notions that you have met in the Fourier course or in

earlier courses on differential and integral calculus and linear algebra. But they do ask you to think about
these notions in some rather new ways.

Our reference for Fourier transforms will be the textbook [PZ] for the above—mentioned course, written by
Allan Pinkus and Samy Zafrani. We will use the same notation as in that book. In particular G(R) will denote
the set of all functions f : R — C which are piecewise continuous (by which we mean piecewise continuous on
each bounded subinterval of R) and which are absolutely integrable on R. For each f € G(R), the Fourier
transform of f is the function fdeﬁned by f(w) = % f_oooo e~ f(z)dz for all w € R. We will have to use the
following well known facts several times:

(1) { For each f € G(IR), the function fA’iS bounded and continuous,

and satisfies limy 4o f(w) = 0.

It is obvious that fis bounded. For proofs of the other two properties see e.g. [PZ] Theorem 3.1, p. 96.

The reader can find a list of symbols and some reminders about some relevant basic mathematical definitions
for integration etc. at the end of these notes in Sections 6 and 7 respectively.

I warmly thank Professor Adam Shwartz for reading an earlier version of these notes and offering a number
of very helpful comments and corrections of misprints. I am also very grateful to Yoni Roll for interesting
remarks and corrections of several other misprints. Of course I am responsible for any other errors and
misprints which I may have introduced since then.

1. INTRODUCTION.

You have probably met the Dirac delta “function” in physics courses. This is the strange object which is
usually denoted by d(x). It is a “function” which equals 0 at every point # # 0, but at = 0 its “graph”
has an infinitely high “spike”. Somehow the “area” under this “spike” which has “height” co and “width”
0 is equal to 1. So we can somehow “integrate” §. Before I write down its “integral” let us agree here that
whenever we are not quite sure that some notation that we want to write is really a well defined mathematical
object, we shall warn ourselves of our doubts by writing that notation between quotation marks. So we expect
to have “fj d(z)dz”= 1 for every a and b such that —co < a < 0 < b < co. If we believe that, then it
is perhaps reasonable to suppose that we can define the “product” “§(z)f(z)” of “§(z)” with a continuous
function f(z) on [a,b] and then the “graph” of this product is 0 everywhere except for a spike of “height”
“f(0) -00” at & = 0. If in the “game” we are playing, “co-0” = 1 then the area of this spike should be f(0)

and so “f; d(z) f(x)dz” = f(0). But there are all sorts of problems with this “game”. For example, how should

we define “fj d(z) f(x)dz” if f is not continuous at 0?7 We are used to thinking that if we change the value of
1
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a function at one point, for example at 0 then this should not change the value of its integral on an interval
including that point. But here this principle is wrong. Also, if we allow ourselves to multiply numbers by oo
and claim that “co-0” = 1 then at least one of the associative and commutative laws for multiplication must
be wrong. If not we can deduce that all numbers are equal. Here is the “proof”: For every two numbers p
and gq,

p=p-1=“ - (0-0)=c0-(0-p)=c0-0=00-(0-¢) =¢q-(c0-0)"=¢g-1=gq.

So the delta “function” is not a function in the precise sense of the word, and if we assume it is, or use
the formula “co - 0 = 17 carelessly, then we can easily make fools of ourselves and reach incorrect inclusions.
Let us nevertheless try to guess some more properties of the delta “function”. By what we said before, its
“Fourier transform” should be a constant function. We would expect it to be given by

YR L oo —izw g,.” 1 —i-0w 1
(2) d(w)” = — d(x)e da” = — ¢ = —.
T J_wo 27 27
Then, if the “inverse Fourier theorem” is somehow true in this new setting, it suggests that we have some way
to calculate the “integral” “[= ¢™7dw” even though the function ¢™* is not an integrable function of w on

the interval (—oo, 00) for any choice of (constant) z. Perhaps we get

oo R BN .
cc/ ewT g, = 271'“/ Q_ezwxdww — 27{'“/ (5(w)elwxdw” — QF“(S(I)”.
— 00 —oo 4T — 00

0, t<0
1, >0
H(0)? Except for our embarrassment about deciding the value at 0, this function H is the “Heaviside function”.
(Tt is denoted by u or ug in the chapter of [PZ] dealing with Laplace transforms.) If H(¢) = fioo d(z)dz”
then it seems reasonable to guess that H somehow has a “derivative”, even at 0, despite its discontinuity at
0, and that “derivative” should be “H’ = §”. Can we also “differentiate” “4” itself? What is its derivative?

Starting in the late 1800’s a number of physicists and mathematicians played with these sorts of ideas
and wondered about questions like the last one. There were many intuitive calculations, and good reasons,
sometimes from physics, to believe them, and other good reasons (like our comments above) to doubt them.

As time passed, ways were found to treat the delta “function” and other related objects in a precise way. The
most successful and now most widely used way of doing this was developed by the great French mathematician
Laurent Schwartz beginning with his initial work in 1944'. The development of this topic is a particularly
good example of the way science can and should develop. On the one hand we should not be frightened to
try to work with intuitive ideas, even if at first they seem doubtful or even partly crazy. On the other hand
there should also be a parallel process of carefully examining and verifying these ideas, and seeing if they can
be expressed in new more precise and more rigorous ways.

In these few pages we can only give a quick glimpse of some part of Laurent Schwartz’ work. He intro-
duced a family of new mathematical objects which he called distributions. They are sometimes also called
generalized functions. In particular, for working with the Fourier transform, he introduced a special collection
of distributions which he called tempered distributions. These form a vector space? which is usually denoted
by &’. All the functions in G(R) are in 8’ and many other functions, constants, all polynomials and many
other functions which are not integrable on R are in §’. But many of the elements in 8’ are not functions. In
particular, there is an ezxact way of defining the delta “function” as an element of &.

Consider the function H (¢) = © f_too d(z)dz”. This obviously has to be H(t) = { . But what is

The space &’ has many remarkable properties. For now we will mention only two of them:

1. It turns out to be possible to define the Fourier transform of every element of §’. If the element happens
to be a function in G(R) then the new definition and the old definition of Fourier transform give the same
thing. Otherwise the new definition may sometimes give a function, (for example §isa constant, just as we
guessed above) and sometimes it gives something which is not a function. But the Fourier transform of any
element of & is always an element of &'.

1Six years later this discovery earned him the Fields Medal (generally considered to be the equivalent of the Nobel Prize for
mathematicians).

2All vector spaces in these notes are in fact vector spaces over the complex field. For the relevant definition and further
comments see Section 7.
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2. Tt is also possible to define the derivative of every element in &’. If the element happens to be a
differentiable function in the usual sense of the word and it and its derivative also satisfy some mild “growth”
conditions, then the new and old definition of derivative coincide. If not, then the derivative may fail to be a
function, but it will always be an element of §’. In particular we can show that our guess above that “H’ = §”
is correct, and we can give this equation an exact meaning. We can define the nth derivative of § (or of any
other tempered distribution) for every n € N.

Before we can define 8’ and describe how we define derivatives and Fourier transforms of its elements, we
need quite a number of preliminary observations and results.

Suppose f : R — R is a function which arises in the “real world”. It could, for example be a function of time
representing, for example, an audio signal, say a bird singing. Hopefully we have a good microphone and other
equipment which will enable us to see a good approximation to the graph of f on the screen of an oscilloscope
or of a computer. But can we exactly measure or know the value of f(¢) at each instant t? Apparently we
cannot. Instead our equipment in fact measures (approximately) the averages of f over very short periods of

time, i.e. the quantities ﬁ f; f(z)dx for very short intervals [a, b]. If f is a continuous function then

1 qtth
(3) 1) = Jim o [ s
So we can get an approximation to the value of f(t) for some fixed ¢ by using the averages of f on smaller and
smaller intervals containing ¢.

Of course our equipment will not allow us to take the intervals smaller than some strictly positive number
(which depends on the amount of money we paid for our equipment and what was its year of manufacture).
But let us now leave the birds and the “real world” and go back to thinking more mathematically. The previous
remarks suggest that instead of studying a function f : R — C directly, we can try to study it indirectly via
the numbers f; f(z)dx for all values of a and b. But do these numbers contain all the information about the
function? Yes, they do, at least when f is continuous. This follows immediately from (3). A closely related
observation is contained in the next theorem.

Theorem 1.1. Suppose that f :R — C and g : R — C are two continuous functions which satisfy
b b
(4) / flx)dx = / g(z)dz for all numbers a and b such that a < b.

Then f(z) = g(x) for all x € R.

Proof. This follows immediately from (3). W

If f and g are only piecewise continuous® then we get a conclusion which slightly weaker than in Theorem
1.1. The condition (4) implies that f(z) = g(x) at every point € R where f and g are both continuous. So
f and g are “almost” the same function. They can differ at most on a “small” set of points £ which only
has finitely many elements in any bounded interval. So, for example, if f and g both happen to be in G(R)
then they both have the same Fourier transform. If we want to be able to conclude that f(z) = g(z) at all
points, including the points where they have “jumps” (points where their left and right one-sided limits are
different), then we can decide, for example, to only work with piecewise continuous functions f which satisfy
the extra condition

1

(5) f(z) = 5 (fla4) + f(2=))

at each point of discontinuity z. Of course (5) is also true at all other points. It is not hard to see that
the formula (3) is true for all t € R for functions f satisfying (5) for each € R. It will be convenient to
have a name for the collection of all functions f : R — C which are piecewise continuous on every bounded
subinterval of R and also satisfy (5) for all z € R. Let us call it PCh;. (The letters come from “Piecewise
Continuous with Balanced Jumps”.) PCh; is of course a vector space.

3The definition of piecewise continuity is recalled in Section 7. Here we are in fact only assuming that f is piecewise continuous
on every bounded subinterval of R.
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Let us rewrite this variant of the previous theorem in a slightly different way. Suppose that A is the space
PCy; and B is the set of all characteristic functions * x4 4] of intervals [a, b] for each constant a and b with

—oco < a<b<oo.

If f and g are in A and
(6) f_oooo f(x)o(z)de = f_ z)dx for all functions ¢ in B,
then f(.r) g(x) for all x E R

We now want to consider some other rather different examples of pairs of sets of functions A and B which
have the same property (6). In general, if A and B are sets of functions on R, we will say that B is a separating
class for A if, for every f € A and every ¢ € B the function f(z)¢(z) is in G(R) and condition (6) holds. We
can abbreviate this terminology and say simply that B separates A. The good reason behind this terminology
is that, if f and ¢ are two different functions in A, then there is at least one element ¢ in B which “separates”
them, i.e. it satisfies f_oooo f(x)o(z)de # ffooog(m)(é(r)dx (Many mathematicians use another alternative
terminology here and say that B is a total set for A.)

The functions in a separating class B are sometimes called “test functions” (funktsiyot bdikah), because in
order to know if two functions f and g in A are equal it is enough to test the behaviour of their integrals with
all the functions ¢ in B.

Example 1.2. Let A = G(R)NPCy; and let B be the set of functions ¢ : R — C of the form ¢(z) = e'® for
some real constant c. Then B is a separating class for A. To prove this, suppose that f and g in A satisfy

f_ z)de = f_oog( z)o(x )da: for all ¢ in B, i.e. foo f(z)et*dzr = ffooo g(z)ei"dzx for all c € R. So

f(— ) = g( ¢) forallc e R, ie. f and g are the same function. Iff and g have left and right derivatives at
every point we can apply the inverse Fourier theorem, i.e. the fact (cf. [PZ] Theorem 3.3, p. 109) that

@ limpeo [T € 0(x)de = L (u(e+) + u(z—))
if ue G(R) and u has rzght and left derivatives at x.

to deduce that f(z) = g(z) for allxz € R. (Note that here we have used the condition (5).) Iflimp_ ffR |f(2)

0 and this again will give us that f(z) = g(z) for all x € R. If neither of these conditions hold then we need
a more complicated proof, which I will not write here, but which leads to the same conclusion.

Example 1.3. Let A be the set of functions f in PCy; with the additional property that, for some positive
constant C' > 0 and some positive integer N,

(8) |f(2)] < C 1+ |z))Y forall x € R.

(We stress that the numbers C' and N will be different for different functions f in A.)} Let B be the set of all
functions ¢ : R — C of the form ¢(x) = e~iw® e for some constant w € R. Again the constant w takes
different values for different functions ¢ in B. Let us try to compare this example with Theorem 1.1. There
we were trying to get all information about a function, or audio signal, by looking at all its averages on all
“sharp windows”. Here we are trying to get all information about a function, or audio signal, by looking at all
the averages of its “frequencies” (i.e. Fourier transform) on all translations of a certain “smooth window”.

We will now show that also in this case B is a separating class for A. First, since lim|z|— o e_£2(1+|r|)”+2 =
0 for every constant n € N, it follows that K, := sup, g e_“”¢2(1—|—|;13|)”'*'2 is finite for each n € N. Consequently,
if f is any function in A, then it follows from (8) that, for any ¢(z) = gmiwT =T

?

. _ e (Lt 2N F?
D
. 1
1 ifz € [a,b]

. See also Section 6.

4The function X[a,b] : R = R is defined by x[4 5] = { 0 ifz¢ab]

—g(@)|" dz
- 2
is finite, then we can apply Plancherel’s theorem to show that % f_oooo |f(z) — g(a@)|2 de = ffooo ‘f(w) - f](w)‘ dw =
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This shows that f¢ is absolutely integrable and of course it is piecewise continuous and satisfies (5) for all x.
Now suppose that  and g are any two functions in A which satisfy ffooo f(x)o(z)de = ffooo g(z)é(x)dx for all
¢ in B. Let us define two new functions F(x) = f'(a:)e‘x2 and G(z) = g(m)e‘“’2. Then the previous condition
becomes ffooo F(z)e wodx = ffooo G(z)e~™*dx for all w € R. By estimates similar to (9), the functions F
and G are both in G(R) and so the same arguments as in Example 1.2 show that ' = G and, consequently,
f=g. So, indeed, B separates A.

The set A is “very big” but it does not contain all functions in G(R)N PC;.5 We would like to replace
A by a still bigger class of functions which contains all the functions of G(R) N PCj;. This bigger class will
be denoted by SG(R). The letters SG stand for “slow growth” and the functions in this class are sometimes
called “functions of slow growth”. In various books the class of functions of slow growth is defined differently,
and the notation is also different. We have chosen a definition to suit our particular modest purposes hereS.

Definition 1.4. We define SG(IR) to be the set of all functions in PCy; which satisfy, for some constants
C>0and N €N,

R
(10) /_R |f(z)]dz < C(1+ R)N for all R > 0.

Here again the constants C' and N will be different for different functions in SG(R).
Obviously SG(R) contains G(R)NPCy;.

Example 1.5. As in Erample 1.3, we let B be the set of all functions of the form ¢(z) = e~ e for
some constant w € R.Then B separates SG(R). The main step for proving this is to show that, for each f in

SG(R), the function f'(a:)e‘x2 is absolutely integrable. This is not difficult to do, but I ask you to belicve it
for the moment. It will follow immediately from the properties 2.2 and 2.5 which we will soon prove. After we
know that f(;l‘)e_”“"2 is integrable, the rest of the proof that B separates S(R) uses what we know about Fourier
transforms of functions in G(R) in exactly the same way as was done in FExample 1.3.

2. THE SCHWARTZ CLASS 8 AND SOME OF ITS PROPERTIES.

Our next step will be to replace the set of functions B which appeared in the last two examples by a larger
set of functions. This is a family denoted by & and sometimes called the Schwartz class, or sometimes the
class of C*° rapidly decreasing functions.

Definition 2.1. The class S consists of all functions ¢ : R — C such that the derivative of order n, qb(”)(x)
exists for every n € N and every x € R and which satisfy the condition

(11) lim mmqb(")(:v) = 0 for every pair of fized integers m > 0 and n > 0.

r—+oo

It will turn out that & plays a central role in defining Laurent Schwartz’ tempered distributions. Let us now
establish a number of useful properties of §. We would perhaps not expect these properties of the very nice,
very smooth, very quickly decaying functions in § to have any connection with treating quite nasty “functions”
which are not even really functions. But we will soon see that there is, davka, a very strong connection:

e 2.2. Fach function ¢ of the form ¢(zx) = e~iw" . e’ for some constant w € R is in S.

This is easy to see because for each such function ¢, and for each n € N, ¢(®)(z) = p, () - e~7%% . e=*" for
some polynomial p,,. This can easily be proved by induction on n. Since limg_, 4o ake=" = 0 for all k >0,
we immediately deduce that (11) holds for all non negative integers m and n.

5Consider for example the following function f. We set f(z) = 0 except on each of the intervals I, = <n - #,n + #)

for all n = 2,3,.... On I, set f(n) = 2" and extend f linearly on [n - #,n] and on [n,n—}— L ] Since f (n + 1 ) =0

2mn2 2mn2

this means that f > O the region under graph of f on I, is a triangle of area % . 2"2712 m

= nl—2 It is easy to see that this function
fis in G(R) and it is even continuous, but it is not in A.

6The reasons for choosing this definition are that, for simplicity, we do not want to use functions which are not piecewise
continuous and we do not want to use the Lebesgue integral. The Lebesgue integral is a very interesting and powerful generalization
of the Riemann integral, but its definition is too complicated to be discussed in these notes or in the course “Fourier series and

integral transforms”.
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e 2.3. § separates SG(R).

This follows from property 2.2 and Example 1.5.

e 2.4. Any infinitely differentiable function ¢ : R — C is in 8 if and only if it satisfies

For each pair of fizred integers m > 0 and n > 0 there exists

(12) a constant Cy, () such that |rm¢>(”)(;r)| < Cmn(o) forallz e R,

Since a continuous function on R which has finite limits at —oo and oo must be bounded, it is easy to see
that (11) implies (12). Conversely, (12) implies that |J:m(/>(")(r)| = ﬁ |mm+1¢(”)(1‘)| < ﬁC’m_Hyn(qb) for all
z # 0 and all non negative integers m and n. This in turn implies (11).

The constants Cp, ,(¢) in (12) can be chosen to be the numbers sup, g |J:m(/>(”)(13)| It is not hard to
see that this supremum is also a maximum. So from here onwards, for each ¢ € §, we shall always use the
notation

(13) Crmn(0) = sup{‘rmqb(”)(r)‘ ‘x € }R} = max

mmqﬁ(")(aj)‘ cx € }R}.
e 2.5. For each f € SG(R) and each ¢ € S, the function f¢ is absolutely integrable on R.

You might think that in the proof of property 2.5 which we will give now, we are worrying too much about
the constants in the inequalities. But this is because we will need these inequalities for another purpose later:

Choose an arbitrary function f € SG(R) and let N and C be the constants appearing in (10). Then
()| < Co,0(¢) and [&¥*+2¢(x)] < Cny2,0(¢) and so

| rwewnds = [ 11 s dn+ ( [ Oo e da+ [ o) i)

< Coof@) [ 1@ ar+Ovpaalo) ([ R ars [T 1L 1)

-1

y (10) we have [ |f(2)|dz < C- 2. We also have
I |'i]553'2d“/f e = 3 ([ e [ o)
< Yo ([ s [ " rw)iae)
< Yo [ Vel

Using (10) this last expression is dominated by

— 1 — (n+2)N
ZnNH' (Ln+1)" = Z nN+2
n=1 n=1
The general term in this series satisfies
2)N 9N 1 2\ 1 1
(14) (”Lg :(”+N) ._2:<1+—) — <3V
n n n n n n

Combining all the preceding estimates, we obtain that
o0 [ee] 1
(15) / |[f(z)o(z)|de < C - (2N00,0(¢) + Cnt2,0( Z —2) .

Please remember that here N is a CONSTANT, and n is the variable of summation. Since the series ) 7, n2
converges, the estimate (15) shows that f¢ is mdeed absolutely integrable on (—oo, 00). (Note that by proving
this we have now also established the claim made in Example 1.5.)

e 2.6. S is a vector space.
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It is obvious that whenever ¢ and i are functions in &, then a¢ + G is a function in § for all complex
constants a and 3. It is very easy to verify the remaining conditions needed to show that & is a vector space.
(Cf. the discussion about vector spaces in Section 7.)

e 2.7. For each ¢ € S, each integer n > 0 and each polynomial p, the function p(z)¢\™)(z) is bounded and
absolutely integrable and is also in S.

It follows immediately from the definitions and condition (12), that p(z)¢(™)(z) is in & and is bounded.
For exactly the same reasons (1 4 2?)p(z)¢(™)(z) is, among other things, bounded in absolute value by some
constant C'. Consequently |p(r)¢(”)(1‘)| < showing that p(z)é(®)(z) is absolutely integrable.

c
14z2
e 2.8. Whenever ¢ is in S, its Fourier transform ¢ is also in §.

Since ¢ € G(R) it follows (cf. (1)) that quS is bounded and continuous. By property 2.7 the function
Y(z) = —izé(z) is also in G(R) and so its Fourier transform ¢ is bounded and continuous. So we can

then apply another standard result, involving differentiation through the integral sign (with the help of the
Lebesgue dominated convergence theorem), to obtain that q/) is differentiable and its derivative is 1/), i.e.
%A(w) = % _oooo e~ (—iz)¢(z)dz. Since Y € S we can repeat the same argument to show that 1/)’ = qS” i
continuous and bounded and is the Fourier transform of yet another function in 8. In fact we can repeat this

argument as often as we wish, and obtain that:

For each n € N, d‘i—nnfz(w) exists and is
the Fourler transform of some function in S.

(16)

More precisely

dr -~ 1 [~ _
o é(w) = py /_OO e~ (—ix)" ¢(x)de.

Now we will recall and use another standard result: Let 4 be a differentiable function in G(R) such that

¢ is also in G(R). Then
(18) P (w) = iwih(w).

The first step towards obtaining (18) is to observe that, for any interval [a, b], we have

(19) ( —T ) (x ))|x a:/ %[e‘iwxi/)(x)] dr:/ —iwe_i“’xw(r)dm—}—/ e~ Ty (x)da

The rest of the proof of (18) is almost immediate when we also know that li{tn ¥(x) = 0. In fact here we
T—L 00

(17)

will be assuming much more, i.e. that ¢y € §. Since lil’in () = 0 we can let a tend to —co and b tend to
T—r L 0O

+oo in (19) and divide by 27 to obtain (18). The importance of this formula for us now is that it shows that
whenever ¢ € 8, then w@(r) is the Fourier transform of another function in §. Repeating this argument m
times for any integer m € N, we can see that wmi(r) is also the Fourier transform of a function in § . In
particular, since § CG(R) this means that

(20) lim w w( ) = 0 for each integer m > 0.

w—too

For later use let us also note more explicitly that in this way we obtain (cf. (18)) that
(21) Ym)(w) = (zw)miz(w) for each ¢ € S and m € N.
Now, given any ¢ € § and any integer n > 0, let us choose ¢ to be the function in & which exists in view

of (16) with the property that '@(w) = A(w). Then, by (20) we have that limy 4+ wmfu—nnq/:(w) =0. In

- dw™

other words, (ZE S, and we have proved property 2.8.

e 2.9. For each intervadl [a,b] there exists a function ¢ € S such that ¢(x) >0 for all x € (a,b) and ¢(x) =
for all x ¢ (a,b).

The construction of such functions is not completely obvious. For details, see Subsection 5.1 below.
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3. THE SPACE &' OF TEMPERED DISTRIBUTIONS.

We are now ready, or almost ready, I hope, to make the big jump from the idea of a function to the idea
of a generalized function. Examples 1.2,1.3 and 1.5 and property 2.3 of S tell us that to determine a function
f in the space G(R)NPCy; or even in the much bigger space SG(IR), it is enough to know the values of the
integrals f_oooo f(z)o(z)dx for all or some of the “test functions” ¢ € S. So instead of thinking about the values
f(z) of f at each point £ € R we can equivalently think about the values L;(¢) of a new “function”, which
we will call Ly, at each “point” ¢ in §. These values are given by the formula

(22) Ls(9) := /_OO f(z)o(z)de for all ¢ € S.

The generalized functions, or tempered distributions of Laurent Schwartz will also be “functions” L defined
on § instead of on R. Le., for each ¢ € § we have a complex number L(¢). In other words L is a map from
S to C. In general L(¢) will not be given by a formula like (22). But L will be required to have some special
properties:

Definition 3.1. Let L be a map from the space S to the compler numbers which satisfies the following two
conditions:

(Linearity): For each ¢ and ¢ in 8 and each a and 3 in C
L(ag + ) = aL(¢) + BL(Y).

(A special kind of continuity): If{¢k}keN s a sequence of functions in 8 such that, for each pair of constant
integers m > 0 and n > 0, the numbers Cy, ,(¢r) defined by (13) satisfy limg_o0 Crm n(dk) = 0, then

(23) lim L(6y) = 0.

Then L is said to be a tempered distribution.
The set of all maps L with these properties is denoted by S'.

Before we show that the delta “function” and other generalized “functions” can be obtained as elements of
&’ let us see that 8" “contains” all the functions of SG(IR). More precisely, we claim that, for each function
f € SG(R), the linear map L; defined by the formula (22) is in §’. The map L; obviously satisfies the
linearity condition of Defintion 3.1. To show that the continuity condition also holds we use the estimate (15)
which immediately gives that, for every ¢ € S,

[ee]

1Ls(8)] < / 1F(@)6(2)|dz < C - (2V Coo(6) + Crvaao(@) -3V - K,

— 00

where K is the constant K = Y 7, nl—z, (it equals m2/6 but the exact value is not important here) and C

and N are also constants which only depend on our choice of f. This estimate shows that if Co(¢x) and
Cn42,0(¢r) both tend to 0 as k tends to oo, then (23) holds.

The fact that S separates SG(R) shows that for each f € SG(R) there is only one map L in & such that
L = Ly. In fact we can also calculate the value of f(x) for each z € R if we know the value of L;(¢) for all

¢ € §. We will give an exact formula for doing this in an appendix (Subsection 5.2). So we have a well defined
one to one correspondence between functions f € SG(R) and the maps Ly in §'. If we identify f and L; we
can think of SG(R) as a subset of &'.

Now let us consider the map g : & — C defined by do(¢) = ¢(0) for each ¢ € S. This map is obviously
linear: dg(ad + Bv) = a¢(0) + S (0) = ado(¢) + Bdo (). It also satisfies the second condition of Definition 3.1
since, obviously, |do(¢)| < Co,0(¢). So dp is a tempered distribution. It is not very difficult to show that there
is no function f in SG(R) such that dg(¢) = ffooo f(z)o(z)dz. Again we will defer the exact proof of this to
Section 5 (See Subsection 5.3). The map dg is a well defined map which plays the role of the delta “function”
in an exact way. We can also define translates of dg. For each constant @ € R, let §; be the map from § to
C defined by d,(¢) = ¢(a). This too is a tempered distribution and it is the well defined version of what is
sometimes denoted by “d(z — a)”.
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I said above that we can find the derivative of the delta “function”. That seems crazy at first, since the
delta “function” is not even continuous, and it is not even a function. But if the derivative also does not have
to be a function, then maybe there is hope of finding it.

The first step towards defining derivatives of tempered distributions is to recall the formula for integration
by parts

(249) [ r@éais= (o)t~ [ fa)d @

which holds whenever f and ¢ are both continuous functions on the interval [a,b] whose derivatives f' and
¢’ exist at every point of (a,b) and are both Riemann integrable functions on (a, b). In particular (24) holds
for every real a and b if f is any function in SG(R) which is differentiable at every point of R and whose
derivative f’ is also in SG(R) and if ¢ is any function in S.

We want to choose arbitrary f and ¢ with these properties, and take the limit in (24) as a tends to —co
and b tends to +c0. The problem is that we cannot be sure in advance that limp_ e f(b)¢(b) and limg—_ o
f(a)$(a) exist. If we impose some extra condition, such as requiring f to also be in the class A discussed in
Example 1.3, then both these limits do exist and are 0 and so we obtain that

(25) /_OO f(z)o(x)dz = _/_00 f(z)¢'(z)da.

In fact with a little bit more care (see Subsection 5.4) we can show that (25) holds in general, for all
differentiable f € SG(R) with f' € SG(R) and all ¢ € S.

Let us now rewrite (25) using the notation of (22). It becomes
(26) Ly(¢) = =L (¢")-

If we think of Ly as being, in some sense a “derivative” of L; then this formula suggests how to define the
derivative of a general tempered distribution:

Definition 3.2. For each L € 8’ let DL be the map from S to C defined by
DL(¢) = —L(¢') forall ¢ € S.

DL is called the derivative or the distributional derivative of L.

We need a few moments to check that DL is also in 8. Since L is linear, and (a¢ + 8¢) = ad’ + [y we
immediately obtain that DL is linear. The second continuity condition is also easily verified: If {¢x},c is a
sequence in § satisfying limg oo Crm 5 (¢x) = 0 for all non negative integers m and n, then the sequence {¢} },
has the same properties, simply because Cp, »(¢},) = Cm nt1(dx). So limg oo DL(¢y) = — limg 00 L(},) = 0.

We can now extend this definition to define the n'” order derivative of L to be the map D™ L given by

D"L(¢) = (—=1)"L(¢™)) for all ¢ € 8.

It is clear that D" L = D(D"~'L) and that all these derivatives are elements of S'.

The formula (26) tells us that whenever f is a differentiable function in SG(R) such that f’ is also in SG(IR)
then DL; = L. We also see that Ddg is given by Ddg(¢) = —¢’(0). More generally, for each a € Rand n € N,
the n'? derivative D"6, is defined by D?8,(¢) = (=1)"¢(")(a) for all ¢ € S. As our last example, consider the

Heaviside function H already mentioned above and defined by H(t) = { 0, t<0 . It corresponds to the

1, t>0
tempered distribution Ly defined by Ly (¢) = fooo é(x)dx for all ¢ € S. So its derivative, DLy is defined by
DLy (¢) = —-Lu(é') =— fooo @' (x)dx = —(limy 00 ¢(r) — ¢(0)). Since the limit is 0 we obtain DL (¢) = ¢(0)
for all ¢ € S, i.e. we have now shown in an exact way that DLy = do, the derivative of (the distribution
corresponding to) H really is the delta “function”.

I said in the heading to this section that &’ is a space. Indeed it is a vector space. Given any L and M
in & and any complex numbers « and 3 we define the map aL + M from S to C in the obvious way, i.e.
(aL + BM)(¢) = aL(¢) + fM(¢) for each ¢ € S. It is easy to check that aL 4+ M, defined in this way, is

also an element of S’. The other conditions needed to show that &’ is a vector space are easily verified”. For

7Cf. the general remarks about complex vector spaces in Section 7.
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some remarks about the choice of the notation &’ for the space of tempered distributions see Subsection 5.5
of the appendix.

Now we shall define the Fourier transforms of tempered distributions. The idea for doing this is in a similar
spirit to what was done to define derivatives. First we find a suitable formula which is satisfied by Fourier
transforms of functions. Then we “translate” this formula into something which also makes sense when we
have distributions instead of functions.

Let us recall a formula for Fourier transforms of funetions which is perhaps reminiscent of the generalized
Plancherel formula. Before stating it, we should emphasize that, although it is “traditional” to use the variable
z for a function f and the variable w (or sometimes &) for its Fourier transform f, we have to be ready to
change the names of these variables whenever necessary. For example, instead of saying that the Fourier

w(w%+1) it is equivalent, and maybe more precise to say: If f : R — R is the function

defined by f(t) = e~Itl for all t € R, then the Fourier transform of f is the function f: R — R defined by

~

f@t) = W for all ¢t € R. The choice of the particular letters (here we chose t for both f and f) in the
process of defining the function and its transform is completely unimportant. We could equally well choose z

o~

transform of e~ 1! is

or w, or any other letter, in each case. In particular, in the next result we will be writing f(z) instead of the

~

more traditional f(w). But the meaning should be clear.

Lemma 3.3. Suppose that f and ¢ are functions in G(R). Then the product functions f(a:)q;(r) and f(l)(b(r)
are also in G(R) and

(27) | Fesar= [ rebw

Proof. By (1) fand (Eare bounded and continuous. This immediately implies that fq/: and f¢ are both
in G(R) and so both of the integrals in (27) exist. To prove that these integrals are equal we shall use
Fubini’s theorem® which enables us, provided that certain conditions are fulfilled, to change the order
of integration in repeated integrals on (—oo, c0). For details about this theorem see, for example, the web
document,

http://www.math.technion.ac.il/ “mcwikel/FUBINI.PS

Let us consider the function G(z,y) = f(z)é(y)e~¥* on R%

(1) G(z,y) is “piecewise continuous” in a certain sense, (a product of piecewise continuous functions of one
variable with a continuous function of two variables, as specified in equation (1) of the web document just
referred to).

(i) The limit limy - 0 fiVN (fiVN |Gz, y)|dy) dz is finite. This is because
fiVN (fiVN |Gz, y)|dy) dz increases with N and it is bounded. It is bounded because

/_JJVV (/_JJVV |G(a:,y)|dy) de = /_JJVV (/jv |f(a;)¢>(y)|dy) dz

:/_zlf(er)ldrf_ilfb(y)ldyéfw Sl [ 1oy

— 00 o0
and this last expression is a product of two finite quantities which do not depend on N.

In view of the properties (i) and (ii) we can apply Fubini’s theorem to obtain that
/ </ Gz, y)dr) dy = / </ Gz, y)dy) dx

8This is perhaps the only result which you have not explicitly met before. But it is needed to justify some of the basic results

which is the same as

for the Fourier transform which you presumably know (the inversion theorem, Plancherel formula and convolution property). It
is used at least implicitly in proofs on pages 110, 115 and 118 of [PZ].
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[ s ([ swea)an= [ s ([ owevean) ar

If we divide both sides by 27 this is exactly (27). B
It is the formula (27) which will tell us how to define the Fourier transform of elements of §’: If ¢ happens
to be a function in & then this formula can be rewritten as:

(28) L#(9) = Ls(9).
It seems reasonable to think of LfA as the Fourier transform of L;. So, to go one step further, if L is some

other element of 8’ which is not generated by a function in G(IR), we can just copy (28) and define the Fourier

transform of L to be a new map from § to C, which we will denote by L and which acts according to the
formula

(29) L(¢) = L(¢) for all ¢ € S.

Here of course we need to know that quS € 8, but we have already shown that, as property 2.8. We now
want to check that L € §’. First, since the Fourier transform of functions is linear, and L is linear we easily
deduce that L is also linear. Here is the proof:

Liag+8v) = L (ad+ %) = L (a6 + 80) = aL(d) + BL() = aL(9) + BL(v).

So now it remains to show that L satisfies the second “continuity” property of Definition 3.1. This is an
immediate consequence of the following result:

Lemma 3.4. Let {¢r}cy be a sequence of functions in S which satisfies
klgr;o Cron(9x) = 0 for all non negative integers m and n. Then kli}n;o Crmn(dx) = 0 for all non negative
integers m and n.

The proof of Lemma 3.4, which will be deferred to an appendix (Subsection 5.6), uses the same ideas as
were used to prove property 2.8 of S, (in particular (1), (17) and (21)) with a more careful writing down of
estimates.

Now let us calculate the Fourier transform of some particular distributions. For example, if L = dg, then
do must satisfy

5(6) =0(®) =30) = - [~ e oada = [ Soteyis

for all ¢ € S. So we see that (%(qﬁ) = L,(¢) for all ¢ € S, where g is the constant function g(z) = % This is
the precise version of what we guessed to be true (cf. (2)) at the beginning of these notes.
More generally, suppose that L = D"§, for some integer n > 0 and some a € R. Then, for every ¢ € S, we

see that [ = D"(i must satisfy

D578.(6) = D"0,(3) = (<1 3.
By (17) this equals (—1)™ - f_ e (—iz)¢(z)dx = ffooo %e‘i”(ix)"qS(m)dx. This means that m is
a function. More preasely, 1t is the distribution L; corresponding to the function f(z) = %e‘i‘”(im)".

Next we shall calculate the Fourier transform of 2™, i.e. of the distribution L, corresponding to the function
g(xz) = 2" for some integer n > 0. Perhaps you can already guess the answer from the previous example, if
you suppose that there is a connection between Fourier transforms and inverse Fourier transforms of tempered
distributions.

For every ¢ € S, we have, using (29), (2 ) and then (7), that

L) = L= /°° wo= [ dwe= iy [ e

— 00

(i) / o (z)da = (—i)" / we%w r)da = (~i)"6")(0)

= i"D"&(¢
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Since this is true for all ¢ € §, we have just shown that L/\xn =i"D"§y.

Finally let us extend this last example by linearity to show that the distributional Fourier transform of
any polynomial p(z) = >_._, axz® is given by Y _ axi®* D¥8y. An abbreviated way of writing this might be
“p=p(iD)dy”. 1 enclosed this formula in quotation marks because both sides have to be interpreted carefully.

4. SOME CONCLUDING REMARKS.

These few pages, as we already said, can only give a very quick introduction to tempered distributions. We
shall conclude these notes by saying something about notation, and then considering and offering some quick
and partial answers to two “natural” questions, an abstract one and then a slightly more “practical” one.

0. About notation.

In many books you will see that people write integrals with delta functions as if they were ordinary integrals,
i.e., instead of the precise formula (in fact definition) that dg(¢) = ¢(0) people like to write ffooo do(z)¢(x)de =
#(0). More generally, if L is some general distribution in &’ then sometimes people like to pretend that it
is somehow like an ordinary function, and so, instead of the notation L(¢) which we have used here, they
use the “integral” ffooo L(z)¢(z)dz to denote the value of L when it acts on the function ¢. This is fine and
sometimes even useful, provided you remember that it is only notation, that it is not a real integral, and that
in general, for individual values of # the symbol L(z) may be completely meaningless. If you do not remember
these things then you can easily get to all sorts of impossible and illogical conclusions, as we saw for example
at the beginning of these notes.

Here is one example of how this “integral” notation can be used. Suppose L is a distribution and ¢ is a test
function and c is a real constant. What is the exact meaning of the “integral” f_oooo L(z 4 ¢)¢(x)dx ? In other
words, what is the distribution L(z+c¢)? Well, we could guess that we would like to have ffooo L(z+c)¢(x)dx =
ffooo L(z)¢(x — c)dz, even though both of these things are not really integrals. But now we see that a logical

interpretation for both of them is to say that, for each test function ¢, they equal L(v) where 9 is the test
function defined by ¢(z) = ¢(z — ¢) for all z € R.

1. How complicated and nasty can tempered distributions be?

WEell they cannot be too terrible. It turns out that every tempered distribution can be constructed from a
finite collection of continuous functions in a finite number of steps involving distributional differentiation. So
we could say that tempered distributions are relatively simple objects. Here is a precise version of this result,
the so called “structure theorem”. (Cf. [Sc] pp. 239-240 for a slightly different but equivalent formulation.
In future versions of these notes we will give additional references for this result.)

Given any tempered distribution L, there exists a finite collection of continuous functions f,, : R — R,
m = 1,2,...,n which each satisfy |fm(z)] < C(1+ |JJ|)N for some constant C and some integer N and all
x € R and such that L is given by

L= zn: D™ L;, .
m=1

This formula is of course the same as the condition
n 00 am
L(¢) = ;(_1)7” /_OO I (#) T (x)da for all 6 € S.

2. What sort of things can distributions be used for?

I answer this as a pure mathematician. But I hope that, with the help of colleagues working in other fields,
future versions of these notes will also mention other applications, such as those encountered in the courses
which electrical engineering students take after they complete our basic course about Fourier transforms.

One important use of distributions is in the study of differential equations, including partial differential
equations. In these notes we only considered functions of one variable. If we wish to consider partial differential
equations we have to deal with functions of several variables, and their analogous generalized functions. There
is a natural extension to R™ of the Fourier transform, the class &, and so also the class 8’. Sometimes when it
is not at all clear that a differential equation has a solution, i.e. a function satisfying the equation, it turns out
that there are ways to show that there is a distribution which satisfies the same equation. Once it is known
that there is a distributional solution, this can sometimes be the first step towards showing that there is also



GENERALIZED FUNCTIONS AND THEIR FOURIER TRANSFORMS 13

a solution in the original sense of the word. See [Ru], especially Chapter 8, for some examples of applications
of distributions to partial differential equations.

5. APPENDICES.

5.1. Functions in § which vanish outside a given interval. The first and main step for constructing
such functions is to consider the function v : R — R given by

v(x) = e~V if e >0
L oif €0

We will show that v is infinitely differentiable on IR, i.e. the n'” derivative ‘v(")(r) of v exists for each n € N

) ) () — 2 —1/z Y 6 < 4 -
and for all € R. For all x > 0 we have v'(z) = e and v"(x) = —ye” =% + e~ =7. Both of these
derivatives are finite sums of functions of the form x%e_l/“’2 where C and m € N are constants. We do not need
an explicit formula for v(®) | but, by induction, we can continue and show that, for all z > 0 and each integer
n >0, 'v(”)(r) 1s a finite sum of functions of the form x%e_l/””2. Since limg 04 xime_l/“ = limy_, o tme=t’ =
for each m > 0, we see that lim,_ o4 v(®)(z) = 0 and also that

1

30 lim —v(™ (2) = 0.
(30) Jm —v(z)
In particular, for n = 1, this second limit shows that limp_, o4 U(h)h;vm) = 0. Obviously also limp,_, U(h)h;v(o) =

0. So v'(0) exists and equals 0. Obviously v'(z) also exists for all « # 0.

Now let us use induction. If we know that v(")(z) exists for all 2 € R and also that v(")(0) = 0, then (30)
tells us that limp_04 U(n)(h);w = 0 and, much as before, we deduce that v(®*1(0) = 0 and v(**+1)(z)
exists for all z € R.

Now, given any bounded interval [a, b], let ¢(z) = v(z —a)v(b—z) for all z € R. Since v(x —a) and v(b— z)
are both infinitely differentiable, so is ¢(z) and obviously ¢(z) = 0 for all # < @ and all x > b, and ¢(z) > 0
for all € (a,b). It is obvious that ¢ € S.

5.2. Recovering f from L;(¢).

Theorem 5.1. Let ¢ be a fizred even function in S such that ffooo ¢(x)de = 1. For each k € N and ¢ € R
define ¢i o by ér o(x) = ké(k(xz — ¢)). Then, for each f € SG(R),
(31) fle) = lim/ f(2)ok o(z)de.

k— o0

In other words, we can determine the value of f(c) at each point ¢ € R if we know the values of Ly (¢ c)

for each k& € N. There are of course many ways to choose ¢. For example we can take ¢(z) = e\_/—z; or we
can choose ¢(z) = cv(z + a)v(a — ) for some a > 0, i.e. one of the functions constructed in Subsection 5.1
multiplied by a suitable constant c.

Proof. Some parts of the proof of this theorem may perhaps remind you of the proof in [PZ] of the inverse
Fourier theorem. The proof can be made rather simpler in the case where the function ¢ vanishes outside
some interval, but we shall treat the general case. We first use the change of variables t = k(z — ¢) to obtain
that

/_O; F(@)ko(k(z — ¢))dz = /oo f<c—|—%) (t)dt

— 00

0 [e%)
/_Oo f <c+ %) 6(t)dt +/0 f <c+ %) 6(t)dt.
We shall show that

(32) lim 000 f <C—|— E) o(t)dt = %f(c—l—) and lim f (c—l— %) o(t)dt = %f(c—)

k— oo k—oo [_
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Since f satisfies condition (5) this will give (31). We will only give the proof of the first part of (32) since
the proof of the second part is almost exactly the same. Since ¢ is even and ffooo é(x)dxr = 1, we have

f o(t)dt = 5 and so the first part of (32) is equivalent to the formula

(33) lim OOO (f <c+ %) - f(c+)> 6(1)dt = 0.

k— oo

Given € > 0, there exists d = d(¢) > 0 such that |f(c + s) — f(c+)| < € for all s € (0,). Bearing this in

mind we write
/Ooo <f (c+ %) - f(c+)) <z>(t)dt‘ < /OOO ‘(f <c+ %) - f(c+)) ¢(t)‘ dt
s/:k (r(e+7) - ren)ew|as [~|(s(c+1) - rien) st a

Then the first of the two integrals on the right is dominated by

ok s3]
34 d d
(549) [ o< [ o
and the second integral is dominated by
o0 (oo} t
(35) [ irensonas [~ (c+ §) et a

Since ¢ is absolutely integrable, the right side in (34) is finite, and the first integral in (35) equals
|f (c+)| 5, |6(t)|dt and tends to 0 as k tends to co. To estimate the second integral we finally have to
use the fact that f satisfies the estimates (10) for some positive constants C' and N. We also make two more
changes of variable, first y = ¢/k, then later z = ¢ 4+ y. This gives

o
/(5k

p(exg)ewa =k [Tirer oty

00 (n+1)
= kY [ et ) dthnlay
n=1 n
CN+20 (5(n+1)
< k y)| di
< Z e [ e aay
Cn+2,0(8) /CH(HH)
= k f(z)|dz
Z Toer |, G
CN+2 0 /|c|+5(n+1)
< k f(z)|dz
< Z (kon)N+2 —|c|—<s<n+1>| (=)l
Cn2,0(9)
< kZ C(L+ le|+68(n+1)Y

|ké‘ |N+2

kN 0N ga.0(0 cz N+21+|c|+(5(n+1))

Using easy estimates similar to those in (14) we see that the general term in the series in this last expression is
dominated by a constant multiple of 711_2 So the series converges and féoko |f (c + %) ¢(t)| dt < k=N=1M where
the constant M does not depend on k. Combining all these estimates we obtain that

/Ooo (f (” %) - f(0+>) ¢(t>dt‘ < e/ooo |6(t)|dt.

lim sup
k—o0
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Then, since € can be chosen arbitrarily small, this implies that

L (o) -ren) s =0

which gives (33) which, together with an analogous result for

ffoo (f (c + %) —f (c—)) @ (t)dt completes the proof of the theorem. W

lim sup
k—o0

5.3. The distribution d; is not given by a function in SG(R). This follows easily from Theorem 5.1.

Suppose, on the contrary, that there exists a function f € SG(R) such that o = L;. This means that
¥(0) = do(¥) = Ly(y) = ffooo f(z)Y(z)de for all v € 8. In particular, if we apply this to the functions
Y(z) = dk o(z) = kd(k(z—c)) introduced in Theorem 5.1 we obtain that f(c) = limg 0 f_oooo f(2)ok o(z)de =
limg 00 61 0 (0) = limg_y 00 k¢(—ke). For each ¢ # 0, since |¢p(—kc)| < Cio(¢)/|ke|, this last limit is 0. So
f(¢) =0 for all ¢ # 0. For ¢ = 0 we may also obtain f(0) = 0 if we choose a function ¢ satisfying ¢(0) = 0, or
otherwise, if ¢(0) is real, we will obtain that f(0) is co or —oo depending on the sign of ¢(0). These conclusions
contain several contradictions: First of all the value of f(0) as given by the formula (31) with ¢ = 0 should
not depend on any particular choice of the function ¢S which satisfies f_oooo é(x)dx = 1. Tt is supposed to be
the same for all such ¢. Then, f(0) should be finite if f € SG(R). Finally, if we are talking about integrals
in the usual sense of the word, changing the value of f at 0 should not influence the value of ffooo f(x)o(z)dx
and this integral should thus equal 0 for all choices of ¢ € S, i.e. it will not in general equal ¢(0). These
contradictions show that §y cannot equal Ly for any f € SG(R).

5.4. Integration by parts on an infinite interval. Let us complete the proof of (25) for all differentiable
f € SG(R) and ¢ € 8§ such that f’ is also in SG(R). In view of property 2.5, the functions f'¢ and f¢’
are both absolutely integrable on R and therefore also on [0,00). So the limits lim,_ 4o for f(x)¢(x)de and
lim, s 400 for f(2)¢'(z)dz both exist. By (24), f(r)¢(r) = f(0)¢(0) + for f(x)o(z)dz + for f(z)d'(z)dz. So,
letting r tend to oo, we see that the limit lim, 400 f(r)é(r) exists. Now suppose that lim,_ 40 f(7)o(r) =
¢ > 0. Then for some sufficiently large r we will have f(z)e(x) > ¢/2 for all € [r,c0). But this is impossible
since, again by property 2.5, the function f¢ is also absolutely integrable. Similarly we get a contradiction if
¢ < 0. Tt follows that lim,_ 400 f(r)¢(r) = 0. Similarly we can show that lim,_,_ f(r)¢(r) = 0 and so (25)
follows from (24).

(We don’t have to worry about this here, but in fact, it can be shown that f’ has to be continuous on R.
This is because of a certain property of functions which are derivatives of other functions. Suppose that g is a
function which is the derivative of some other function. There are examples which show that ¢ does not have
to be continuous. But g can only be discontinuous in certain ways. In particular, ¢ cannot have any simple
jump discontinuities, i.e, there are no points o where g(zg+) and g(zg—) both exist and are different from
each other.)

5.5. A reason for using the notation §’. Dual spaces, and continuous linear functionals. The use

of the notation &’ is consistent with notation which is often used in mathematics, in particular in the field
called functional analysis. Suppose that V' is a vector space (of functions, or of some other objects) and we
have defined what we mean by convergent sequences in V. In particular this means that we have a definition
of what it means for a given sequence {vg }xen to converge to the zero vector in V. (Sometimes this definition
of convergence is made with the help of some norm on V. Sometimes, as in the case of V = § we prefer
a different kind of definition.) . Then it is a standard procedure to define a new space, which is called the
dual space of V, and which is denoted by V', or sometimes by VV*. This space consists of all “continuous”
linear maps L : V. — C. (Or if V is a vector space over R we will consider linear maps L : V — R) Here
“continuous” means that, for every sequence {vg }ren which converges to the zero element of V' we must have
limg 00 L(vg) = 0. The maps L are often called continuous linear functionals on V. In this framework
we can see that the tempered distributions are exactly the continuous linear functionals on & and the space
of all these distributions is the dual space of 8, so it is appropriate to use the notation &’ for this space.
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5.6. The proof of Lemma 3.4. For all ¢ € § and all w € R we have

~ 1 [ 1 [ 1
)| < 5o [ M@= o | oI+ eYe()lde
1 o0 1 1
(36) < w ) T1a? (Co,0(¢) + C20(9)) dx = oz (Co,0(8) + Ca0(0)) -

Given any sequence {¢r},y of elements in § and any non negative integers m and n we first apply (17) to
obtain that d‘i—nn@(w) is the Fourier transform of £k (z) = (—iz)" ¢, (2) which is also a function in 8. Then, by
(21), (zw)m@(w) is the Fourier transform of 51(;”)(1‘) which of course is also in §. Now, if we choose ¢ = €£m),
then quS(w) = (zw)mgk(w) = (iw)™ 4 @(w) If we substitute in (36) this gives

dw™

dn

dw™

Ve (W)

wm

1 m m
< 057 <Co,0(€1i )) + (7-2,0(515T ))) .

Taking the supremum (or maximum) in this inequality as w ranges over R gives

. 1 m m
Crn (Vi) < oz (C’o,o(fl(€ )) + C'2,0(~’51(€ ))) .
From this inequality it is clear that to complete the proof of Lemma 3.4 we have to show that the condition

(37)

klim Crm n (%) = 0 for all non negative integers m and n,
— 00

implies that limg_ o C’oyo(‘fém)) and limg 0270(615:7”)) are both 0 for all non negative integers m and n. By
Leibniz’ formula, we have that

(m) gy = 47 v e = SO (YL e g
(39) 67 (@) = (i) wm—j_o( ) s a7 @),
where, as usual, (Ty) = (mTij)vgv Each term dcim,,:] (—iz)™ is 0if m—j > n. Otherwise it equals (—i)”(n#!ﬂ,)!m”_m‘”.

So (38) implies that

j=max{0,m—-n}

gn—m+i wlim) (z) ‘

and so, for any integer v > 0, we have

e <Y
j=max{0,m—
>

j=max{0,m

wn—m+j+vwl(€m) (z) ‘

(3) e

m n!
(7) - Coomssmnton

IN

and so

" m n!
(39) 0< Cv,o (5;(:1)) < Z <]) : m : Cn—m+j+v(1/’k)~

j=max{0,m-n}

By (37) the right side of (39) tends to 0 as k — oo for each fixed m, n and 7. So limg 0 Cy 0 (flim)) =0 for

each =, in particular for v = 0 and v = 2, which, as explained above, is exactly what we need to complete the
proof of Lemma 3.4. B
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6. A LIST OF SOME OF THE SYMBOLS USED IN THESE NOTES

(The meanings of some of the terminology used in the definitions of these symbols are recalled in Section
7.)

e R, C, N and Z. As usual these are, respectively, the sets of all real numbers, all complex numbers, all
positive integers, and all integers.

e xg. Let E be any subset of R, (in many cases E will be an interval). Then the characteristic
function of E, sometimes also called the indicator function of E| is the function xg defined by xg(z) =

1 ifzeFE
{ 0 ifz¢E.

e G(R). Asin [PZ], G(R) denotes the set of all functions f : R — C which are piecewise continuous on each
bounded subinterval of R and Which are absolutely integrable on R.

. f The Fourier transform f of a functlon f is defined by slightly dlfferent formulae in different books.
Here, as in [PZ], we use the formula f f_ e~ f(z)dz. Later f is also defined when f is a tempered
distribution.

o P(Ch;. The class of functions which are “piecewise continuous with balanced jumps”. See the definition
given immediately after (5).

e SG(R). The set of functions of “slow growth”. See Definition 1.4.

e S. The Schwartz class of very smooth and very rapidly decaying functions. See Definition 2.1.

e 8. The space of tempered distributions. See Definition 3.1.

7. SOME REMINDERS ABOUT SOME RELEVANT MATHEMATICAL NOTIONS.

Some of these notions and definitions can be found in the book [PZ], and some are introduced in these
notes.
e Piecewise continuity.

Let E be a bounded interval. A function f : £ — C is said to be piecewise continuous on E if it is
continuous at every point of F, or, in the worst case, there are only finitely many points of E at which f
is not continuous and has a simple jump discontinuity. More precisely, we require the one—sided limits from
the left and right, limg—c_o f(2) and limgz_ .40 f(2) to exist at every interior point ¢ of E and to equal each
other for all but at most finitely many interior points of E. If F contains its left endpoint a, then we also
require the existence of limg_, 440 f(2). Similary if E contains its right endpoint b, then we require the limit
limgyp—0 f(z) to exist. (However f(a) and f(b) do not have to equal these limits.) We should also mention
other notation used for one sided limits: f(c—), or f(c¢—0) or lim, ». f(x) for limits from the left, and f(c+),
or f(c+0) or limg\ f(z) for limits from the right.

If £/ is an unbounded interval, for example if £ = R, then we have adopted the same convention as in some
books (cf. [PZ] p. 96). I.e., we define piecewise continuity of a function f on E to mean that f is piecewise
continuous on every bounded subinterval of E. So f can possibly have infinitely many jumps altogether, but
each bounded interval can contain at most finitely many of those jumps.

¢ Riemann integrals of complex functions on a bounded interval [a, b].

We will not repeat the standard definitions and properties of Riemann integrals of real functions on an inter-
val [a, b]. We only want to recall that these extend naturally and quite easily to the case of complex functions
f :[a,b] = C. One way of doing this is to write each complex valued function in the form f = u+ iv where
u:[a,b] > R and v : [a,b] — R are the real valued functions which are the real and imaginary parts of f. Then,
depending on your taste, it is either a definition or a theorem that f is Riemann integrable on [a, b] if and only

if v and v are both Riemann integrable on [a, b] and that f; flz)dx = f u(e )dr—i—z f v(x)dx. Straightforward
(but boring) calculations then show that the standard formulee fa af(z)+Bg(z)dr = a f flz)de+p f;g(m)daj
and ‘f f(z)dx

all of them are complex valued.

< f |f(z)| dz hold for all integrable f and g and all constants o and § also when some or

¢ Generalized Riemann integrals, and absolute integrability, on unbounded intervals.
Suppose that f : [0,00) — C has the property that its restriction to the interval [0, R] is integrable for each
constant R > 0. Then we can play two games:
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(1) If the limit limp_ fOR f(z)dx and is finite, then we say that f has a generalized Riemann integral
on [0,00) which we denote and define by fooo f(x)de = limp_ o fOR flz)dx .

(ii) If the limit limp_, o fOR |f(z)|dz is finite® then we say that f is absolutely integrable on [0, 00).
It is not difficult to prove that if f is absolutely integrable, then f itself also has a generalized Riemann
integral. (This is similar to the proof that an absolutely convergent series is also convergent.) But (analogously

to series) the reverse implication is untrue!®.

On the interval (—oo,0] there are analogous definitions of generalized Riemann integrals ffoo fx)dx =

limp_s 40 fER f(z)dx and absolute integrability for functions f : (—oo, 0] — C which are Riemann integrable
on each interval [—R, 0] for each R > 0.

Finally, if the function f : R — C is Riemann integrable on [—R, R] for each R > 0, we can play three
games:
(1) We say that f has a generalized Riemann integral on ( — co,00) if the integrals fooo f(z)dz and

ffoo f(z)dx defined above both exist. Then we define and denote this integral by f_oooo f(x)de = ffoo fla)da+
foco f(z)dx.

(ii) We say that f is absolutely integrable on (—oo,00) if |f| has a generalized Riemann integral on
(=00, 00).

(iii) If the “symmetric” limit limp, 4o ffR f(z)dx exists and is finite then we call its value the “Cauchy

principal value” integral of f on (—oo,00), and use the notation P.V. ffooo f(z)dx = limp_ 4oo ffR f(z)dx
for this special kind of integral.

From what we have already said above, it is clear that the absolute integrability of f on (—oo, c0), (which
is equivalent to absolute integrability on both [0, 00) and (—oo,0]) implies the existence of ffooo f(z)dx, but
that this integral also exists for functions f which are not absolutely integrable. The existence of f_oooo f(x)dx
obviously implies the existence of P.V. ffooo f(z)dz and then these two integrals are equal. If f(z) > 0 then
f_oooo f(z)dx exists if and only if P.V. f_oooo f(x)dx exists. But simple examples, e.g. f(z) = x show that
PV. f_oooo f(z)dx can sometimes exist when f_oooo f(z)dx does not.

One reason why principal value integrals P.V. f_oooo f(z)dx are important is because of the formula for invert-
ing the Fourier transform. We know that, if f is sufficiently nice, then % = limp_ oo ffR f(w)eiw“’dw
and this last integral is of course just P.V. f_oooo f(w)eiwxdw. (The function f : R — R defined by f(z) = ﬁe‘x
for all « # 0 and f(0) = 0 provides an example showing that in general we cannot replace limp_ ffR by
f_cooo in the Fourier inversion formula.)

e Vector spaces or linear spaces. A wvector space over the complex field is a set V of elements,
which we often call vectors, on which we have defined two operations. The first operation is often called
“addition of vectors” and usually denoted by + (even though this same sign + can have many other meanings
in other contexts). The second operation is called multiplication of vectors by “scalars”, which in our case are
complex numbers!! and is usually denoted by simply writing the scalar in front of the vector, i.e. Av for some
scalar A and vector v. These two operations have to satisfy a number of conditions, associative commutative
and distributive laws, existence of a zero element, etc. which we will not list here. You can see these nine
conditions, for example, on page 6 of [PZ]. We sometimes simply say vector space or linear space or
complex vector space instead of “vector space over the complex field”.

In these notes we encounter the following five examples of sets which can each be shown to be (infinite
dimensional) complex vector spaces: G(R), PCy;, SR(R), S and &’. And of course C itself is also obviously
a one dimensional complex vector space with the usual operations of addition and multiplication of complex
numbers.

9Since fOR | f(z)|dz is a non decreasing function of R this limit always exists. But it may be infinite.

10Consider for example the function f which equals (—1)™/n on the interval [n — 1,7n) for all n € N.

11 The set of complex numbers C is only one example of an algebraic object called a which we will not define here. Other
examples of fields are the set R of real numbers and the set (@ of rational numbers. Our definition is a special case of the more
general notion of a vector space over a field, which makes sense for any choice of field.
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The sets G(R), PChj, SR(R), § and S8’ have some common features. Each one of them is a set of some
kind of complex valued functions f defined on some kind of set I' and the operations of vector addition and
multiplication by scalars are defined “pointwise”. (For each one of the sets G(R), PCh;, SR(R) and S the set
I is simply R. In the more exotic case of 8’ we have to take I' = §.) This means that six of the required nine
properties on page 6 of [PZ] follow immediately from analogous properties of multiplication and addition of
complex numbers.

Let me explain this in a bit more detail: Suppose that V' is one of the above five sets and that f and g
are two vectors in V. Then they are both functions on T, i.e. for each vy € T' we have complex numbers f(7)
and g(y) which are the values of f and g respectively at the “point” 4. We define the new vector f + g to
be the function defined by the formula (f + ¢)(v) = f(vy) + ¢(y) for all ¥ € T'. Note that in this last formula
the symbol 4+ has two different meanings. On the left side it means the operation of addition in V', and on
the right side it means the operation of addition of complex numbers. Similarly, for each A € C, we define Af
to be the function defined by (Af)(y) = Af(y) for each v € T. (Here again, note that the writing of A next
to the vector f and the writing of A next to the number f(y) have two different meanings.) Now we want to
check that the operations defined in this way satisfy the nine conditions on page 6 of [PZ]. First we should
consider conditions 1 and 5 which state that, whenever f and g are both in V and A € C, then f + g and Af
both have to be in V. To verify these we need to use some special properties, depending on the particular
choice of V. E.g., we know that sums of continuous functions are continuous, and sums of integrable functions
are integrable, sums of linear maps are linear, etc. etc. We might also use the triangle inequality for complex
numbers to show that certain required inequalities hold. Then condition 3 requires the existence of a special
so—called zero element 0 in V' with the property that f + 0 = f for each f f € V. In each case that we have
to consider, our set V' contains the zero function, i.e the function whose value is 0 (the complex number) for
each v € I'. This clearly has the required property.

The verification of the remaining six conditions are, as I said above, almost automatic. For example,
condition 2 is the associative law, that (f+g)+h = f+ (g + h) for all f, g and hin V. In our case this is
simply the corresponding associative law for addition of complex numbers applied to the numbers f(v), g(v)
and h(y) for each y € T.

e Separating classes (or total sets). Let A and B be classes of functions on R such that the integral
f_cooo f(2)g(z)dz exists for each f € A and each g € B. Suppose that whenever f; and f2 are functions in A
such that f_oooo fi(z)g(x)dax = ffooo fa(x)g(x)de for all g € B, it follows that f; = fo. Then we say that B is a
separating class for A. (Or we can also say that B is a total set for A.)

8. SOME BOOKS FOR FURTHER READING.

Here are some books, most of which I happened to notice in our mathematics library. I have surely missed
some other very good books, and will be glad to add them to this list if you tell me about them.

[B] Hans Bremerman, Distributions, complex variables and Fourier transforms, Addison-Wesley 1965.

This book includes a historical introduction with some motivations from physics. The author attempts to
sitmplify his presentation by delaying the use of difficult results from functional analysis until they are absolutely
necessary.

[E] Robert Edward Edwards, Functional Analysis, Theory and Applications. Holt Rinehart and Winston
1965.

This is definitely not a book for beginners. Chapter 5 includes a very detailed and thorough treatment of
distributions, with many references and comments.

[Ha] Israel Halperin, Introduction to the theory of distributions. University of Toronto Press, 1952.
This has the advantage of being short. But it does not deal with tempered distributions or Fourier trans-
forms.

[Ho] Kenneth B. Howell, Principles of Fourier analysis. Studies in Advanced Mathematics. Boca Raton,
FL., 2001.

There are more than 700 pages in this book in which the author patiently and thoroughly explains many
aspects of Fourier analysis. In Section 27 (pp. 435-462) there is a naive description of the delta “function”
and Heaviside function without precise definitions, and a plausible guess as to what the “Fourier transforms”
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of these “functions” and of various periodic functions might be. Later in Chapter IV (pp. 497-694) the author
gives exact definitions and a detailed study of generalized functions and their Fourier transforms. His approach
is different from Laurent Schwartz’s (and ours here). Instead of the Schwartz class 8 he uses a different class
G of so-called “Gaussian test functions”. See pp. 509-510 for a brief discussion of some advantages of using

G nstead of S.

[N] Hanna Neumann, Schwartz Distributions, Notes in Pure Mathematics, Australian National University.

This book appeared some time before 1968. It is not in our library and I do not know if it s still available
anywhere. But it is a good, comparatively short introduction to the subject, including tempered distributions
and Fourier transforms, designed to be understood by students with no background in functional analysis.

[PZ] Allan Pinkus and Sami Zafrany, Fourier Series and Integral Transforms.

The Hebrew version of this book is available at:

http://www.math.technion.ac.il/~ fourier/heb-ps.html

There is also an English version.

This is our reference in these notes for basic facts about Fourier transforms. It does not deal systematically
with distributions, though the delta “function” is mentioned briefly and dealt with intuitively.

[RY] J. Ian Richards and Heekyung K. Youn, Theory of distributions: a non-technical introduction, Cam-
bridge University Press 1990.

This is probably an easier book for non specialists than many of the other ones listed here. Among other
things it includes Lars Hormander’s very clever and short proof of the Fourier inversion theorem for functions
in S (on page 54.)

[Ru] Walter Rudin, Functional Analysis, McGraw Hill, 1973. The relevant material is in Chapters 6, 7 and
8. In particular Chapter 8 gives some applications to partial differential equations. Rudin has a particular gift
for presenting mathematical material with very short and very elegant proofs. (But sometimes it is useful to
look at longer more complicated proofs to enhance our understanding in other ways.) I thank Jonathan Charbit
for drawing my attention to this reference. 46RUD in our library.

[Sc] Laurent Schwartz, Théorie des distributions, Hermann, Paris, 1966.
This is the second edition of the book by the man who created this theory. QOur library only has it in French.
I have not yet located an English verion of it, but I suppose it must exist somewhere.

[St] Robert Strichartz, A Guide to Distribution Theory and Fourier Transforms, Studies in Advanced
Mathematics, CRC Press, Boca Raton, Ann Arbor, London, Tokyo, 1994.

Written in an attractive friendly style, with the goal of being accessible to students who have not studied all
the topics normally assumed in books on this subject (such as Lebesgue integration). Not all results are proved.
It gets to the relation between distributions and Fourier transforms relatively quickly.
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