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Abstract

Point sets are the standard output of many 3D scanning
systems and depth cameras. Presenting the set of points as
is, might “hide” the prominent features of the object from
which the points are sampled. Our goal is to reduce the
number of points in a point set, for improving the visual
comprehension from a given viewpoint. This is done by
controlling the density of the reduced point set, so as to cre-
ate bright regions (low density) and dark regions (high den-
sity), producing an effect of shading. This data reduction is
achieved by leveraging a limitation of a solution to the clas-
sical problem of determining visibility from a viewpoint. In
addition, we introduce a new dual problem, for determining
visibility of a point from infinity, and show how a limitation
of its solution can be leveraged in a similar way.

1. Introduction
The last decade has witnessed a massive growth in the

availability of range imaging and 3D scanning devices, from
high-end industrial devices to low-end consumer market de-
vices. These devices inherently produce 3D point sets from
which, in some cases, 3D surfaces are reconstructed. In
other cases, the point sets are left in their original form, for
further processing or analysis.

2D images, by definition, contain data viewed from a
specific position and therefore, in some manner, reflect hu-
man vision. Conversely, 3D point sets are usually pro-
duced from multiple views and do not follow human vi-
sion. Therefore, for human observers, point sets are often
difficult to comprehend, as demonstrated by looking at the
rocking-horse in Figure 1(a), which was produced using a
scanner. Why is this set difficult to grasp? Obviously, one
reason is that when drawing all the points, both the fore and
the back points are visible, which is confusing. Solving this
problem by removing the back points is helpful, but some
problems still remain (Figure 1(b)). First, there are still too
many points, which “hide” the subtle features, such as the
saddle and the harness. Second, due to different sampling
densities, false edges appear, e.g., on the neck of the horse.

(a) Input set (b) Visible set
(1,104,470 points) (456,016 points)

(c) Naive reduction of points (d) Our solution
(91,204 points) (71,252 points)

Figure 1. Extracting a subset of points that enhance visual com-
prehension. After removing the hidden points from (a), only the
visible points are presented in (b). This set is still too dense for the
fine features to be noticeable. Drawing every 5th visible point (c)
results in loss of the features. In (d), the result of our solution is
shown: points on the silhouette and on subtle features, such as on
the leaf-shaped relief on the horse’s back, are maintained.

Our goal is to perform reduction of points, as viewed
from a given viewpoint, such that the object’s fine features
become apparent, thus improving the visual comprehension
of the entire object, as demonstrated in Figure 1(d). The re-
gions that are desired to appear bright, should have a lower
density than regions that are desired to appear dark. The
question is how we can characterize these regions and de-
termine the appropriate subset of points.

Data compression was extensively discussed for im-

1



(a) Input P (b) Visible set PV (c) Silhouette points PSIL (d) Pit points PPIT (e) Final result PC
Figure 2. Algorithm outline. Given a point set P (193,252 points), the visible set of points PV is extracted. Then, silhouette points PSIL
and pit points PPIT are extracted as subsets of PV . Finally, PSIL and PPIT are combined to create our result (30,266 points).

ages [10, 14] and videos [11]. While the goal there is mostly
to maintain the visual quality, our goal is to improve it. Re-
cently, several methods were suggested for point cloud sim-
plification. Some aim at accelerating surface reconstruc-
tion, by first reducing the number of input points, and then
performing reconstruction on the reduced set [3, 6]. Other
methods aim at reducing the data for further processing,
such as smoothing or modeling [7, 9]. Their results do not
reveal some fine features of the 3D shapes. In [8], in ad-
dition to the visible points [5], silhouette points, extracted
by local reconstruction, are rendered. This method is highly
sensitive to noise. In contrast, our method improves the vi-
sual perception not only around the silhouettes, but also in
internal regions. Moreover, we benefit from slight noise,
such as depth measurement noise.

Our algorithm is based on two key ideas. First, we in-
troduce the dual problem to the classical Hidden-Point Re-
moval (HPR) problem, termed the Target-Point Occlusion
(TPO) problem. In both cases, we are given a set of points
and one specific point. HPR aims at detecting the visible
(or hidden) points, seen from the viewpoint. Conversely, in
TPO the goal is to find the subset of points that are visible
to outside observers, positioned along the lines that connect
these points with a given target point. These points are con-
sidered occluders of the target point. While HPR was solved
in [5], this paper suggests a solution to TPO.

Second, we show that, interestingly, the false negatives
of the operators that approximate HPR and TPO, are the
subset of points we wish to preserve for achieving good vi-
sual comprehension of the sampled shape. In particular, we
show how to extract points that belong to locally-concave
regions by determining false negatives of the HPR opera-
tor. Similarly, we extract silhouette points by using false
negatives of the TPO operator.

The contribution of this paper is hence threefold. First

and foremost, we present a novel algorithm for meaningful
view-dependent data reduction of point sets. Our algorithm
is inherently simple and easy to implement, and is flexible
in its ability to handle points in various dimensions. More-
over, we show how to handle both general point sets and
range data. Second, we introduce the problem of target-
point occlusion and present an operator that solves it in the
limit and approximates it in the finite case. Finally, we sug-
gest an algorithm for detecting the silhouettes of an object
directly from the point cloud.

2. Algorithm Outline

Given a point set P and a viewpoint C, our algorithm
aims at selecting a subset of P , which preserves the fea-
tures and the patterns of the object (Figure 2). The naive
approach of reducing the number of points by taking ev-
ery kth point, blurs the silhouettes and the fine features, as
it treats all the points similarly (Figure 1(c)). Instead, we
are inspired by the stippling-style art form, which simulates
varying degrees of shading, by controlling the density of the
points. Dense regions appear dark, whereas sparse regions
appear bright.

Formally, we seek a visually-comprehensible subset PC
of the visible points PV , PC ⊆ PV ⊆ P. In order to pro-
duce a compelling subset, we require PC to have the follow-
ing two properties: First, in order to highlight the outline of
the object, the likelihood of a point pi ∈ PV to belong to
PC should be proportional to the angle between the surface
normal and the line-of-sight. For instance, points on the sil-
houette should belong to PC . Second, to enhance the shad-
ing effect on the viewed point set, the likelihood of a point
pi ∈ PV to belong to PC should be large if it belongs to a
deep concavity and small if it belongs to a locally-convex
region. This is based on the observation that deep concavi-



ties tend to be less illuminated, compared to convex regions,
due to a reduced amount of light that reaches them.

Our algorithm is based on two dual operators. The first
operator is the HPR operator of [5] (Section 3), used for ap-
proximating the set of visible points, PV , from a viewpoint.
The second operator is used for approximating the set of
occluding points from infinity (Section 4). Both operators
have a curvature-related limitation, which is leveraged for
extracting the following two subsets (Section 5): PSIL ⊂
PV is the set of points that are located near silhouette re-
gions, as viewed from the given viewpoint. PPIT ⊂ PV
is the set of points that are located near concave regions, as
viewed from the viewpoint. Finally, we define the compre-
hensible set PC to be the union of these two subsets (Sec-
tion 6). Hence, PC contains points that are either near sil-
houette regions or near concave regions, as desired:

PC = PPIT ∪ PSIL.

3. The Hidden-Point Removal (HPR) Operator
Given a set of points P and a viewpoint C, the goal is to

find the set of points PV , which would be visible if the sur-
face from which the points were sampled, were known. De-
termining the visibility of a point set is an intriguing prob-
lem, as points cannot occlude each other. The most com-
mon way to compute visibility is therefore to reconstruct the
surface [2] and determine visibility on it. Reconstruction,
however, is a difficult problem, both theoretically and prac-
tically. Early attempts to address the problem directly from
the set, skipping reconstruction, were performed during ray
tracing. Since both rays and points are singular primitives,
the algorithms assume either “thick” rays [13] or “finite-
area” points [4, 12]. Unfortunately, assumptions need to be
made regarding the thickness of the rays or the area of the
points and normals must be estimated.

Katz et al. [5] address this problem regardless of ren-
dering and without normal estimation. Instead, an elegant
operator, the Hidden Point Removal (HPR) operator, is pro-
posed, which is supported by theoretical guarantees. The
HPR operator consists of two stages:
1. Inversion: An inversion function maps every point
pi ∈ P to an inverted domain. Many inversion functions
are possible and in [5] F (pi) = pi + 2(R − ||pi||) pi

||pi|| is
used, where R is a user parameter.

For our problem, we found the following function to be
advantageous. Assuming, without loss of generality, that C
is at the origin, the inversion function is defined as

Fγ(pi) =

{
pi‖pi‖γ−1, pi 6= 0
0 pi = 0

, (1)

where γ < 0 is a parameter.
2. Convex hull construction: The convex hull of the trans-

formed set of points and the viewpoint is calculated.
The main result of [5] is that the points that reside on the

convex hull of Step 2 are the images of the visible points.
Intuitively, “how much” a point is visible, depends on the
size of the empty region that lies between the point and the
viewpoint. The larger the size, the “more visible” a point
is. It is proved that points that fall on the convex hull in
the inverted domain are those that are associated with large
empty regions.

While the HPR operator is powerful, deep concavities in
the object result in false negatives (i.e., points that should be
visible but are not detected as such by the operator). This
can be explained by the following lemma, which relates be-
tween the correct detection of the visible points to the cur-
vature κ, the distance between the surface and the viewpoint
d, and the angle β between the surface normal and the line
of sight.

Lemma 3.1 Point p ∈ {HPRγ(P )} if p is visible and the
curvature κ at p satisfies:

κ <
γ(1− γ) sin(β)(cos2(β)− γsin2(β))

d(γ2sin2(β) + cos2(β))
3
2

.

This lemma, whose proof for the inversion function that
we use, is given in the appendix, implies that the HPR oper-
ator cannot resolve visibility in regions of high curvature. It
is guaranteed to detect the points correctly only if the curva-
ture κ is below a threshold, i.e., the local surface is convex
or the local surface is concave and the curvature is small
enough. In this paper, we show how to benefit from this
limitation, in order to extract our desired subset of points.

4. The Target-Point Occlusion (TPO) Operator
This section introduces a dual problem to the from-point

visibility, namely the Target-Point Occlusion (TPO). Given
a set of points P and a target point C, the goal is to find the
subset of P , which would occludeC from outside observers
positioned at∞, if the surface from which the points were
sampled, existed.

Figure 3 illustrates the difference between the two prob-
lems. In the HPR problem, the rays coming out of viewpoint
C, intersect the visible points. In the TPO problem, on the
other hand, the rays come towards C from infinity and in-
tersect the occluding points before reaching the target point.
Hence, each of these points occludes C from an observer,
which is located in the direction from which the ray is com-
ing, but farther than the occluding point. Obviously, when
a ray reaches C, the sample point on the ray is not occluded
by any other point in this direction.

Definition 4.1 Occluding point: Given a point set P and
a target point C, a point pi ∈ P is an occluding point to C,



(a) From-point visibility (b) Target-point occlusion
Figure 3. From-point visibility vs. target-point occlusion. We
are given a point set P (sampled from the gray surface) and a point
C (blue). The black points are the visible points from C in (a) and
the points occluding C from observers at infinity in (b).

if pi is visible to some observer located inO = C+t pi−C|pi−C| ,

where t > suppj∈P 〈pj − C,
pi−C
|pi−C| 〉.

To approximate the solution to the target-point occlu-
sion problem, we present an operator which, similarly to
the HPR operator, is composed of two stages: (1) point
transformation and (2) convex hull computation. Surpris-
ingly, the only modification needed is changing the param-
eter of the transformation function we utilize. In particular,
in Equation (1), we use γ < 0 for from-point visibility and
0 < γ < 1 for target-point occlusion; see Figure 4.

The correctness of this operator is expressed in the fol-
lowing lemmas, whose proofs are provided in the supple-
mentary material. Specifically, we show that in the limit,
when the point set is an infinite sampling of the surface, the
operator extracts the occluding subset accurately.

Let P be an infinite sampling of a surface S, O ⊆ S
be the set of points that occlude the target point C (i.e., the
ground truth), and TPOγ(P ) ⊆ S be the set of points ex-
tracted by our operator.

Lemma 4.1 TPOγ(P ) ⊆ O, i.e., every point p marked
occluding by the operator is indeed an occluding point.

Lemma 4.2 When γ → +0, the set of points marked by the
TPO operator, is equal to the set of occluding points.

Intuitively, Lemma 4.1 suggests that in the limit, the
number of false positives of the operator is 0. Lemma 4.2
adds that the number of false negatives is also 0 when
γ → +0. (The supplementary material also proves guar-
antees for the case of finite sampling.)

We are particularly interested in understanding the loca-
tions where false negatives appear. The following Lemma,
which is the equivalent of Lemma 3.1, addresses it.

(a) From-point visibility, (b) Target point occlusion,
γ = −0.01 γ = 0.01

Figure 4. Results for from-point visibility & target-point oc-
clusion for a 2D point set. Blue points were detected visible
(occluding), while green points were detected as invisible (non-
occluding). The red point is the viewpoint (target point).

Lemma 4.3 p ∈ {TPOγ(P )} if p is visible to an observer
positioned on the ray p-C, farther away than any point in
P , and the curvature κ at p satisfies

κ >
γ(1− γ) sin(β)(cos2(β)− γsin2(β))

d(γ2sin2(β) + cos2(β))
3
2

.

Therefore, while the HPR operator is limited in its ability
to correctly identify visible points around locally-concave
regions, in respect to the viewpoint, the TPO is limited in its
ability to correctly identify occluding points around locally-
convex regions. These dual limitations are the basis for our
point reduction method.

5. Controlled Reduction of Points
Our goal is to extract a subset of the visible points, which

satisfies the two requirements discussed in Section 2. Re-
call that we look for (1) points at locally-concave regions,
which create a natural shading effect, and (2) points around
the silhouettes regions, which by definition, have normals
perpendicular to the line of sight. We note that the latter
tend to belong to locally-convex regions.

Recall Lemma 3.1, which states that when applying the
HPR operator with γ < 0, the operator will produce false
negatives around locally-concave regions. But these are
precisely the points we seek after. We term these false neg-
atives as pit points and define them as:

Ppits = PV \HPRγp(P ). (2)

Similarly, from Lemma 4.3, we learn that the TPO op-
erator will produce false negatives around locally-convex
regions. These false negatives are the tip points, defined as:

Ptips = PV \ TPOγt(PV ). (3)

Since, as illustrated in Figure 4, the tip points need not
necessarily be a subset of the visible points (e.g., the back



(a) Input range data (b) Tip points (c) Pit points
Figure 5. Tip & pit points for range data. These points allow
easy comprehension of the object.

of the bunny), we apply the TPO operator on the set of vis-
ible points, rather than on the entire point set. Recall from
Lemma 4.3 that the curvature bound depends also on β, the
angle between the tangent and the line-of-sight. Since we
wish to extract points with a small β (i.e., silhouettes), we
use γt that is close to 0. We can now define Psils = Ptips.

The problem with the realization of Equations (2)-(3) is
that PV is unknown. Below, we propose solutions both for
range data and for generic point clouds.

The case of range data: Range data, generated by range
scanners, are samples of distances from the camera to the
scene being scanned. These samples are represented simi-
larly to images, in a 2D matrix, adding the z coordinates.

Due to the fact that this data consists of samples that are
seen from a given viewpoint (scanner), it provides the vis-
ible point set from the scanner location. Therefore, in this
case PV = P and the pit points are simply

Ppits = P \HPRγp(P ).

Similarly, the set of silhouette points is defined as

Psils = P \ TPOγt(P ).

Figure 5 shows the pit points and the tip points for a
range data set, for γt = −γp, which are points on locally-
concave regions and on locally-convex regions, respec-
tively. While the details of the facade of the church cannot
be identified in the input, they are clearly perceived when
rendering only the tip or only the pit points. For all the
other results shown in this paper, |γt| << |γp|, so that only
convex points near the silhouettes are extracted.

The case of generic point clouds: In this case, we do not
have available the ground truth of PV . We therefore need to
approximate it. Fortunately, such approximation exists—it

(a) Ppits1 (b) Ppits2

(c) Ppits3 (d) PPIT =
⋃i=3
i=1 Ppitsi

Figure 6. The final set of pit pointsPPIT . The union of three sets
of pit points creates an appearance of a gradual change.

is the result of applying the HPR operator on a point set.
We therefore apply the HPR operator twice, with different
parameters and define the set of pit points as

Ppits = HPRγv (P ) \HPRγp(P ),

where γp < γv < 0. Hence, points that belong to Ppits pass
the curvature threshold for γv , but not the threshold for γp.

In order to control the sensitivity of the pit point extrac-
tion, we define a sensitivity parameter ep = γv

γp
. The set of

pit points is now reformulated as

Ppits(P, γv, ep) = HPRγv (P ) \HPR γv
ep

(P ). (4)

When ep → 1, less and less points are considered as pit
points, and when ep = 1, Ppits = ∅. Figures 6(a)-(c) show
the pit points extracted for different values of ep.

Similarly, changing PV toHPRγv (P ) in Equation 2, re-
sults with a method to extract point in the silhouette regions:

Psil(P, γv, et) = HPRγv (P ) \ TPO− γvet (HPRγv (P )).

6. Producing the Visually-Comprehensible Set
In the last step of the algorithm, we wish to find the sub-

set of points, PC , which is not only much smaller than the
input set, but also visually “describes” the object in an eye-
pleasing manner. One way to achieve this is to create a vi-
sual effect of soft illumination. For this, we would like the
density of the points to gradually change from being sparse
in “lit“ regions to being dense in “shaded“ regions.

As illustrated in Figure 6(a)-(c), the pit points create a
rather sharp transition between regions that are densely pop-
ulated with points and regions that are sparse. To achieve



(a) Psil1 (b) Psil2

(c) Psil3 (d) PSIL =
⋃i=3
i=1 Psili

Figure 7. The final set of silhouette points PSIL. The union of
three sets of pit points creates an appearance of gradual change.

Figure 8. The final result PC = PPIT ∪ PSIL.

the gradual density change effect, we create a cascade of N
pit point sets, each is calculated with a different parameter
e and has a different tone level, as explained hereafter.

Let E = {e1, e2 · · · eN} be a vector of parameters to
Equation (4) and Tone = {tone1, tone2 · · · toneN} be a
vector that controls the relative level of tone for each level of
sensitivity. Intuitively, E ”thresholds” the curvature of the
points considered, whereas Tone represents the ”darkness”
for each level.

We define the pit points at level j to be

Ppitsj = {pi|pi ∈ Ppits(P, γv, ej), ti ≤ tonej}, j = 1...N.

Here, ti is a random variable sampled uniformly from the
range [0, 1]. If tonej = 1, then all the points are taken for
level j. If tonej = 0.5, then roughly half of the points in
Ppits(P, γ, ej) will belong to the final set. In general, for
tonej = α, α of the points are drawn.

The final set of pit point PPIT is defined as:

PPIT = {pi|pi ∈
⋃
j

Ppitsj}.

Figure 6 demonstrates that the fine features, such as the
“diamond-shaped” texture, become apparent and the tran-
sitions between dark and bright regions are gradual.

(a) 99,585 points (b) 9,107 points

(c) 163,662 points (d) 29,968 points

(c) 253,716 points (d) 72,250 points
Figure 9. Results. Our results (right) not only improve the visual
comprehension of the objects (left), but are also eye-pleasing.

The set PSIL is produced similarly, and creates “round-
ness” near the silhouette (Figure 7). Recall that the final set
is defined as (Figure 8): PC = PPIT ∪ PSIL.

7. Results
This section shows additional results. In all the ex-

amples, we use the following default parameters: N =
3, γv = −0.00001, TONE = (1, 0.5, 0.25), E =
(0.01, 0.002, 0.001). Figure 9 shows results for several



(a) View 1, visible points (b) View 1, Ppits

(c) View 2, visible points (d) View 2, Ppits

(e) PPIT
Figure 10. Result on range data consisting of 15 million points.
While the presentation of the whole set of points is not informa-
tive, our reduced set provides a visually descriptive view.

generic point sets. Our method reduces the number of
points considerably, while not only improving the visual
comprehension of the objects, but also producing aesthetic
drawings. In particular, fine features, such as the facial fea-
tures, have become more apparent.

Figure 10 shows our result for range data from [1], which
was scanned by a Riegl VZ-400 laser scanner. It contains 15
million samples captured from a single point. It is easy to
see that while the input data (left) is too dense to understand,
the reduced sets make it possible to comprehend.
Comparisons: In Figure 1, we compare our work to the
straightforward solution of removing every kth point, and
show that our method maintains the fine features and tex-
tures. Figure 11(a)-(b) demonstrates a similar effect, when
comparing our work to the simplification method of [7].
In Figure 11(c)-(d) we compare our results to stippling of
point sets [16]. Though stippling has a somewhat differ-
ent goal, it also aims at rendering points in an aesthetic
manner [15, 16]. It is evident that our technique manages
to preserve the subtle details, such as the 3D texture on

(a) Simplification [7] (b) Our method

(c) Stippling [16] (d) Our method

(e) Result of [8] (f) Our method
Figure 11. Comparison to previous methods. We manage to
maintain the 3D texture compared to [16]. While [8] uses points
and lines for visualization, our method requires only points. In
addition, our method creates an effect of self-shadowing, which
improves the depth perception.

the dragon’s side of the body. Figure 11(e)-(f) compares
our result to that of [8], where the goal is quite similar to
ours—direct visualization of point sets. Their method pro-
duces very nice results, however our method creates a self-
shadowing effect, which improves depth perception. In ad-
dition, in contrast to [8], our method can be applied on noisy
point sets and does not render all the visible points, which
may not be useful if the set is too large.
Limitations: Our current Matlab implementation does not
allow real-time rendering of very large point sets (7 sec-
onds on 500,000 points). The bottleneck of the method is
the convex hull computation (O(n log n)). In the future, it
would be possible to significantly improve the run-time per-
formance, using GPU-accelerated convex hull construction.

8. Conclusion
This paper has presented an algorithm for view-

dependent data reduction of a point set, which improves the
visual comprehension of the sampled object. The utility of
the algorithm was demonstrated by producing compelling
results on a variety of point sets—both unorganized sets and
range data. Our algorithm neither reconstructs the surface,
nor re-samples the data or estimates normals. Instead, it



works directly on the input set. The algorithm is easy to
implement, while supported by theoretical guarantees. The
resulting set can be utilized in various analysis problems.

Our algorithm is based on two key ideas. First, we dis-
cuss and analyze two dual visibility problems: the classical
from-point visibility and the new target-point occlusion. We
utilize the HPR operator to approximate the from-point vis-
ibility and propose an operator that approximates the solu-
tion to the target-point occlusion problem. Second, we show
how exploiting the limitations of these operators—the fact
that their correctness depends on the local curvature—lets
us define a subset of points, whose presentation improves
the perception of the given point cloud.

As byproducts, our paper presents algorithms for both
directly computing occlusion and extracting silhouettes of
point sets, while avoiding surface reconstruction. These al-
gorithms are important in their own right in computer vision
and in computer graphics.
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A. Proof of Lemma 3.1
Proof: Let p̂ = F (p) = (x̂, ŷ) denote the image of p
and Λ̂ be the line through p̂ along the convex hull. Without
loss of generality, we define a coordinate system as follows
(Fig. 12): The vantage point C is at the origin; the Y -axis
is parallel to Λ̂; the X-axis is perpendicular to the Y -axis.
p = (x, y) in Euclidean coordinates and (d, θ) in polar co-
ordinates. Since θ = tan−1(y/x), then θ = β−π/2. Thus,

(x, y) =

(
cos(θ)(

x̂

cos(θ)
)

1
γ , sin(θ)(

x̂

cos(θ)
)

1
γ

)
.

Figure 12. The figure shows line Λ̂ parallel to the Y -axis and its in-
version source Λ through p. The curvature κΛ of Λ at p is the max-
imal curvature beyond which p is marked invisible by the HPR.

We are interested in curve Λ, which is the inversion
source of Λ̂, and in its curvature κΛ. p will be marked vis-
ible if the curvature κ at p is smaller than κΛ and marked
hidden otherwise. Varying x and y along Λ and taking their
derivatives with respect to θ yields:

ẋ = − (γ − 1)

γ
sin(θ)(

x̂

cos(θ)
)

1
γ

,

ẏ = (cos(θ)− cos2(θ)− 1

γ cos(θ)
)(

x̂

cos(θ)
)

1
γ

,

ẍ =
(1− γ)(γ cos2(θ)− cos2(θ) + 1)

γ2 cos(θ)
(

x̂

cos(θ)
)

1
γ

,

ÿ =
sin(θ)(γ + 1− γ2 cos2(θ) + 2γ cos2(θ)− cos2(θ)

γ2 cos2(θ)
(

x̂

cos(θ)
)

1
γ

.

Using the definition of the curvature ẋÿ−ẏẍ
(ẋ2+ẏ2)3/2

,

κΛ =
( x̂

cos(θ)
)

2
γ (γ − 1)(cos(θ)2 + γcos(θ)2 − 1)

γ2cos(θ)2

(
sin(θ)2( x̂

cos(θ)
)
2
γ (γ−1)2

γ2
+

( x̂
cos(θ)

)
2
γ (γcos(θ)2−cos(θ)2+1)2

γ2cos(θ)2

) 3
2

.

Expressing κγ in terms of d and β, using the identities
β = π

2 + θ, x = d cos θ = d sinβ, y = d sin θ = −d cosβ,
and x̂ = dγ sinβ, we obtain

κΛ =
γ(1− γ) sin(β)(cos2(β)− γsin2(β))

d(γ2sin2(β) + cos2(β))
3
2

.2


