Hierarchical Mesh Decomposition using Fuzzy Clustering and Cuts

Sagi Katz and Ayellet Tal
Department of Electrical Engineering
Technion — Israel Institute of Technology
sagikatz@techunix.technion.ac.il and ayellet@ee.technion.ac.il

Abstract

Cutting up a complex object into simpler sub-objects is a funda-
mental problem in various disciplines. In image processing, images
are segmented while in computational geometry, solid polyhedra
are decomposed. In recent years, in computer graphics, polygonal
meshes are decomposed into sub-meshes. In this paper we propose
a novel hierarchical mesh decomposition algorithm. Our algorithm
computes a decomposition into the meaningful components of a
given mesh, which generally refers to segmentation at regions of
deep concavities. The algorithm also avoids over-segmentation and
jaggy boundaries between the components. Finally, we demonstrate
the utility of the algorithm in control-skeleton extraction.

Keywords: Mesh decomposition, mesh segmentation, control-
skeleton extraction

1 Introduction

A hard problem might become easier if only the objects at hand
could be cut up into smaller and easier to handle sub-objects. In
computational geometry, solid convex decomposition has been ex-
haustively investigated [Chazelle and Palios 1994]. Similarly, in
image processing, image segmentation has been considered a fun-
damental problem, which is a necessary pre-processing step for
many higher-level computer vision algorithms [Sharon et al. 2000;
Shi and Malik 2000]. The last few years have witnessed a growing
interest in mesh decomposition for computer graphics applications
[Chazelle et al. 1997; Gregory et al. 1999; Mangan and Whitaker
1999; Li et al. 2001; Shlafman et al. 2002].

Mesh decomposition benefits many applications. In metamor-
phosis [Gregory et al. 1999; Zockler et al. 2000; Shlafman et al.
2002], mesh decomposition is used for establishing a correspon-
dence. Compression [Karni and Gotsman 2000] and simplifica-
tion [Garland et al. 2001; Zuckerberger et al. 2002] use decom-
position for improving their compression rate. In 3D shape re-
trieval, a decomposition graph serves as a non-rigid invariant signa-
ture [Zuckerberger et al. 2002]. In collision detection, decomposi-
tion facilitates the computation of bounding-volume hierarchies [Li
etal. 2001]. In texture mapping, parameterization is applied to each
component [Levy et al. 2002]. Other potential applications include
modification and modeling by parts.

Figure 1. Decomposition of a dino-pet

Several approaches have been discussed in the past for decom-
posing meshes. In [Chazelle and Palios 1992; Chazelle et al. 1997]
convex decomposition schemes are proposed, where a patch is
called convex if it lies entirely on the boundary of its convex hull.
Convex decompositions are important for applications such as col-
lision detection. However, small concavities in the objects result
in over-segmentation, which might pose a problem for other ap-
plications. In [Mangan and Whitaker 1999] a watershed decom-
position is described. In this case, a post-processing step resolves
over-segmentation. One problem with the algorithm is the depen-
dency on the exact triangulation of the model. Furthermore, the
meaningful components, even planar ones, might get undesirably
partitioned. In [Garland et al. 2001], face clustering is proposed so
that the clusters may be well approximated with planar elements.
This algorithm is useful for simplification and radiosity, and less
for applications seeking the meaningful components. In [Li et al.
2001], skeletonization and space sweep are used. Nice-looking re-
sults are achieved with this algorithm. However, smoothing effects
might cause the disappearance of features for which it is impossi-
ble to get a decomposition. In [Shlafman et al. 2002] a K-means
based clustering algorithm is proposed. The meaningful compo-
nents of the objects are found. However, the boundaries between
the patches are often jagged and not always correct.

In this paper we propose a new algorithm for decomposing
meshes. Our work improves upon previous techniques in several
aspects: our algorithm is hierarchical, it handles orientable meshes
regardless of their connectivity, and avoids over-segmentation and
jaggy boundaries. We elaborate below.

Previous algorithms produce “flat” decompositions. As a con-
sequence, should the number of components be refined, the whole
decomposition has to be calculated from scratch. Moreover, com-
ponents which belong to a refined decomposition need not neces-
sarily be contained in components of a coarser decomposition. A
main deviation of our algorithm from previous ones is being hier-
archical.

Another deviation of the current algorithm is the way the bound-
aries between components are handled. Previously, the focus has



(a) object (b) skeleton

(c) deformed skeleton

(d) deformed object

Figure 2: Deformation of a dino-pet

been on generating either meaningful components or components
which comply with certain geometric properties. The boundaries
between the components, however, were a by-product of the pro-
cess. As a result, the boundaries were often too jagged [Chazelle
et al. 1997; Mangan and Whitaker 1999; Shlafman et al. 2002] or
too straight [Li et al. 2001] in a way that did not always fit the
model. The current algorithm aims at avoiding jagginess, by specif-
ically handling the boundaries.

Finally, the algorithm avoids over-segmentation and decomposes
the objects into meaningful components. A meaningful component
refers to a component which can be perceptually distinguished from
the remaining object. The boundaries between the meaningful com-
ponents pass at regions of deep concavities [Biederman 1987], as
illustrated in Figure 1, where the dino-pet is decomposed into its
organs. (Each component is colored differently.)

To demonstrate the usefulness of the algorithm, we show that
decomposition gives rise to an automatic, general (i.e., meshes need
neither be closed nor 2-manifolds), fast, and simple algorithm for
extracting control-skeletons [Gagvani et al. 1998; Teichmann and
Teller 1998; Bloomenthal and Lim 1999; Wade and Parent 2002].
Since skeleton extraction is done automatically, skeletal animations
can be created by novice users (Figure 2).

The rest of this paper is structured as follows. Section 2 describes
the problem and outlines our hierarchical decomposition algorithm.
Section 3 discusses the details of the algorithm for the binary case,
whereas Section 4 describes the extension to the k-way case. Sec-
tion 5 shows some results. Section 6 presents the control-skeleton
extraction application. Finally, Section 7 concludes and discusses
future directions.

2 Overview

This section begins with a few notations and then provides an out-
line of our algorithm. Let S be an orientable mesh. It need neither
be triangulated nor closed or a 2-manifold. (Non-manifold meshes
might yield less expected results.)

Definition 2.1 k-way Decomposition: Si,S5,...Sk is a k-way
decomposition of S iff (i) Vi,1 < i < k, S; C S, (ii) Vi, S;
is connected, (iii) Vi # 4,1 < 4,j < k, S; and S; are face-wise
disoint and (iv) U*_; S; = S.

Definition 2.2 Binary Decomposition: Si,S> is a binary decom-
position of S if it isa k—way decomposition with k = 2.

Definition 2.3 Patch: Given S1, So,... Sk, a k-way decomposi-
tion of S, each S; iscalled a patch of S.

The algorithm proceeds from coarse to fine. Each node in the
hierarchy tree is associated with a mesh of a particular patch and
the root is associated with the whole input object. At each node, the
algorithm determines a suitable number of patches &, and computes
a k-way decomposition of this node. If the input object consists of
multiple connected components, the algorithm is applied to each
component separately. The examples in this paper contain a single
connected component, which is the more challenging case.

A key idea of our algorithm is to first find the meaningful compo-
nents, while keeping the boundaries between the components fuzzy.
Then, the algorithm focuses on the small fuzzy areas and finds the
exact boundaries which go along the features of the object.

To find fuzzy components, we relax the condition that every face
should belong to exactly one patch, and allow fuzzy membership.
In essence, this is equivalent to assigning each face a probability of
belonging to each patch. The algorithm consists of four stages:

1. Assigning distances to all pairs of faces in the mesh.

2. After computing an initial decomposition, assigning each face
a probability of belonging to each patch.

3. Computing a fuzzy decomposition by refining the probability
values using an iterative clustering scheme.

4. Constructing the exact boundaries between the components,
thus transforming the fuzzy decomposition into the final one.

For instance, we wish to partition the objects in Figure 3 into two
components. After computing distances, each polygon is assigned
a probability of belonging to the patches. In Figure 3(a), a green
polygon has a high probability of belonging to the back (or upper)
patch. Conversely, a blue polygon has a high probability of belong-
ing to the front (or lower) patch. The fuzzy decomposition is shown
in Figure 3(b), where the fuzzy region is drawn in red. Figure 3(c)
illustrates the final binary decomposition, after the exact boundaries
are found.

3 Algorithm — the binary case

This section describes each stage of the algorithm for the binary
case (i.e., each node in the hierarchy is decomposed into two sub-
meshes). An extension to the k—way case is presented in the next
section.

3.1 Computing distances

The probability that a face belongs to a certain patch depends on its
distance from other faces in this patch. The underlying assumption



o
T ¥

(a) probabilities (b) fuzzy decomposition

Figure 3: Binary decomposition

is that distant faces, both in terms of their geodesic distance and of
their angular distance, are less likely to belong to the same patch
than faces which are close together.

Given f; and f;, two adjacent faces and «;;, the angle between
their normals, we define their angular distance to be

Ang_Dist(aij) = n(1 — cos aij).

When n = 1, convex and concave dihedral angles are treated
equally. Since a concave feature makes a better candidate for a
boundary, we check for convexity prior to computing distances. A
small positive 7 is used for convex angles and n = 1 is used for
concave angles.

Let avg(Geod) be the average geodesic distance between the
centers of mass of all the adjacent faces in the object, and
avg(Ang_Dist) be the average angular distance between these
faces. Consider the dual graph of the mesh, where every face of
the mesh is a vertex in this graph and two vertices are joined by an
arc if and only if their corresponding faces are adjacent. The weight
of the arc connecting the dual vertices of f; and f; is then defined
as follows:

Weight(dual(f;), dual(f;)) = (1)
. Geod(fs, f;) Ang_Dist(a;j)
=9 avg(Geod]) +(1-9) avg(Ang_Dith)'

The first term is affected by the geodesic distance whereas the sec-
ond term is affected by the angular distance. Note that the latter is
zero when the faces are coplanar. The denominator reduces effects
that may appear for similar objects having different sampling rates.

Given any pair of faces on the mesh f; and f,,, their distance
Dist(fi, fm) is defined to be the shortest path between their dual
vertices on the dual graph. The distances between all pairs of
faces are calculated once, in a pre-processing step, using an all-pair
shortest paths algorithm [Cormen et al. 2001], where the distance
between faces which belong to different connected components is
defined to be co.

3.2 Initialization and assigning probabilities

During an initialization phase, & faces which are considered the rep-
resentatives of the k initial patches, are chosen. In the binary case,
the initial pair of representatives REP4 and RE Pg (representing
patches A and B, respectively) is chosen such that the distance be-
tween them is the largest possible.

Our goal is to assign each face f; its probability Pg(f;) of
belonging to patch B. Let ay, = Dist(fi, REP4) and by, =

(c) decomposition

Dist(f;, REPg). We define Pg(f;) (and equivalently P4 (f;)) as
follows:

af.
Pp(fi) = ﬁ = )
Dist(f;, REPy)
Dist(fi, REP4) + Dist(f;, REP5)

It can be easily verified that if a face is closer to patch A than
to B, the probability of belonging to A is larger than the probabil-
ity of belonging to B, and vice-versa. Moreover, a face which is
equally distant from A and from B is as likely to belong to one as
to the other. Finally, Pe(f;) = 1 — Pa(fi), Pe(REPg) = 1,
Pg(REP4) = 0 and for all other faces 0 < Pp(f) < 1.

3.3 Generating a fuzzy decomposition

One way to obtain a decomposition is to apply a K-means cluster-
ing scheme [Duda and Hart 1973] as done in [Shlafman et al. 2002].
Our goal, however, is to construct a fuzzy decomposition, thus we
use fuzzy clustering.

Let p be a face representing a patch and let f be a face. The goal
of our algorithm is to cluster the faces into patches by minimizing
the following function

F = Z Zprobability(f € patch(p)) - Dist(f,p). (3)
p f

During an initialization phase, a subset of & representatives Vy,
is chosen, as described above. Then, the algorithm iterates on the
following steps.

1. Compute the probabilities of faces to belong to each patch, as
described in Equation 2.

2. Re-compute the set of representatives Vi, minimizing the
function in Equation 3.

3. If Vj is different from V., set Vi < V4 and go back to 1.

Choosing the set of new representatives (i.e., Step 2) is done by
using the following formulas:

REP,4 = min fz (1— Ps(f;)) - Dist(f, f;)
fi

REPg = minfz Ps(f;) - Dist(f, ;).
fi

Next, if the probability of a face of belonging to a patch exceeds a
certain value, it is assigned to the patch. There are, however, faces
which are almost as likely to belong to one patch as to the other.
In this case, the faces are considered fuzzy. In the binary case,
the mesh is decomposed into three patches A, B and C, where C
contains all the faces which are (almost) as likely to belong to A
as to B. This is done by partitioning the faces as follows and is
illustrated in Figure 3(b) where C is the red region.

A={fi|Pp(fi) <05 —¢}
B = {fi|Pr(fi) > 0.5+ €}
C ={fi|0.6 —e < Pe(f;) <0.5+¢}

A practical problem which arises in this step is the dependence
of the probability values on the specific representative of the patch.
One way to overcome this problem is to re-define a ¢, and by, using
the average distances: ay, = avgyeca(Dist(fi, f;)) and by, =

avgy;es(Dist(fi, f;)). Empirically, this definition improves the
results and expedites convergence.



(a) first level

(b) second level

(c) third level

Figure 4: Hierarchical binary decompositions of a dove

3.4 Generating the final decomposition

In the previous stage the meaningful components were found but
not the exact boundary between them. The goal of the current stage
is to construct this boundary within region C'. Once the boundary is
determined, the faces of C are assigned to either patch A or patch
B.

We formulate our problem as a graph partitioning problem. Con-
sider the dual graph of the mesh G = (V, E) and the set of the dual
vertices of patches A and B, V4 and Vg respectively. Our goal
is to partition V' into two subsets of vertices V4, and Vg, such
that the disassociation between V4, and V- is minimized. We are
essentially looking for a constrained minimum cut in G, requiring
that:

(1) V=V4UVp

(2 VanVe =¢

() VaCVa, VpCVam

(4) weight(Cut(Var,Vpr)) = Z
wEV,r,vEVR

We denote the dual graph of C by G¢ = (V¢, E¢) and the set
of all vertices in V4 whose corresponding faces in A share an edge
with faces in C by Va (resp., Ver). We now construct an undi-
rected flow network graph G’ = (V', E') adding two new vertices
S and T, as follows (Figure 5).

V' =VeUVeaUVes U{S,T}

E' = EcU{(Sv),Yv e Veca}U{(T,v),Yv € Vep}U
U {eij € Eli€Ve,j € {VcaUVen}} 4)

Figure 5: The flow network graph, where C' is the red region

Next, the capacities of the arcs need to be defined. There are
many ways to define capacities within this framework. The key
principle is that the minimum cut tends to pass through arcs with
small capacities. We experimented with various capacity functions,
some which take only dihedral angles into account and others which
also take arc length into account. We found the following function

w(u,v) is minimal.

to produce good results. For two vertices v; and v, let a;; be
the angle between the normals of their dual faces. The capacity
Cap(i, j) is defined as follows (where the average factor handles
precision problems):

A {6, £85,T)
L. Ang_Dist(a;;)
C’ap(z,]) = { 1+a,‘ugg(Anngith) ’ ’ (5)
00 else

A boundary between the components can now be found by ap-
plying a maximum flow (minimum cut) algorithm from S to T'
(e.g., [Cormen et al. 2001] [Goldberg and Tarjan 1988]). By the
definition of Cap(s, ), the cut tends to pass through edges having
highly concave dihedral angles.

3.5 Stopping conditions

Each node in the hierarchy is recursively decomposed until at least
one of the following conditions is met: (a) the distance between the
representatives is smaller than a given threshold; (b) the difference
between the maximal dihedral angle and the minimal dihedral angle
is smaller than a threshold, so that patches having a fairly constant
curvature will not be decomposed; (c) the ratio between the average
distance in the patch and that of the overall object does not exceed
a threshold. Since the average distance captures both the size (i.e.,
the geodesic distance) and the angular information, further decom-
position is unnecessary when both are small relative to the original
object.

Figure 4 demonstrates results of a hierarchical binary decompo-
sition. Note how the different organs are progressively extracted.

4 Algorithm — the k-way case

A k—way decomposition is a generalization of the binary case.
There are, however, three issues which require explanation. The
first issue is the determination of the number of patches a node in
the hierarchy should be decomposed into. The second issue is the
assignment of probabilities. The third issue is the extraction of the
fuzzy area. We discuss these issues below.

Unlike the binary case, in the k—way case, the representatives
are chosen iteratively. The first representative is assigned to be the
face having the minimum sum of distances from all other faces.
This is done in order to represent the main “body” of the object.
Then, representatives are added, each in turn, so as to maximize
their minimum distance from previously assigned representatives.

The remaining question is how many representatives to add. We
look at the following function which is the minimum distance of
the k*" representative from previously assigned representatives:

G(k) = mini<k (Dist(REPk, REPz))

Obviously, this function decreases as we add more representatives.
Empirical experiments show that after assigning representatives to



—
I\ . i
L W

(a) object (b) function G (c) first derivative of G

Figure 6: Determining the number of patches

all the major parts of an object, adding one more representative will
cause a large decrease of G. This observation aids in determining
the number of components k. We choose & to be the value that
maximizes the first derivative of G. See Figure 6.

The second issue is the assignment of probabilities. For a repre-
sentative, the probability of belonging to its own patch is defined to
be 1. Otherwise, for a face f;, the probability P,, (f;) of belonging
to patch p; is defined as:

1
Dist(f;,REP(p;))

P, (fi) = 1 ’
? > DR REPGD)

/4
=

(a) first level (b) second level

It can be easily verified that this function is an extension of the
binary case. Moreover, P,, (f;) complies with the following con-
straints: (1) 0 < P(fi,p;) < 1, (2) the sum of the probabilities is
1, and (3) as the distance of a face from a representative increases, L‘ >
the probability to belong to this patch decreases. \ |-

The third issue is the extraction of the fuzzy areas once the com- ‘
ponents have been found. We consider each pair of neighboring
components and proceed similarly to the binary case.

Figures 7-8 demonstrate several hierarchical k-way decomposi-
tions.

The overall computational complexity of the algorithms is
O(V%logV + IV?) where V is the number of vertices and I
is the number of iterations in the K'—means algorithm. The first
phase, distances computation, is done once, in a pre-processing
step, using Dijkstra’s algorithm in O(V2log V). The next phases
involve an iterative algorithm where faces are assigned to patches
and are performed in O(I'V'2). (In the actual implementation 7 is
bounded by a constant.) Finally, the minimum cut can be found in
O(V?log V') [Goldberg and Tarjan 1988]. In our case, the mini-
mum cuts are computed within the fuzzy regions. Thus, this step

(c)third level (d) fourth level

Figure 7: Hierarchical k-way decomposition of a dino-pet



(a) first level

(b) second level

(c) third level

Figure 8: Hierarchical k-way decompositions of a cheetah and an inner part of a human ear

costs O(C? log C) where C is the size of the fuzzy region.

5 Results

In order to handle large models, we utilize the consistency in the
way similar objects are decomposed. The procedure for decompos-
ing large models consists of four stages. First, the model is sim-
plified [Garland and Heckbert 1997]. Second, a decomposition is
computed for the simplified model using our algorithm. Third, the
boundaries found for the simplified model are used to define the
fuzzy regions in the original model, by “projecting” the faces ad-
jacent to the boundaries to the original model. This projection is
performed by assigning each face in the original model to the patch
containing the closest face in the simplified model, where voxeliza-
tion is used to further accelerate this step. Fourth, the minimum cuts
are computed on these fuzzy regions (in the original model), which
are very small. In order to avoid erroneous projections, this pro-
cess is performed progressively, using simplified models at various
simplification levels.

Figure 9 shows several objects at different levels of hierarchy as
decomposed by our algorithm, where for Figures 9(e)-(f), a sim-
plification was applied, as described above. The running times for
the objects described in this paper, on a P4, 1500 MHz, 512Mb
RAM PC, vary between 1 second for the mechanical part and 57
seconds for the dino-pet (3999 faces, 4 levels of hierarchy). The
running times of decomposing Venus and the skeleton hand (Fig-
ure 9(e)-(f)), using simplification as described above, are 244 sec-
onds and 1654 seconds respectively (including loading, simplifica-
tion and storing).

Figure 10 demonstrates results of three algorithms: [Li et al.
2001], [Shlafman et al. 2002] and the algorithm described here.
First, notice the boundaries between the back legs and the body.
Only in Figure 10(c), the “natural” ones were extracted. Second,
the boundaries in Figure 10(a) tend to be very straight due to space
sweeping utilized in the algorithm, whereas in Figure 10(b) the
boundaries are jaggy. In Figure 10(c), the boundaries pass along
the object’s features. Finally, since our algorithm is hierarchical,
only the major organs were found, but not the smaller ones such
as the fingers and the toes. The latter would be extracted at a finer
level of the hierarchy, as shown in Figure 7.

An alternative approach to ours is to use graph partitioning meth-
ods on the whole model, rather than on constrained regions. Possi-
ble cuts are minimal cuts. Their drawback is that they tend to favor

(c) mechanical part — 1270 faces

)

(a) alien — 3999 faces (b) camel — 2674 faces
6 patches 14 patches

o

(d) heart — 1619 faces
7 patches 4 patches

(e) Venus — 67,170 faces () skeleton hand — 654,666 faces
3 patches 6 patches

Figure 9: Decompositions of various objects



(@) [Lietal]

(b) [Shlafman et al]

Figure 10: Comparison to [Li et al] and [Shlafman et al]

small sets of isolated nodes since the weight of the cut increases
with the number of edges [Wu and Leahy 1993].

Another option is to use normalized cuts [Shi and Malik 2000],
which is an NP-complete problem. We implemented an extension
of [Shi and Malik 2000] to meshes, where the weight is defined to
take into account both the geodesic distance and the angular dis-
tance. The results varied. For some objects, good decompositions
were produced while for other objects, the meaningful components
were not found or the boundaries between them were jagged or
step-wise. This can be explained by the fact that the cut approx-
imation might cause artifacts. In addition, balancing the size of the
parts need not always fit the model.

6 Control Skeleton Extraction

Control skeletons are beneficial for various applications, includ-
ing matching, retrieval, metamorphosis and computer animation.
Previous algorithms are based on medial surface extraction [Gag-
vani et al. 1998; Teichmann and Teller 1998; Bloomenthal and Lim
1999; Wade and Parent 2002], level set diagrams [Lazarus and Ver-
roust 1999] or Reeb Graphs [Shinagawa et al. 1991]. Mesh decom-
position gives rise to a novel control-skeleton extraction algorithm,
where the joints are calculated directly from the hierarchical struc-
ture of the decomposition. The algorithm is general (i.e., the models
need not be closed or 2-manifolds), fully automatic, simple and fast.
It is thus beneficial for applications requiring automation as well as
for novice users of applications where user-intervention is accept-
able or desirable. Figure 11 demonstrates the use of skeletons for
animating otherwise static objects.

The algorithm starts by decomposing the given model. It is es-
sential that features which depend on the position of another feature
become its descendants in the hierarchy. For instance, the elbow
joint of a humanoid object should be a descendant of the shoulder
joint, so that a shoulder motion will cause an elbow motion. A sim-
ple way to achieve this is to guarantee that the decomposition of
every node in the hierarchy consists of a central patch connected to
all other patches.

To force this star-shaped decomposition structure, the decompo-
sition algorithm is slightly modified. We consider the central patch
to be the one which contains the first assigned representative. After
decomposing a given patch, the algorithm verifies that the decom-
position is star-shaped. If not, a patch which is not adjacent to the
central patch is merged with a neighboring patch with which it has
the smallest average angle between their normals along the cut.

Once the hierarchical k-way decomposition is computed, the de-
composition tree is traversed and a tree of joints is generated. At
each level of the hierarchy, joints between the central patch and its
adjacent patches are created. Each joint is positioned at the center

(c) Our algorithm

of mass of the boundary between the patches. Each node in the tree
of joints is associated with a list of faces. Initially, the root node
is associated with the whole model. As the tree is traversed from
coarse to fine, the relevant faces are transfered from a parent node
to its children.

In order to animate articulated objects, it is necessary to bind
the joints and pose of the object. Each vertex v; of the mesh is as-
signed a weight w;; indicating the extent to which it belongs to joint
j. The simplest approach is to let w;; be the percentage of faces
that belong to joint j and adjacent to vertex v;. This guarantees
that an internal vertex is bound only to the patch it resides on, that
each vertex corresponds to at least one joint and that Zj w;; = 1.
More advanced methods take also the cut’s angles into account. Fi-
nally, to pose the object, a skeleton-subspace deformation method
is used [Lewis et al. 2000].

Objects are deformed by adjusting the joints’ angles of their
skeletons. To compute the modified vertex position we use the fol-

lowing equation [Weber 2000]: y; = E]J:_()l (wijzi; Mj), where J
is the number of joints, z;; is the original vector position of v; rel-
ative to the coordinate system of joint 5, and Mj is the transforma-
tion matrix of joint 5. Thus, a vertex which belongs to a single joint
has a constant position relative to this joint, while a vertex which
belongs to more than one joint is positioned between the locations

it would have, had it belonged entirely to each of the joints.

7 Conclusion

We have presented an algorithm for hierarchically decomposing
meshes. The algorithm avoids jaggy boundaries as well as over-
segmentation. The key idea of the algorithm is to first find the
meaningful components of the mesh and only then focus on gen-
erating the exact boundaries between the components. To find the
components, both geodesic distances and convexity are considered.
Computing the boundaries is done by formulating the problem as a
constrained network flow problem. We demonstrated the applica-
bility of the algorithm for control skeleton extraction.

Several enhancements can be added to our algorithm. For in-
stance, different distance functions and different capacity functions
can be experimented with. Furthermore, non-geometric features,
such as color and texture, can be embedded in the algorithm. We
believe that the spectrum of applications which will benefit from
mesh decomposition will further grow in the future. We are cur-
rently looking at compression and texture mapping.

Acknowledgments

This research was supported in part by the Israeli Ministry of Sci-
ence, Culture & Sports, Grant 01-01-01509. We are grateful to
Daniel Aliaga, Tom Funkhouser, Idan Hadari, Itai David and the
anonymous referees for their help. We thank Huang Zhiyong,
Marcelo Kallmann and Ronen Basri for letting us use their images.

References

BIEDERMAN, |. 1987. Recognition-by-components: A theory of human
image understanding. Psychological Review 94, 115-147.

BLOOMENTHAL, J., AND Lim, C. 1999. Skeleta methods of shape ma-
nipulation. In International Conference on Shape Modeling and Appli-
cations, 44-49.

CHAZELLE, B., AND PALIOS, L. 1992. Decomposing the boundary of a
nonconvex polyhedron. In SWAT, 364—375.

CHAZELLE, B., AND PALIOS, L. 1994. Decomposition agorithms in
geometry. In Algebraic Geometry and its Applications, Springer-Verlag,
C.C. Bgg, Ed., Ed., 419-447.



(a) object

(b) skeleton

(c) deformed skeleton (d) deformed object

Figure 11: Deformations of various objects

CHAZELLE, B., DOBKIN, D., SHOURHURA, N., AND TAL, A. 1997.
Strategies for polyhedral surface decomposition: An experimental study.
Computational Geometry: Theory and Applications 7, 4-5, 327—342.

CORMEN, T., LEISERSON, C., RIVEST, R., AND STEIN, C. 2001. Intro-
duction to Algorithms. McGraw-Hill.

DuDA, R., AND HART, P. 1973. Pattern Classification and Scene Analysis.
New-York, Wiley.

GAGVANI, N., KENCHAMMANA-HOSEKOTE, D., AND SILVER, D. 1998.
Volume animation using the skeleton tree. In IEEE Symposium on Vol-
ume Visualization, 47-53.

GARLAND, M., AND HECKBERT, P. 1997. Surface simplifi cation using
quadric error metrics. In Proceedings of SIGGRAPH 1997, 209-216.

GARLAND, M., WILLMOTT, A., AND HECKBERT, P. 2001. Hierarchical
face clustering on polygonal surfaces. In Proceedings of ACM Sympo-
sium on Interactive 3D Graphics, 49-58.

GOLDBERG, A., AND TARJAN, R. 1988. A new approach to the maximum
flow problem. Journal of the ACM 35, 4, 921-940.

GREGORY, A., STATE, A., LIN, M., MANOCHA, D., AND LIVINGSTON,
M. 1999. Interactive surface decomposition for polyhedral morphing.
The Visual Computer 15, 453-470.

KARNI, Z., AND GOTSMAN, C. 2000. Spectra compression of mesh
geometry. In Proceedings of SIGGRAPH 2000, ACM SIGGRAPH, 279—
286.

LAzARUS, F., AND VERROUST, A. 1999. Level set diagrams of polyhedral
objects. In ACM Symposium on Solid Modeling and Applications, 130—
140.

LEVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002. Least
sguares conformal maps for automatic texture atlas generation. In Pro-
ceedings of SIGGRAPH 2002, ACM SIGGRAPH, 362—371.

LEwIS, J., CORDNER, M., AND FONG, N. 2000. Pose space deformations:
A unifi ed approach to shape. In Proceedings of SIGGRAPH 2000, ACM
SIGGRAPH, 165-172.

L1, X., TOON, T., TAN, T., AND HUANG, Z. 2001. Decomposing polygon
meshes for interactive applications. In Proceedings of the 2001 sympo-
sium on Interactive 3D graphics, 35-42.

MANGAN, A., AND WHITAKER, R. 1999. Partitioning 3D surface meshes
using watershed segmentation. IEEE Transactions on Visualization and
Computer Graphics 5, 4, 308-321.

SHARON, E., BRANDT, A., AND BASRI, R. 2000. Fast multiscale image
segmentation. In Proceedings IEEE Conference on Computer Vision and
Pattern Recognition, 70-77.

SHI, J., AND MALIK, J. 2000. Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 8,
888-905.

SHINAGAWA, Y., KuUNII, T., AND KERGOSIEN, Y. 1991. Surface coding
based on morse theory. IEEE Computer Graphics and Applications 11,
5, 66—78.

SHLAFMAN, S., TAL, A., AND KATZ, S. 2002. Metamorphosis of poly-
hedral surfaces using decomposition. In Eurographics 2002, 219-228.

TEICHMANN, M., AND TELLER, S. 1998. Assisted articulation of closed
polygonal models. In Conference abstracts and applications: SIG-
GRAPH, ACM SIGGRAPH, 14-21.

WADE, L., AND PARENT, R. 2002. Automated generation of control skele-
tonsfor usein animation. The Visual Computer 18, 2, 97—110.

WEBER, J. 2000. Run-Time Skin Deformation. Intel Architecture Labs,
www.intel.com.

Wu, Z., AND LEAHY, R. 1993. An optina graph theoretic approach to
data clustering: Theory and its application to image segmentation. PAMI
11, 1101-1113.

ZOCKLER, M., STALLING, D., AND HEGE, H.-C. 2000. Fast and intuitive
generation of geometric shape transitions. The Visual Computer 16, 5,
241-253.

ZUCKERBERGER, E., TAL, A., AND SHLAFMAN, S. 2002. Polyhedra
surface decomposition with applications. Computers & Graphics 26, 5,
733-743.



