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Saliency For Image Manipulation
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Abstract Every picture tells a story. In photography,

the story is portrayed by a composition of objects, com-

monly referred to as the subjects of the piece. Were we

to remove these objects, the story would be lost. When

manipulating images, either for artistic rendering or

cropping, it is crucial that the story of the piece remains

intact. As a result, the knowledge of the location of

these prominent objects is essential. We propose an ap-

proach for saliency detection that combines previously

suggested patch distinctness with an object probability

map. The object probability map infers the most prob-

able locations of the subjects of the photograph accord-

ing to highly distinct salient cues. The benefits of the

proposed approach are demonstrated through state-of-

the-art results on common data-sets. We further show

the benefit of our method in various manipulations of

real world photographs while preserving their meaning.

1 Introduction

Is a picture indeed, worth a thousand words? According

to a survey of 18 participants, when asked to provide

a descriptive title for an assortment of 62 images taken

from [13], on average, an image was described in up to 4

nouns. For example, 94.44% of the participants referred

to the foreground ship to describe the top-left image in

Figure 1, 50% referred to the background ship as well,

55.55% mentioned the harbor and a mere 27.7% pointed

out the sea. In [15], prediction of human fixation points

were highly improved when recognition of objects such

as cars, faces and pedestrians was integrated into their

framework. This further shows that viewers’ attention
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Fig. 1: Story perserving artistic rendering: Top: ”Ships

near a harbor”. Top-right: Painterly rendering. De-

tails of prominent objects are preserved (ships and har-

bor), while non-salient detail is abstracted away using

a coarser brush stroke. Bottom:”Girl with a birth-

day cake ” Bottom-right: A mosaic using flower im-

ages. Non-salient detail is abstracted away using larger

building-blocks, whereas salient detail is preserved us-

ing fine building-blocks.
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Input [9] Our approach

Fig. 2: Precise detection. Our algorithm detects mostly

the objects, whereas [9] detect also parts of the back-

ground.

is drawn towards prominent objects which convey the

story of the photograph. It is clear from these results

that when manipulating images, in order to preserve

the meaning of the photograph, it is crucial that these

singled-out objects remain intact.

Our goal is the detection of pixels which are crucial

in the composition of a photograph. One way to do

this would be to apply numerous object recognizers, an

extremely time consuming task, usually rendering the

application unrealistic. In this paper, we suggest the use

of a saliency detection algorithm to detect said crucial

pixels.

Currently, the three most common saliency detec-

tion approaches are: (i) human fixation detection [5,11,

14,19], (ii) single dominant region detection [10,13,16]

and (iii) context-aware saliency detection [9]. Human

fixation detection result in crude inaccurate maps which

are inadequate for our needs. A single dominant region

detection is insufficient when dealing with real-world

photographs which may consist of more than a single

dominant region. Our work is mostly inspired by [9],

but unlike them we detect the salient pixels which con-

struct the prominent objects precisely, discarding their

surroundings (see Figure 2).

We propose an approach for saliency detection in

which we construct for each image a prominent-object

arrangement map, predicting the locations in the image

where prominent objects are most likely to appear.

We introduce two novel principles, object association

& multi-layer saliency. The object association princi-

ple incorporates the understanding that pixels are not

independent and most commonly, adjacent pixels will

pertain to the same object. Utilizing this principle, we

are able to successfully predict the location of promi-

nent objects portrayed in the photograph. In addition,

we understand that the duration in which an observer

views an image will effect the areas he regards as salient.

Perceived as 2 objects Prominent object arrangement map

Fig. 3: Object association: Viewers perceive the left im-

age as two objects. Our result (right) captures this.

We therefore, introduce a novel saliency map repre-

sentation which consists of multiple layers, each layer

corresponding to a different saliency relaxation. We es-

pecially benefit from this multi-layer saliency princi-

ple when creating different layers of abstractions in our

painterly rendering application.

In addition to these two principles we incorporate

two principles suggested in [9] - pixel distinctness &

pixel reciprocity - for which we propose a different re-

alization. We argue that our realization offers a higher

precision in a shorter running time.

Our method yields three representations of saliency

maps: a fine detailed map which emphasizes only the

most crucial pixels such as object boundaries and salient

detail, a coarse map which emphasizes the prominent

objects’ enclosed pixels as well, and a multi-layered map

which realizes the multi-layer saliency principle. We

demonstrate the benefits of each of the representations

via three example applications: painterly rendering, im-

age mosaicing, and cropping.

Our contributions are three-fold. First, we define

four principles of saliency (Section 2). Second, based on

these principles, we present an algorithm for computing

the various saliency map representations (Section 3-4).

We show empirically that our approach yields state-

of-the-art results on conventional data-sets (Section 5).

Third, we demonstrate a few possible applications of

image manipulation (Section 6).

2 Principles

Our saliency detection approach is based on four prin-

ciples: pixel distinctness, pixel reciprocity, object asso-

ciation and multi-layer saliency.

1. Pixel distinctness relates to the tendency of a viewer

to be drawn to differences. This principle was previously

adopted for saliency estimation by [4,9,13]. We propose

a different realization obtaining higher accuracy in a

shorter running time.

2. Pixel reciprocity argues that pixels are not indepen-

dent of each other. Pixels in proximity to highly distinc-
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Fig. 4: Our multi-layer saliency. Each layer reveals more objects, starting from just the leaf, then adding its branch

and finally adding the other branch.

tive pixels are likely to be more salient than pixels that

are farther away [9]. Since distinctive pixels tend to lie

on prominent objects, this principle further emphasizes

pixels in their vicinity.

3.Object association suggests that viewers tend to group

items located in close proximity, into objects [17,20]. As

illustrated in Figure 3, the sets of disconnected dots are

perceived as two objects. The object association prin-

ciple captures this phenomenon.

4.Multi-layer saliency maps contain layers which corre-

spond to different levels of saliency relaxation. The top

layers emphasize mostly the dominant objects, while

the lower levels capture more objects and their context,

as illustrated in Figure 4.

3 Basic saliency map

The basis for all of our saliency representations is the

Basic saliency map. Its construction consists of two

steps (Figure 5): construction of a distinctness map, D,
based on the first and second principles, followed by an

estimation of a prominent object probability map, O,

based on the third principle. The two maps are merged

together into the Basic saliency map:

Sb(i) = D(i) ·O(i), (1)

where Sb(i) is the saliency value for pixel i. Being a

relative metric, we normalize its values to the range of

[0, 1].

3.1 Distinctness map

We construct the Distinctness map in two steps: com-

putation of pixel distinctness, followed by application

of the pixel reciprocity principle.

Estimating pixel distinctness: The pixel distinct-

ness estimation is inspired by [9], where a pixel is con-

sidered distinct if its surrounding patch does not appear

elsewhere in the image. In particular, the more differ-

ent a pixel is from its k most similar pixels, the more

distinct it is.

Let pi denote the patch centered around pixel i.

Let dcolor(pi, pj) be the Euclidean distance between the

vectorized patches pi and pj in normalized CIE L*a*b

color space, and dposition(pi, pj) the Euclidean distance

between the locations of the patches pi and pj . Thus,

we define the dissimilarity measure, d (pi, pj), between

patches pi and pj as:

d(pi, pj) =
dcolor(pi, pj)

1 + 3 · dposition(pi, pj)
. (2)

(a) Input (b) Distinctness D (c) Object probability O (d) Basic saliency Sb

Fig. 5: Basic saliency map construction. The Basic saliency map, Sb in (d), is the product of the Distinctness

map, D in (b), and the object probability map, O in (c). While the Distinctness map (b) emphasizes many pixels

on the grass as salient, these pixels are attenuated in the resulting map, Sb (d), since the grass is excluded from

O (c).
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Fig. 6: Our coarse-to-fine framework

Finally, we can calculate the distinctness value of

pixel i, D̂(i), as follows:

D̂(i) = 1− exp{−1

k

k∑
j=1

d(pi, pj)}. (3)

While in most cases the vicinity of each pixel is sim-

ilar to itself, in non-salient regions such as the back-

ground, we expect to find similar regions which are also

located far apart. By normalizing dcolor by the distance

of the two patches, such non-salient regions are penal-

ized and thus receive a low distinctness value.

We accelerate Eq. (3) via a coarse-to-fine frame-

work. The search for the k most similar patches is per-

formed at each iteration on a single resolution. Then,

a number of chosen patches, Ñ , and their k̃ designated

search locations are propagated to the next resolution.

In our implementation, three resolutions were used

R = {r, 12r,
1
4r}, where r is the original resolution. An

example of the progression between resolutions is pro-

vided in Figure 6. In yellow we mark the patch centered

at pixel i at each resolution. At resolution r/4, we mark

in red the kr/4 most similar patches. These are then

propagated to the next resolution, r/2. The kr/2 most

similar patches in r/2 are marked in green. Similarly,

we mark in cyan the next level. We set kr/4 = kr = 64,

kr/2 = 32 & k̃r/4 = k̃r/2 = 16.

The Ñ most distinct pixels are selected and prop-

agated to the next resolution using a dynamic thresh-

old calculated at each resolution. Pixels which are dis-

carded at resolution Rm will be assigned a decreasing

distinctness value for all higher resolutions (D̂l(i) =
D̂m(i)
2m−l ∀l < m).

We benefit from our efficient implementation not

only in run-time but also in accuracy (Figure 7) for

two reasons. First, unlike [9] that deal with high-res

images by reducing their resolution to 250 pixels long,

our efficient implementation enables to process higher

resolution and hence detects fine details more accu-

rately. Secondly, our coarse-to-fine process also reduces

erroneous detections of noise in homogenous regions. In

Table 1, we show that our method is faster than that

of [9], when tested on a Pentium 2.6GHz CPU with 4Gb

RAM. Later we show quantitatively that our approach

is also more accurate.

Input [9] Ours

Fig. 7: Our method achieves a more accurate boundary

detection in a shorter running time than that of [9].

Method Average Run Time Relative speedup
per image

[9] ∼ 52 sec —
Ours ∼ 23 sec 2.26

Table 1: Average runtime on images from [2]

Consideration of pixel reciprocity: Assuming that

distinctive pixels are indeed salient, we note that pixels

in the vicinity of highly distinctive pixels (HDP) are

more likely to be salient as well. Therefore, we wish to

further enhance pixels which are near HDP.

First, we denote the H% most distinctive pixels

as HDP. Let dposition(i,HDP) be the distance between

pixel i and its nearest HDP. Let dratio be the maximal

ratio between the larger image dimension and the max-

imal dposition(i,HDP), and cdrop−off ≥ 1 be a constant

that controls the drop-off rate. We define the reciprocity

effect, R(i), as follows:

γ(i) = log(dposition(i,HDP) + cdrop−off )

δ(i) = dratio −
γ(i)

maxi{γ(i)}

R(i) =
δ(i)

maxi δ(i)
. (4)

Finally, we update the Distinctness map with the

reciprocity effect:

D(i) = D̂(i) ·R(i). (5)

3.2 Object probability map

Next, we wish to further emphasize the saliency values

of pixels residing within salient objects. Thus, we at-

tempt to infer the location of these prominent objects

by treating spatially clustered HDP as evidence of their

presence.
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HDP clustering: HDP are grouped together when

they are situated within a radius of 5% of the larger

image dimension, of each other. Each such group is re-

ferred to as an object-cue.

To disregard small insignificant objects or noise, we

exclude object-cues with too few HDP or too small

an area. Object-cues whose number of HDP is smaller

than one standard deviation from the mean number of

HDP per object-cue, are eliminated. Moreover, object-

cues whose convex hull area is smaller than 5% of the

largest object-cue, are also disregarded.

Constructing the object probability map: To con-

struct the object probability map, O, we first compute

for each object-cue, o, the center of mass, M(o), as the

mean of the object-cue’s HDP coordinates,

{[X(i), Y (i)]|i ∈ HDP (o)}, weighted by their relative

distinctness values,D(i):M =
∑

i∈HDP (o)D(i)·[X(i),Y (i)]∑
i∈HDP (o)D(i) .

In order to accommodate non-symmetrical objects, we

construct a non-symmetrical probability density func-

tion (PDF) for each object-cue. According to our ex-

periments, a PDF consisting of 4 Gaussians, one per

object-cue’s quadrant, suffices.

Let µx and µy be the object-cue’s center of mass

coordinates. Each Gaussian is determined by dx and

dy, the distances to the farthest point in the quadrant.

For each quadrant, q, a Gaussian PDF is defined as:

Gq(x, y) = a · e−1/2·(x−µx)Σ
−1(y−µy). (6)

The covariance matrix ,Σ, is defined as:

Σ =

[
s · dx 0

0 s · dy

]
, (7)

where s controls the aperture.

Thus, the resulting PDF, G(x, y), is defined as:

G(x, y) = {Gq(x, y)|(x, y) ∈ Qq} , (8)

where Qq are the pixels that lie in quadrant q (Figure

8).

Fig. 8: Assuming the red star marks the center of mass

calculated, the 4 Gaussian PDFs offer an adequate cov-

erage of a non-symmetrical object.

Finally, we define the object probability map, O, as

a mixture of these non-symmetrical Gaussians.

In Figure 9 we present an example of our intermedi-

ate maps and their resulting saliency map. To discern

between the contribution of each of the dominant ob-

jects in Figure 9a to the object probability map (Fig-

ure 9b) we illustrate the two PDFs in different colors.

Each of the PDFs shown are adjusted to best fit their

designated dominant object; the PDF associated with

the dog (colored in purple) is horizontally elongated due

to the dog’s pose, while the cow’s PDF (colored in or-

ange) is vertically elongated. In Figure 9c we color the

HDPs that contribute to each of the PDFs accordingly.

Note how small objects and noisy background, detected

in our distinctness map (Figure 9c), are discarded with

the help of our object probability map to produce a

pleasing saliency map (Figure 9d).

(a) Input (b) Object probability

(c) Distinctness (d) Saliency

Fig. 9: Given an input image with separated multiple

dominent objects (a), our method successfully predicts

their locations (b). Note that while small or insignif-

icant objects, such as the cows found in the top left

corner, might be detected as salient by our distinctness

measure (c), they are discarded due to their size. The

resulting saliency map is shown in (d).

4 Saliency representations

Due to numerous needs of various applications, a single

saliency map representation is insufficient. Some appli-

cations (e.g. image mosaic) require a fine detailed out-

line of salient areas while other applications (e.g. crop-

ping) require a more coarse and definitive representa-

tion. Some applications, such as our painterly render-

ing framework, might even require more than a single

saliency layer.
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Fine Saliency map: Our fine saliency representation

is defined as the Basic saliency map obtained in Section

3 (Figure 10 center).

Coarse Saliency map: In order to create a more

“filled” saliency map (Figure 10 right), we incorporate

the method proposed in [6] with our Basic saliency map.

We do so by combining it with the product of a dilated

version (using a 15 pixel radius long disc kernel) of the

Basic saliency map, D{Sb} and [6]’s region based con-

trast approach, RC.

Scoarse(i) = Sb(i) +D{Sb}(i) ·RC(i). (9)

Input Fine saliency Coarse saliency

Fig. 10: Fine and coarse saliency map representations

Multi-layer saliency maps: Painters use various tech-

niques to guide our attention when viewing their art.

One such technique is the use of varying degrees of ab-

straction. For instance, in the paintings in Figure 11,

the prominent objects are highly detailed while their

surroundings and background are painted with increas-

ing levels of abstraction.

According to the multi-layer saliency principle, we

can create multiple saliency layers with varying relax-
ations, thus corresponding well to the varying degrees

of abstraction used in paintings.

We model these layers using three variations, each

creating a different effect. First, we relax our HDP selec-

tion threshold, effectively selecting more objects. Sec-

ond, we group farther HDP together into object-cues,

thus emphasizing more of each object. Finally, we in-

crease the effect of the pixel reciprocity map, resulting

Fig. 11: These painting by Chagall and Munch include

several layers of abstraction.

Initial saliency Fewer HDP
H = 3% s = 10 H = 0.0001%
cdrop−off = 10

Smaller aperture Faster drop-off
s = 0.4 cdrop−off = 0.1

Fig. 12: Modification of the multi-layer saliency param-

eters generates layers of varying degrees of detection.

Smaller H implies fewer objects, hence the top branch

is not detected. Smaller s implies less pixels associated

to an object-cue, hence, part of the leaf is missed. Higher

cdrop−off implies lower relation between proximate pix-

els, therefore, the leaf boundary is more pronounced

than its body.

in more area of the objects and their immediate context

being marked as salient.

To control the number of HDP selected, we mod-

ify H – the percentage of pixels considered as HDP.

To influence object association, we adapt s – the scale

parameter that controls the aperture of the Gaussian

PDFs (Eq. (7)). Last, we adjust cdrop−off that con-

trols the reciprocity drop-off rate (Eq. (4)). The result

of modifying each of these parameters is illustrated in

Figure 12.

5 Empirical evaluation

We show both quantitive and qualitative results against

state-of-the-art saliency detection methods. In our quan-

titive comparison we show that our approach consis-

tently achieves top marks while competing methods do

well on one dataset and fail on other.

Coarse saliency map: All the results in these exper-

iments were obtained by setting H = 2%, cdrop−off =

20, and s = 1.

We compare our saliency detection on 3 common

datasets, those of [2,13,15] (refer to Table 2 for details

regarding the various datasets). In each of the datasets

we test against leading methods.

In [13]’s and [15]’s datasets we test our method

against those of [6, 9, 13–15] (Figure 13 top). It can be
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Fig. 13: Quantitative evaluation. Top Left: Results on

the 62 images dataset of [13]. Top Right: Results on

the 100 images dataset of [15]. Bottom Left: Results

on the 1000 images dataset of [2]. Bottom Right: Re-

sults on same dataset with saturation levels at a 1/3 of

original value.

seen that our detection is comparable with [15] and out-

performs all others. Unlike [15], our results are obtained

without the use of top-down methods such as face and

car recognizers.

Next, thanks to publicly-available results of [2] on

their dataset, we test our method against that of [2]

as well (Figure 13 bottom-left). The detection of [6]

outperform all other methods on the this particular

dataset since their approach detects high-contrast re-

gions. When applying their approach to this dataset af-

ter reducing the saturation levels to a third of their orig-

inal value (Figure 13 bottom-right) their performance

is significantly reduced. Our approach suffers only a mi-

nor setback on the adjusted dataset.

Fine saliency map: Figures 2, 7 and 14 present a

few qualitative comparisons between our fine saliency

maps and state-of-the-art methods (See [1] for addi-

tional comparisons). It can be seen that our approach

provides a more accurate detection.

Multi-layer saliency map: Since previous work did

not consider the multi-layer representation, compari-

son is not straightforward. Nevertheless, to provide a

sense of what we capture, we compare our multi-layer

representation to results of varying saliency thresholds

of [9]. All our results were obtained with the following

fixed parameter values: Layer 1: H = 0.5%, s = 1,

cdrop−off = 2, Layer 2: H = 0.7%, s = 2, cdrop−off =

5, and Layer 3: H = 3%, s = ∞, cdrop−off = 20.

The layers for [9] were obtained by thresholding at 10%,

30%, and 100% of the total saliency (other options were

found inferior).

To quantify the difference in behavior we have se-

lected a set of 20 images from the database of [2]. For

each image we manually marked the pixels on each ob-

ject, and ordered the objects in decreasing importance.

A good result should capture the dominant object in

the first layer, the following object in the second layer

and the least dominant objects in the third. To mea-

sure this we compute the hit-rate and false-alarm rate

of each layer versus the corresponding ground-truth

object-layer. Our results are presented in Figure 15. It

can be seen that our hit rates are higher than [9] at

lower false alarm rates.

Figure 16 compares the results qualitatively. It shows

that thresholding the saliency of [9] produces arbitrary

layers that cut through objects. Conversely, our multi-

layer saliency maps produce much more intuitive re-

sults. For example, we detect the flower in the first

layer, its branch in the second and the leaves in the

third.

6 Applications

In this section we describe three possible applications

for utilizing our saliency maps. The first, painterly ren-

dering, which employs our multi-layer saliency repre-

sentation in order to create varying degrees of abstrac-

tion. The second, image mosaicing, makes use of our fine

saliency representation to accurately fit mosaic pieces.

Lastly, we use our coarse saliency representation as a

cue for image cropping. All the results in the paper were

obtained completely automatically, using fixed values

for all the parameters.

Dataset # of images Catagory Ground Truth
[13] 62 Natural scenes Four subjects ”selected regions where objects were present”
[15] 100 Urban scenes Eye tracking data from 15 people
[2] 1000

Dominant object Accurate contour of dominent object
[2] (1/3 saturation) 1000

Table 2: Datasets used for evaluation.
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Input [9] [14] [15] [6] [13] [2] Fine saliency

Fig. 14: Qualitative evaluation of fine saliency. Our algorithm detects the salient objects more accurately than

state-of-the-art methods. Making our detection more suitable for image manipulations. Note that since the model

in [6] is based on region contrast, the results for these particular two examples are not very good. Comparisons on

complete data sets are provided in Figure 13.
O

u
rs

[9
]

Fig. 16: Our multi-layer saliency maps are meaningful and explore the image more intuitvely. This behavior is not

obtained by thresholding the saliency map of [9], which results in arbitrary layers. The layers for [9] were obtained

by thresholding their saliency map to include 10%, 30% and 100% of the total saliency (other thresholds produced

inferior results). This figure is best viewed on screen.

Fig. 15: Hit rates and false-alarm rates of our multi-

layer saliency maps compared to thresholding the

saliency of [9]. Our layers provide better correspondence

with objects in the image.

6.1 Painterly Rendering

Painters often attempt to create an experience of dis-

covery for the viewer by immediately drawing the view-

ers attention to the main subject, later to less relevant

areas and so on. Two examples of this can be seen in

Figure 11, where the dominant objects and figures are

drawn with fine detail, whereas the background is ab-

stracted and hence less observed.

Our multi-layer saliency maps facilitate the auto-

matic re-creation of this effect. Based on a photograph,

we produce non-photorealistic renderings with different

levels of detail. This is done by applying various render-

ing effects according to the saliency layers. Our method

offers a simplistic bottom-up solution as opposed to a

more complex high-level approach such as [21].

Single layer saliency has been previously suggested

for painterly abstraction [7]. In [12], layers of frequen-

cies are used instead. Our approach is the first to use

saliency layers for abstraction. By using the saliency

layers as cues for degrees of abstraction, we are able to

successfully preserve the story of the photograph.

Given an image, we create a 4-layer saliency map:

Foreground, Immediate-surroundings, Contextual-surr-

oundings and Canvas. For each layer, we create a non-

photo realistic rendering of the image, based on its cor-

responding saliency layer (Figure 17). We suggest this

method as a general framework for painterly rendering

enabling any non-realistic rendering method to be ap-

plied to the different layers. To illustrate our framework,

we use simplistic rendering tools as an example.
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Input Painterly rendering

Layer composition Canvas

Foreground Immediate Contextual
surrounding surrounding

Fig. 17: Painterly rendering framework

In our demonstration we employ three standard tools:

Saturation, Texturing, and Brushing, (further described

in [1]). Then, the layers are alpha blended, one by one,

to create the final painterly rendering. The alpha map

of each layer is also based on the corresponding saliency

layer.

Foreground: This layer should include only the most

prominent objects and preserve their sharpness and fine-
detail. The saliency layer, SFG, used for this layer is ob-

tained by setting H = 2%, cdrop−off = 20, s = 1. This

layer is rendered with saturation and very light textur-

ing. To highlight the salient details, the alpha map is

computed as: αFG = exp (3SFG).

Immediate surrounding: To capture the immediate

surrounding, the saliency layer SIS is computed with

H = 2%, cdrop−off = 100, s = 2. SIS is used as the al-

pha map as well (αIS = SIS). Saturation and texturing

are both applied.

Contextual surrounding: The layer SCS , is obtained

by setting H = 3%, cdrop−off = 100, and disabling s.

Here too, SCS is used as the alpha map (αCS = SCS).

Canvas: The canvas contains all the non-salient areas.

All detail is abstracted away while attempting to pre-

serve some resemblance to the original composition. We

apply brushing and texturing.

Results: Figures 1(top),18, 19 provide a taste of our re-

sults. The fine details are maintained on the prominent

objects, while the background is more abstracted. In

Input Painterly rendered

Fig. 18: Painterly rendering. The fine details of the

dominant objects are maintained, abstracting the back-

ground.

Figure 19 we applied our painterly approach using the

saliency of [9] (layers defined as 10%, 30% and 100% of

the total saliency). Using our multi-layer representation

we are able to better capture fine detail such as the eyes

and nose and allow a smooth transition between salient

and non-salient regions.

6.2 Image Mosaic

Mosaic is the art of creating images with an assemblage

of small pieces or building blocks. We suggest the use of

an assortment of small images as our building blocks,

in a similar approach to [3].

We subdivide the original photograph into size-va-

rying square blocks. The size of the block is deter-

mined by the value of saliency in that area. We use

a quadtree decomposition where a block is subdivided

if the saliency sum of its enclosed area is greater than

64. We also avoid blocks with a width greater than 32

pixels or smaller than 4 pixels. Lastly, we replace each

block with an image with a similar mean color value.

Some results can be seen in Figures 1(bottom), 20-21. In

Figure 20 we demonstrate how our accurate saliency

detection achieves better abstraction than that of [9] in

non-salient regions, while preserving salient detail.

6.3 Cropping

Content-aware media retargeting and cropping has dr-

awn much attention in recent years [18,22]. We present

a simplistic cropping framework which makes use of the

coarse saliency representation. In our implementation,

row and column cropping are performed identically and
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Input Our [9]

Fig. 19: Painterly rendering comparison. Unlike [9], our approach better preserves fine detail such as the eyes,

nose and ears.

Input Our [9]

Fig. 20: Image mosaicing comparison. Our approach better preserves the prominent objects (dog & ball), while [9]

erroneously preserves the field on the right and abstractes the dog’s tail.

Input Mosaic

Fig. 21: Image mosaicing. Salient details are preserved

with the use of smaller building blocks.

independently of each other. For simplicity we refer to

row cropping in our explanation. Our approach consists

of three stages: row saliency scoring, saliency crossing

detection, and crop location inference:

Row saliency scoring: Each row is assigned the mean

value of the 2.5% most salient pixels in it.

Saliency crossing detection: Assuming that a promi-

nent object consists of salient pixels surrounded by non-

salient pixels, we search for all row pairs which enclose

rows with Row saliency score greater than a predefined

threshold thmid (thmid = 0.55). A pair of rows are con-

sidered if the distance between them is at least 10 pixels

and at least one of the rows enclosed between them has

a Row saliency score greater than thhigh (thhigh = 0.7).

Crop Location Inference: The first and last row

pairs detected in the previous stage are used. Start-

ing from the first row of the first pair we scan upwards

until we cross a row with a Row saliency score less than

thlow (thlow = 0.35). We do the same for the last row

of the last pair (scanning downwards). The two rows

found are set as the cropping boundaries.

Example results of our method are presented in Fig-

ure 22. We compare our cropping method using our

coarse representation as cue for salient regions versus

the use of the saliency map of [9] as a cue map. It can

be seen that our saliency maps yield a more precise

and intuitive cropping. Using our approach we are able

to successfully capture multiple objects (Figure 22 top-

center) as well as preserving the ”story” of the photo-

graph (Figure 22 bottom-center) by capturing both ob-

ject and context. We evaluate our results according to a

well known correctness measure [8]. Given a bounding-

box, Bs, created according to a saliency map and a

bounding-box, Bgt, created according to the ground-

truth, we calculate the cropping correctness according

to: Sc =
area(Bs∩Bgt)
area(Bs∪Bgt)

. We show that in both examples

our cropping leads to higher scores than [9].
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Sc = 1.00 Sc = 0.93 Sc = 0.62

Sc = 1.00 Sc = 0.78 Sc = 0.64
Input Ours [9]

Fig. 22: Examples of our cropping application.

7 Conclusions

We have presented a novel approach for saliency detec-

tion. We introduced a set of principles which success-

fully detect salient regions. Based on these principles,

three saliency map representations, each benefiting a

different application need, were demonstrated. We il-

lustrated some of the uses of our saliency representa-

tion on three applications. First, a painterly rendering

framework which creates a non-realistic rendering of an

image with varying degrees of abstraction. Second, an

image mosaicing tool, which constructs an image using

a dataset of images. Lastly, a cropping tool that auto-

matically crops out the non-salient regions of an image.

Limitations: When applying the object probabil-

ity map we assume that the subjects of the image are

not of highly varying sizes (allowed ratio of 1:20 be-

tween the smallest and largest prominent object). In

cases where a very large difference is found, our ap-

proach might erroneously regard one of these objects

as insignificant. In Figure 23 we illustrate such a case.

This can be avoided by adjusting the allowable differ-

ence in sizes between prominent objects. In our tests we

found that in most cases this assumption is reasonable.

(a) Input (b) Distinctness (c) Saliency

Fig. 23: Given an image consisting of prominent ob-

jects of highly varying sizes (a), our object probabil-

ity map might erroneously regard the smaller objects

(which were correctly detected as distinct (b)) as in-

significant and discard them (c).

Acknowledgements: This research was supported

in part by Intel, the Ollendorf foundation, the Israel

Ministry of Science, and by the Israel Science Founda-

tion under Grant 1179/11.
References

1. http://cgm.technion.ac.il/

Computer-Graphics-Multimedia/Software/ImMnplSal.
2. R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk.

Frequency-tuned salient region detection. In CVPR,
pages 1597–1604, 2009.

3. R. Achanta, A. Shaji, P. Fua, and Sabine Ssstrunk. Image
summaries using database saliency. In SIGGRAPH ASIA
Posters.

4. O. Boiman and M. Irani. Detecting irregularities in im-
ages and in video. IJCV, 74(1):17–31, 2007.

5. N. Bruce and J. Tsotsos. Saliency based on information
maximization. In NIPS, volume 18, page 155, 2006.

6. M.M Cheng, G.X Zhang, N.J. Mitra, X. Huang, and S.M
Hu. Global contrast based salient region detection. In
CVPR, pages 409–416, 2011.

7. JP Collomosse and PM Hall. Painterly rendering using
image salience. In Eurographics, 2002., pages 122–128,
2002.

8. M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The Pascal Visual Object Classes
(VOC) Challenge. International Journal of Computer
Vision, 88(2):303–338, 2010.

9. S. Goferman, L. Zelnik-Manor, and A. Tal. Context-
aware saliency detection. In CVPR, pages 2376–2383,
2010.

10. C. Guo, Q. Ma, and L. Zhang. Spatio-temporal saliency
detection using phase spectrum of quaternion fourier
transform. In CVPR, pages 1–8, 2008.

11. J. Harel, C. Koch, and P. Perona. Graph-based visual
saliency. In NIPS, volume 19, page 545, 2007.

12. J. Hays and I. Essa. Image and video based painterly
animation. In NPAR, pages 113–120, 2004.

13. X. Hou and L. Zhang. Saliency detection: A spectral
residual approach. In CVPR, pages 1–8, 2007.

14. L. Itti, C. Koch, and E. Niebur. A model of saliency-
based visual attention for rapid scene analysis. PAMI,
pages 1254–1259, 1998.

15. T. Judd, K. Ehinger, F. Durand, and A. Torralba. Learn-
ing to predict where humans look. In ICCV, pages 2106–
2113, 2009.

16. T. Liu, J. Sun, N.N. Zheng, X. Tang, and H.Y. Shum.
Learning to detect a salient object. In CVPR, 2007.

17. W. Prinzmetal. Visual feature integration in a world
of objects. Current Directions in Psychological Science,
4(3):90–94, 1995.

18. M. Rubinstein, A. Shamir, and S. Avidan. Multi-operator
media retargeting. TOG, 28(3), 2009.

19. D. Walther and C. Koch. Modeling attention to salient
proto-objects. Neural Networks, 19(9):1395–1407, 2006.

20. Y. Yeshurun, R. Kimchi, G. Sha’shoua, and T. Carmel.
Perceptual objects capture attention. Vision research,
49(10):1329–1335, 2009.

21. K. Zeng, M. Zhao, C. Xiong, and S.C. Zhu. From image
parsing to painterly rendering. TOG, 29(1), 2009.

22. G. Zhang, M.M Cheng, S.M Hu, and R.R. Martin. A
shape-preserving approach to image resizing. Computer
Graphics Forum, 28(7):1897–1906, 2009.


