
Demarcating Curves for Shape Illustration

Michael Kolomenkin∗

Technion
Ilan Shimshoni†

University of Haifa
Ayellet Tal‡

Technion

Original object Apparent ridges Suggestive contours Valleys & ridgesDemarcating curves Demarcating (with
(with gray valleys) mean curv. shading)

Figure 1: A late Hellenistic lamp (150-50 BCE) rendered with different feature curves

Abstract

Curves on objects can convey the inherent features of the shape.
This paper defines a new class of view-independent curves, denoted
demarcating curves. In a nutshell, demarcating curves are the loci
of the “strongest” inflections on the surface. Due to their appeal-
ing capabilities to extract and emphasize 3D textures, they are ap-
plied to artifact illustration in archaeology, where they can serve as
a worthy alternative to the expensive, time-consuming, and biased
manual depiction currently used.

1 Introduction

Curves drawn on objects convey prominent and meaningful in-
formation about the shape. They can therefore be utilized in a
large spectrum of applications, including non-photorealistic ren-
dering [Strothotte and Schlechtweg 2002], segmentation [Stylianou
and Farin 2004], robot navigation [Page et al. 2006], simplifi-
cation [Pauly et al. 2003], brain analysis [Bartesaghi and Sapiro
2001], registration of anatomical structures [Pennec et al. 2000],
and the recovery of archaeological and architectural informa-
tion [Maaten et al. 2006]. Recent user studies [Cole et al. 2008]
do not conclusively choose one of the current types of curves as the
best for all cases. Therefore, the search for additional curves contin-
ues. Moreover, this search could be guided by specific application
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areas, where certain types of curves are preferred.

Feature curves can be classified asview-dependentor view-
independentcurves. View-dependent curves depend not only on
the differential geometric properties of the surface, but also on the
viewing direction. They change whenever the camera changes its
position or orientation [Koenderink 1984; DeCarlo et al. 2003; De-
Carlo and Rusinkiewicz 2007; Judd et al. 2007]. View-independent
curves do not change with respect to the viewing direction [Inter-
rante et al. 1995; Kalnins et al. 2002; Ohtake et al. 2004; Pauly et al.
2003; Yoshizawa et al. 2005]. One criticism of view-independent
curves is that they can appear as markings on the surface [DeCarlo
et al. 2003]. Even so, we believe there is merit to using such curves,
in particular for applications such as archeology, architecture and
medicine. We support this idea with a small study on artifact illus-
tration in archeology.

This paper defines a new class of view-independent curves, termed
demarcating curves. They are the loci of points for which there
is a zero crossing of the curvature in the curvature gradient direc-
tion. Demarcating curves can be viewed as the curves that typically
separate valleys and ridges on 3D objects (hence the namedemar-
cating).

Our results demonstrate that demarcating curves effectively manage
to capture 3D shape information visually. For instance, Figure 1
demonstrates its ability to depict the 3D texture of an object, such
as the facial features and the hair, when comparing it to other well-
known curves. They are as quick to compute as ridges and valleys
and suggestive contours. Moreover, they can be combined with a
shading model to jointly convey the details of the shape.

Archaeology has attracted a lot of attention of researchers in com-
puter graphics and visualization [Rushmeier 2005; Koller et al.
2006; Brown et al. 2008]. This paper focuses on one aspect of ar-
chaeological research – relic illustration. Traditionally, archaeolog-
ical artifacts are drawn by hand and printed in the reports of archae-
ological excavations – an extremely expensive and time-consuming
procedure (e.g., Figure 2, [Stern 1995]). The main purpose of these
drawings is to depict the features of the 3D object so that the archae-
ologist can visualize and compare artifacts without actually hold-
ing them in her hand. Such drawings are often inaccurate, since



Figure 2: Lamp drawing in archaeology [Stern 1995]

the precision of the drawn curves depends on the qualifications of
the artist. In addition, this technique does not always suffice due
to space limitations that force the archaeologist to choose which
objects will be drawn and decide on a small fixed set of viewing
directions. Digitizing the findings by a high resolution scanner and
drawing the curves directly on the scanned objects is a welcome al-
ternative. This enables the archaeologist to study the artifact from
all directions, with the 3D features highlighted.

The contribution of this paper is threefold. First, the paper
presents demarcating curves, a new class of non-photorealistic
view-independent curves on meshes. Second, some relationships of
these curves to other well-known families of curves are discussed.
Last but not least, these curves are applied to a real application –
artifact illustration in archaeology. A preliminary user study indi-
cates that archaeologists prefer for this purpose using demarcating
curves to other types of curves or to manual drawing.

The paper is structured as follows. Section 2 reviews related work.
Section 3 defines demarcating curves and describes the algorithm
for computing them. Section 4 discusses relations of demarcating
curves to other curves. Section 5 presents some results. Section 6
discusses the use of the curves for artifact illustration in archaeol-
ogy. Section 7 concludes the paper.

2 Related work

The approaches for drawing curves characterizing objects in 3D can
be categorized according to whether they depend on the viewpoint.
A variety of view-dependent curves has been proposed.Contours
(silhouettes), which represent the “object outline,” are the loci of
points at which the object normal is perpendicular to the viewing di-
rection [Koenderink 1984; Gooch et al. 1999; Hertzmann and Zorin
2000]. Suggestive contoursare the loci of points at which occlud-
ing contours appear with minimal change in viewpoint [DeCarlo
et al. 2003; DeCarlo et al. 2004]. They correspond to true contours
at nearby viewpoints.Highlight linesextend the suggestive con-
tours [DeCarlo and Rusinkiewicz 2007]. They roughly correspond
to ridges of intensity in diffuse-shaded images.Apparent ridgesare
defined as the ridges of view dependent curvature [Judd et al. 2007].
Photic extremum linesare the set of points where the variation of il-
lumination in the direction of its gradient reaches a local maximum
[Xie et al. 2007].

Other view-dependant approaches utilize image edge detection al-
gorithms by drawing the curves on the projections of the objects to

the image [Lee et al. 2007; Pearson and Robinson 1985; Iverson
and Zucker 1995; Saito and Takahashi 1990]. These approaches
assist in correct scale selection and may reduce the computational
complexity. However, pixel-based representation of image edges
might yield low precision. View-dependent curves look visually
pleasing and hence suit non-photorealistic rendering applications.

There are a number of view-independent curves. The most common
curves areridges and valleys[Interrante et al. 1995; Kalnins et al.
2002; Ohtake et al. 2004; Pauly et al. 2003; Yoshizawa et al. 2005],
which occur at points of extremal principal curvature. Ridges and
valleys portray important object properties. However, drawing only
valleys (or ridges) is often insufficient, since they do not always
convey the structure of the object. Drawing both will overload the
image with too many lines. Moreover, coloring these lines so as to
differentiate between them might be cumbersome [Interrante et al.
1995]. Other view-independent curves areparabolic lines, which
partition the surface into hyperbolic and elliptic regions, andzero-
mean curvature curves, which classify sub-surfaces into concave
and convex shapes [Koenderink 1990].

3 Demarcating curves

Given a surface in 3D, we can imagine it locally as a terrain with
ridges and valleys. Intuitively,demarcating curvesrun on the slopes
between the ridges and the valleys. Figure 3 shows an example of
such a local terrain, where the magenta cross section transverses
from concave (valley) to convex (ridge) and the demarcating curve
point (green) is the transition point. In other words, demarcating
curves are the loci of the “strongest”inflectionson the surface (i.e.,
where the transition from convex to concave is the fastest). The
challenge is to find them. Below, we define this notion formally.

Figure 3: Local terrain (smoothed step edge); the demarcating
curve in green; the cross section orthogonal to it in magenta; its
local directiongp in cyan.

3.1 Defining demarcating curves

Before defining the curves, we review the definitions of the normal
section, normal curvature, the second fundamental form, and the
derivatives of curvature [Do Carmo 1976]. The motivation for using
these quantities is that they are intrinsic properties of the surface
and are therefore invariant to rigid transformations.

Thenormal sectionof a regular surface at pointp in tangent direc-
tion v is the intersection of the surface with the plane defined by the
normal to the surface atp andv.

Thenormal curvatureat pointp in directionv is the curvature of the
normal section atp, where the curvature of a curve is the reciprocal
of the radius of the circle that best approximates the curve atp.

For a smooth surface, the normal curvature in directionv is κ(v) =
vT IIv , where the symmetric matrixII is thesecond fundamental



form (which is a special case of the Weingarten matrix, where the
first fundamental form is the identity matrix).

The derivatives of the curvatureare defined by a 2×2×2 tensor
with four unique numbers [Rusinkiewicz 2004]:

C = (∂u1II ;∂u2II ) =

[(

a b
b c

)

;

(

b c
c d

)]

, (1)

whereu1 andu2 are the principal directions. MultiplyingC from its
three sides by a direction vectorv, Ci jkviv jvk gives a scalar, which
is the derivative in the directionv of the curvature in this direction.

As noted above, we are seeking the loci of the “strongest” inflec-
tions, i.e., loci where the curvature derivative is maximal. We there-
fore define the following.

Definition 3.1 The curvature gradientis the tangent direction of
the maximum normal curvature variation. Hence, this direction
maximizes the following expression:

gp = argmax
v

Ci jkviv jvk, s.t ‖v‖ = 1. (2)

Having defined the curvature gradient direction, we can now pro-
ceed to define a demarcating curve point, which is the zero crossing
of the normal curvature in the curvature gradient direction.

Definition 3.2 p is as a demarcating curve point if the following
holds atp: κ(gp) = gT

p IIg p = 0.

3.2 Computing demarcating curves on meshes

First, for each vertex, the gradient direction is computed, in accor-
dance with Definition 3.1, as well as the value of the curvature in the
gp directionκ(gp) = gT

p IIg p. Then, the zero crossings ofκ(gp) on
the mesh faces are computed according to Definition 3.2, to create
the demarcating curves. We elaborate on these stages below.

Calculation of gp: To calculategp, the second fundamental form
II and the curvature derivative tensor Equation 1 are first found for
every vertex [Rusinkiewicz 2004].1 Then,gp can be either com-
puted analytically or estimated numerically (by sampling). Below,
we provide the analytic derivation. A slightly different derivation
appears in [Mehlum and Tarrou 2006].

To computegp the expressionCi jkviv jvk is differentiated with re-
spect tov and compared to zero, as follows. Letv = [cos(θ),sin(θ)]
be the vector of a unit length, and leta, b, c, d be the coefficients of
the curvature derivative tensor (Equation 1). Then, Equation 2 can
be written as:

θgp = argmax
θ

(acos3(θ)+3bcos2(θ)sin(θ)+ (3)

+3ccos(θ)sin2(θ)+dsin3(θ)).

Equation 3 is differentiated with respect toθ and compared to zero.
After applying some simple algebraic manipulations, we obtain:

3bcos3(θ)+3(2c−a)cos2(θ)sin(θ)+ (4)

+3(d−2b)cos(θ)sin2(θ)−3csin3(θ) = 0.

Next, the sin term is isolated and the high order cos terms are sub-
stituted by cos2(θ) = 1−sin2(θ) to obtain:

cos(θ) = sin(θ)
(a−3c)sin2(θ)+2c−a

(3b−d)sin2(θ)−b
. (5)

1implemented using the trimesh2 library by S. Rusinkiewicz

After squaring Equation 5 and eliminating cos2(θ), the resulting
equation depends only on sin(θ):

[(−3c+a)2 +(3b−d)2]sin6(θ)+

+[2(2c−a)(−3c+a)− (3b−d)2−2b(3b−d)]sin4(θ)+ (6)

+[(2c−a)2 +2b(3b−d)+b2]sin2(θ)+−b2 = 0.

This is a third order polynomial in sin2(θ). Therefore, its roots can
be found analytically. There can be either one or three real roots,
which create two or six extremal angles. If there is a single root,
the extremal angle corresponding to the maximum is used to deter-
minegp. Otherwise, the function in Equation 3 is smoothed with a
Gaussian before selecting the global maximum. In this way, close
maxima are merged together, giving the larger maximum a bigger
weight. Consequently, all the maxima are considered explicitly. In
practice, less than 5% of the curve points have two significant roots
with a ratio of their values greater than 0.9, and these cases are han-
dled well. The case in which all three maxima have high function
values and a demarcating point should be detected (i.e. satisfying
Definition 3.2) has not been found in practice.

Calculating demarcating curves: Computinggp at every ver-
tex does not suffice for determining the points that satisfy Defini-
tion 3.2, since the gradient direction is known only for the vertices
and not for all the other points on the mesh. An additional problem
is that the direction of the gradientgp at every vertex of a mesh face
might differ, and thus computing the zero crossing of the curvature
along a mesh edge would be inappropriate (as we are looking for
zero crossing at a certain direction). Since these problems occur
in the calculation of other types of mesh curves, our solution is a
variation on [Ohtake et al. 2004; DeCarlo and Rusinkiewicz 2007;
Judd et al. 2007] and is briefly described below.

The demarcating curve points are first estimated along the mesh
edges. A mesh edge[p1,p2] contains a demarcating curve point if
κ(gp1) andκ(gp2) have opposite signs (i.e., a zero crossing). The
exact location of the demarcating curve point is obtained by lin-
ear interpolation of the curvature values. Neighboring demarcating
curve points are then connected on a face by a straight line to create
the demarcating curve itself.

To solve the second problem, faces whose three gradient vectors
differ considerably are eliminated from further consideration. (In
our implementation, this happen when the angles between the gra-
dients> π/4.) For faces in which the gradients of only two ver-
tices are similar, the average gradient of the two similar vertices is
selected and the curvature of the third vertex is computed in this
direction. Obviously, when this gradient is used for the third ver-
tex, it should be rotated so as to coincide with the vertex’s tangent
plane, as in [Rusinkiewicz 2004; Ohtake et al. 2004]. Now, the
zero-crossing interpolation can be applied as described above.

It is important to note that the computation described above is per-
formed offline, prior to interaction with the user. The only oper-
ation performed during the actual rendering is the elimination of
weak curves. The user provides astrength parameter, which is the
only parameter that the system requires. This parameter is used as
a threshold for the precomputed value of the curvature derivative in
the gradient direction(Ci jkgi

pg j
pgk

p).

4 Relations to other curves

This section discusses relations between demarcating curves and
other well-known curves, in particular valleys and ridges, parabolic
lines, zero-mean curvature curves, and suggestive contours.



(a) Zoom in of Armadillo’s leg (b) Valleys (blue) and ridges (red) (c) Valleys (blue) and demarcating curves (black)

Figure 4: Relation between valleys, ridges, and demarcating curves (onthe Armadillo leg). The ridges are not well-defined, the valleys do
not bound the bumps, whereas demarcating curves perform much better.

Figure 5: Demarcating curves in black, curves of zero-mean curvature (left) in red, parabolic lines (middle) in red, suggestive contours (right)
in green, and suggestive highlights (right) in magenta, on the Armadillo’s thigh. The thresholds are all set to zero in order to compare the
curves as they are defined. The demarcating curves are closely aligned with the rectangular 3D texture, in contract to the other curves.

(a) Parabolic lines with different threshold values (b) Demarcating curves

Figure 6: Parabolic lines vs. demarcating curves: zoom into the armadillo’s chest

Relation to valleys and ridges: A ridge (valley) point is a point
on a manifold, where the positive (negative) principal curvature
obtains a maximum (minimum) along its principal direction. Re-
call that we expect demarcating curves to run between ridges and
valleys. Mathematically, this idea can be modeled by locating the
curves on a local smooth step edge – a step edge function convolved
with a Gaussian (Figure 3). Moreover, demarcating curves run in
parallel to ridges and valleys. This is so since in 3D step edges,
all normal sections in thegp direction are identical, and thus their
maxima, minima and zero crossings are equal.

In practice, a demarcating curve will not lie between a valley and
a ridge. This is demonstrated in Figure 4, where the ridges fail to
capture the round structure of the “bumps” on leg of the Armadillo,
yet demarcating curves bound these “bumps” (Figure 4(c)).

Relation to parabolic lines & zero-mean curvature curves:
Parabolic (zero-mean curvature) curves are the loci of points with
zero Gaussian (mean) curvature. In an ideal surface, where the
curves pass through true step edges, zero-mean curvature curves
and demarcating curves coincide, since it can be shown that in this
casegp is a principal direction and both principal curvatures van-
ish. Moreover, the set of demarcating curve points is a subset of
the parabolic curve points, since the Gaussian curvature is zero at
demarcating curve points. However, as can be seen in Figure 5 (left
& middle), demarcating curves are less sensitive to deviations from
the ideal surface.

Figure 6 shows parabolic lines with increasing threshold values of
the curvature derivative in the direction orthogonal to the curve.
It can be seen that even with no threshold (left) some of the most



important lines do not appear. Moreover, as the threshold increases,
some of the “good” lines disappear along with the clutter.

Relation to suggestive contours: Given a viewing direction, let
w be its projection onto the tangent plane. The suggestive contour
points are the set of all points on a surface at which the curvature
κ(w) is zero and the directional derivative ofκ(w) is positive [De-
Carlo et al. 2003].

The set of demarcating curve points is a subset of the union of all
the suggestive contour points, viewed from all possible viewing di-
rections. This relationship between the curves simply follows from
the fact that they both lie on hyperbolic regions (having negative
Gaussian curvature) of the surface. This can also been shown con-
structively by choosingw = gp, i.e., the projection of the viewing
direction coincides with the gradient directiongp.

Similarly, it can be shown that the set of demarcating curve points is
a subset of the union of all the suggestive highlight points [DeCarlo
and Rusinkiewicz 2007].

Figure 5 (right) demonstrates the relations between the curves. It
can be seen that many of the suggestive contours (highlights) coin-
cide with the demarcating curves. However, some of the horizontal
curves are missing from the suggestive contours (highlights) in this
viewpoint. Moreover, when the suggestive highlights appear noisy,
demarcating curves usually do not follow.

5 Results and analysis

This section shows results of demarcating curves and compares
them to other major curve families. All these curves have only one
parameter the user should set. In the examples below, for each of
the curves shown, we tried to choose the value that produces the
best-looking result for that curve type.

Figure 7 compares different curves drawn on the Armadillo (silhou-
ettes were added to all of them). Apparent ridges and suggestive
contours do not convey some important features, especially the cir-
cular and rectangular “bumps” on the legs and arms, and the teeth.
Suggestive contours are biased towards lines parallel to the view-
ing plane, and thus lines in certain directions are missed. Apparent
ridges may ignore curve points whose normal directions are parallel
to the viewing direction, since their employed local maximal curva-

ture tends to be larger near the silhouettes. In this example, valleys
better illustrate the 3D structure on the thighs. (Adding ridges de-
grades the drawing.) Demarcating curves are capable of extracting
not only this structure, but also the circular 3D structures on the
lower legs.

Figure 8 shows another comparison between the curves. It can
be seen that apparent ridges (and similarly suggestive contours, as
shown in [Judd et al. 2007]) do not detect the structures on the mid-
section of the column. Valleys & ridges manage to extract these
structures, but fail to accurately detect the curves on the upper sec-
tion. Demarcating curves better carry the shape structure. Fig-
ure 8(d) illustrates how shading can be used to emphasize the de-
marcating curves – a topic discussed in the next section.

In contrast to valleys & ridges, demarcating curves convey the
shape information without resorting to employ different hues. The
application of different hues to distinguish between valleys and
ridges is somewhat cumbersome [Interrante et al. 1995]. Moreover,
valleys & ridges are less effective for detecting closed curves. Fi-
nally, as demonstrated in the top section of the column in Figure 8,
they do not always convey the structure.

Figure 9 shows an example where the view-dependent curves are
more appealing and thus may be considered more pleasing for some
non-photorealistic applications. Another limitation of demarcating
curves is their inability to highlight protruding or depressing fea-
tures, which lie at surface curvature extremalities.

Performance evaluation:Demarcating curves are as quick to com-
pute as ridges and valleys and suggestive contours, since they can
be computed prior to rendering. Apparent ridges are more expen-
sive to compute since they rely on view-dependent curvature, which
needs to be computed for each viewpoint. On a 2.66 GHz Intel Core
2 Duo PC, our unoptimized C++ implementation computed the de-
marcating curves in 0.15 seconds for 50K polygon meshes and in
1.1 seconds for 500K polygon meshes.

6 Artifact illustration in archaeology

Analysis of archaeological artifacts, such as ceramic vessels, stone
tools, coins, seals, figurines etc., is a major source of our knowl-
edge about the past. Traditionally, artifacts are documented and
published in 2D photographs, which convey little information about
the actual shape (and none about the inner structure) of the objects.

(a) Apparent ridges (b) Suggestive contours (c) Valleys (d) Demarcating curves

Figure 7: Armadillo model. Apparent ridges and suggestive contours do not convey many important features, as can be seen on the upper and
lower legs, teeth, and eyes. Even valleys do not convey some of the rectangles on the upper legs and the bumps on the lower legs. Ridges are
not shown, since they degrade the drawing. Demarcating curves perform better on this example.



(a) Apparent ridges (b) Valleys & ridges (c) Demarcating curves (d)Shaded demarcating curves

Figure 8: Column model. While lines on the shaft disappear in the apparentridges drawing and lines on the capital disappear in both apparent
ridges and valleys & ridges, they both appear in the demarcating curve drawing.

(a) Apparent ridges (b) Demarcating curves

Figure 9: Horse model

The latter properties are described by conventional drawings (Fig-
ure 2), which contain sections across the artifacts. These are pro-
duced manually – by artists – an extremely time-consuming and
expensive procedure, prone to inaccuracies and biases.

Digital archaeological reports are slowly spreading around the
globe. When scanned 3D representations replace the 2D ones, ac-
curate, automatic curve drawing will be needed.

Demarcating curves are highly beneficial for models that consist
of smooth surfaces overlaid with 3D textures (reliefs). Intuitively,
this is so since 3D textures, by their very nature, can be considered
locally as “almost images.” Therefore, the characteristics of the
demarcating curves make them especially appropriate.

The current research is conducted as an interdisciplinary effort with
several archaeologists, who defined their needs and evaluated inter-
mediate results. Below we present some results of archaeological
relics.

Figure 10 shows a 3D scan of a handle stamped by a Greek official
from which it is impossible to read the text. Suggestive, Apparent,
and Ridges & Valleys (Figure 11 (a-c)) do not help either. With

demarcating curves, we can identify the Greek letters (d). Since
the letters are convex and the background is concave, and since
demarcating curves demarcate them, it is possible to add a shading
scheme to highlight the letters (e-f). It is now possible to read the
text as MAPΣϒA APTAMITIO, where MAPΣϒA[Σ] is the name
of an eponym (an official who had the year named after him) and
APTAMITIO [Σ] is the name of a month in the Greek (Rhodian)
calendar.

Figure 10: A scanned Hellenistic stamped amphora handle from the
first century BCE.

The variant shown in Figures 11(e-f) can be generally used for
drawing artifacts. Various types of shading schemes can be em-
ployed, such as mean-curvature shading [Kindlmann et al. 2003] or
exaggerated shading [Rusinkiewicz et al. 2006]. As discussed in
Section 4, zero-mean curvature curves and demarcating curves are
close to each other. Therefore, using demarcating curves with mean
curvature (and often with exaggerated) shading yields eye-pleasing
results. The color palette used can vary. Both gray-level shading
(Figure 11(e-f)) and the palette suggested by [Gooch et al. 1999]
(Figure 1) are shown.

Figure 12 compares mean-curvature shading alone with demarcat-
ing curves painted on top of the shaded scanned model of a 65 mil-
lion year old fossil. It can be noted that the demarcating curves
better emphasize the 3D features, yielding crisper images and mak-
ing them closer to the way archaeological artists portray artifacts.

Figures 13–14 show additional results. Demarcating curves en-
hance the features that are sometimes difficult to visualize with the



(a) Suggestive contours (b) Apparent ridges (c) Ridges & valleys

(d) Demarcating curves (e) Demarcating & mean-curvature shading (f) Demarcating & exaggerated shading

Figure 11: A Hellenistic stamped amphora handle from the first century BCE. The letters (e.g.,Σ) are only visible in (e)-(f)

other curves (and even in the scanned object). Examples include
the wings of Cupid, his naval, and the V-shaped decorations in the
top Hellenistic lamp; the fine vertical decorations on the bottom
Ottoman pipe; and the facial features on the lamp in Figure 14.

(a) Mean curvature shading

(b) Demarcating curves (with mean curvature shading)

Figure 12: Shading options for an Ammonite fossil

Figures 13(d) & 14(e) illustrate a second variant of drawing, where
valleys (or ridges) are used to complement demarcating curves.
Here, valley lines are also drawn in gray, in order to portray the
concave regions.

The results illustrate the robustness of the algorithm to noise. These
archaeological objects are all noisy, not only due to the scanning
process but also because of their very nature, found after spending
more than 2000 years underground.

To compare the suitability of the different curve types to archaeo-
logical illustration, we conducted a preliminary user study. Twenty
two professional archaeologists from different universities, attend-
ing an international conference onComputer Applications in the
Archaeology of the Levant, participated in the study. Each person
was presented with four pages – each page devoted to a single relic
(Figures 1,13,14). Each relic was described by six images: the orig-
inal scanned object and five different drawings, similarly to Fig-
ure 14. (The images with demarcating curves also included valleys
in gray.) The order of the five (untitled) drawings changed from
page to page. The archaeologists were asked to rank the drawings
according to their appropriateness for replacing the traditional man-
ual illustration. Among the four non-shaded line drawings, 71.5%
preferred demarcating curves to the other types, 12.5% preferred
valleys & ridges and apparent ridges, and 3.5% preferred suggestive
contours. In second place valleys & ridges were preferred to appar-
ent ridges (40% vs. 29%). Moreover, 72% preferred the shaded
demarcating curves to the non-shaded line drawings.

In an open discussion, the archaeologists indicated that they prefer
our drawings to the traditional manual drawings, both aesthetically
and because it is also possible to view the drawings interactively in
3D. Manipulation in 3D enables them to see all the important fea-
tures, as if they held the artifact in their hand. Moreover, they find
view-dependent curves less suitable, since the stability of the curves
is paramount. These encouraging results suggest that demarcating
curves can be a basis for an illustration tool for archaeology.

7 Conclusions

This paper has presented a new class of view-independent curves –
demarcating curves, defined as the loci of points for which there is
a zero crossing of the curvature in the curvature gradient direction.



(a) Apparent ridges (b) Suggestive contours (c) Ridges & Valleys (d) Demarcating curves (f) Demarcating curves
(with gray valleys) (with mean curvature shading)

Figure 13: Demarcating curves enhance the wings of Cupid, his naval, and the V-shaped decorations on the Hellenistic lamp (top), and the
fine vertical decorations on the Ottoman pipe (bottom).

Relations to other types of curves have been discussed.

The utility of the curves for artifact illustration in archaeology has
been demonstrated. The results show that demarcating curves ef-
fectively capture the 3D information visually. It was welcomed
wholeheartedly by the archaeologists.

Since these curves convey meaningful shape information com-
pactly, we intend to utilize them in the future for shape analysis ap-
plications, such as similarity based retrieval. In addition, we would
like to explore the utility of other types of drawings in archaeology,
such as [Deussen et al. 2000].
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