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(a) Bremen city [3], colored according to height (b) The best viewpoint, colored according to our saliency
Figure 1. Detecting the salient features in a point set of an urban scene. Given the noisy point set of the Bremen center (a), containing
12M points, our algorithm computes its saliency. The most salient points, such as the rosette and the crosses on the towers, are colored in
yellow and red. The least salient points, belonging to the floor and the feature-less walls, are colored in blue. Our saliency map is utilized
for finding the most informative viewpoint (b), displaying the most interesting buildings of the city – St. Peter’s Cathedral and Bremen’s
town hall. In (b) we also show images of the parts that were found to be the most salient.

Abstract

While saliency in images has been extensively studied in
recent years, there is very little work on saliency of point
sets. This is despite the fact that point sets and range data
are becoming ever more widespread and have myriad appli-
cations. In this paper we present an algorithm for detecting
the salient points in unorganized 3D point sets. Our algo-
rithm is designed to cope with extremely large sets, which
may contain tens of millions of points. Such data is typi-
cal of urban scenes, which have recently become commonly
available on the web. No previous work has handled such
data. For general data sets, we show that our results are
competitive with those of saliency detection of surfaces, al-
though we do not have any connectivity information. We
demonstrate the utility of our algorithm in two applications:
producing a set of the most informative viewpoints and sug-
gesting an informative city tour given a city scan.

1. Introduction

Saliency detection has attracted a lot of attention in com-
puter vision, with myriad applications. Examples include
object recognition, similarity, registration, matching, down-
sampling, and visualization. Most of the works concentrate
on images [2, 9, 12, 14, 28] and videos [11, 19, 22, 25].
Less work addresses saliency of 3D surfaces [5, 7, 17] and
only a few papers handle point sets [1, 16].

Due to the fast development of 3D data acquisition tech-
niques, 3D point sets have become widely spread. The
traditional way to process and analyze point sets is to re-
construct the underlying surface and then apply well-known
methods. However, when the size of the data is large, such
methods are computationally expensive, if not impractical.
Moreover, the data acquired is usually distorted by noise,
which makes reconstruction challenging.

Extending the existing techniques of saliency detection
for 3D surfaces to operate directly on large point sets is
not trivial. This is so, not only due to the large size of the



Low-level distinctness (Dlow) Low-level association (Alow) High-level distinctness (Dhigh) Final saliency map (S)
Figure 2. Algorithm outline. The low-level distinctness is first computed, identifying small geometric features, such as the teeth and the
spikes on the head and on the back of the dragon. Then, association is applied, grouping salient points and emphasizing the dragon’s facial
features. Next, the high-level distinctness procedure detects larger regions, such as the tail and the mouth. Finally, the maps are integrated
to produce the final saliency map.

data, but also due to the absence of topological informa-
tion regarding the point connectivity. In particular, the ex-
isting algorithms use geodesic distances and simplification
and hence, cannot be applied to unorganized point sets.

Similarly to previous saliency detection algorithms,
which operate on other types of data, our saliency detection
algorithm is based on distinctness. The challenge here is
to look for a distinctness definition that suits point sets and
is computationally efficient. Moreover, taking into account
the hierarchical human visual perception mechanism [10],
we identify globally-distinct features in a multi-level man-
ner. The low levels account for the detection of delicate
features, while suppressing 3D textures. The high levels, on
the other hand, identify entire unique regions. Additionally,
according to [29], we need to consider the fact that visual
forms may possess one or several centers of gravity about
which the form is organized. Therefore, points that are close
to the foci of attention are more salient than faraway points.

We propose a novel algorithm that detects salient points
in a 3D point set (Figure 1), by realizing the considerations
mentioned above. We discuss a compact point descriptor
that characterizes the geometry of a point’s neighborhood.
For each level, a different neighborhood size is used. Addi-
tionally, to take the distance to foci into account, we adjust
the point distinctness according this distance.

Our algorithm is general and competes favorably with
state-of-the-art techniques for saliency detection of general
objects, which typically consist of less than a million points.
However, it also copes with point sets of urban scans, con-
taining tens of millions of noisy points.

We demonstrate the utility of our saliency maps in two
applications. The first application produces a set of the
most informative viewpoints for a given point set, maximiz-
ing the accumulative viewed saliency. Second, for urban
scenes, we construct an informative tour in the city, which
maximizes the interesting area viewed by the tourist.

Our contributions are thus twofold. First, we propose
a novel algorithm for detecting the salient points in large
point sets (Sections 3-5). Second, we demonstrate the ap-
plicability of our results (Section 6).

2. General Approach
Given a point set, our goal is to efficiently compute its

saliency map. Since human attention is drawn to differ-
ences, we look for points whose neighborhood is unique
geometrically with respect to other neighborhoods. To cap-
ture distinctness, Section 3 discusses a point’s descriptor
that characterizes the geometry of a point’s neighborhood.
A point is considered distinct if its descriptor is dissimilar
to all other point descriptors of the set. The choice of a good
dissimilarity measure between the descriptors is of high im-
portance and therefore is also discussed.

Taking into account the fact that object recognition is
performed hierarchically, from local representations to ab-
stract ones, our saliency detection algorithm analyzes a
scene hierarchically. In particular, distinctness should be
computed in a multi-level manner. In practice, we found
that two levels suffice. In the low level, delicate unique fea-
tures are highlighted, while in the high level, the distinct-
ness of entire semantic parts is detected.

Finally, we wish to look for salient regions, rather than
for isolated points [29]. This consideration follows the hu-
man tendency to group close items together. Therefore, we
apply point association, which regards the regions near the
foci of attention as more interesting than faraway regions.

Figure 2 illustrates our approach. First, low-level dis-
tinctness, Dlow, is computed, highlighting small features,
such as the teeth and the spikes on the head and on the back
of the dragon. Then, we apply association, Alow, which in-
creases the saliency in the neighborhood of the most distinct
points. Next, high-level distinctness, Dhigh, is computed,
detecting large features, such as the tail and the mouth. Fi-
nally, the above three components are integrated into the
final saliency map, S, defined for a point pi as follows:

S(pi) =
1

2

(
Dlow(pi) +Alow(pi)

)
+

1

2
Dhigh(pi). (1)

3. Point Descriptor and Dissimilarity Measure
In order to determine whether a point is distinct, we

should first characterize it by a descriptor. Then, we should



Figure 3. Darboux frame. To compute the relative angular differ-
ences between two points, p and pt, and their normals, n and nt,
a fixed coordinate frame uvw is defined at one of the points.

define a dissimilarity measure that compares these descrip-
tors. Finally, using the dissimilarities of a point to other
points in the set, the distinctness is computed. Below we
discuss our point descriptor and our dissimilarity measure.
The next section will define distinctness.

Point descriptor: We seek a descriptor that has good ex-
pressive power of the local shape geometry. Moreover, due
to the size of the data, it should also be compact and ef-
ficient to compute. Furthermore, the descriptor should be
invariant to rigid transformations and robust to noise, as the
data is typically very noisy.

We have experimented with various descriptors and
found that a slightly-modified Fast Point Feature Histogram
(FPFH) [24] best suits our problem. We describe it and our
modification hereafter.

The FPFH captures the relative angular directions of the
normals with respect to one another. To compute it for a
point p, the neighbors enclosed in a sphere with radius r
are first found. Then, for every point pt inside the sphere,
we define a Darboux uvw frame (Figure 3): u = n, v =
(pt − p) × u,w = u × v, where n is the estimated normal
of p. The following angular variations are then computed:

α = v · nt,

φ = u · pt − p
||pt − p||

, (2)

θ = arctan(w · nt, u · nt).

Next, a histogram of the quantized angles (α,φ,θ) between
p and its neighbors is computed, and termed the Simplified
Point Feature Histogram (SPFH). Finally, FPFH is calcu-
lated using the SPFH of a given point and a weighted sum
of the SPFH of its neighbors:

FPFH(p) = SPFH(p) +
1

K

K∑
k=1

SPFH(pk)

||p− pk||
, (3)

where K is the number of neighbors of p.
Since the FPFH descriptor is not invariant to reflection,

which is crucial in our case, we use a modified FPFH, where
the triple (α, φ, θ) gets the absolute values.

(a) Spin Images (b) SHOT (c) Our descriptor
Figure 4. Comparison to other point descriptors: The low-level
distinctness produced using our descriptor (Equation 6) outper-
forms others. It detects the fine features, such as the rosette, the
crosses on the top of the towers and the sculptures in the windows.

This descriptor satisfies our requirements. It is compact
and quick to compute. Moreover, it is invariant to rigid
transformations and robust to noise.

Comparison to alternative descriptors: We compared
our descriptor to SHOT [27] and to Spin Images [13]. Fig-
ure 4 shows the low-level distinctness produced using the
three descriptors. It can be noticed that FPFH competes
favorably with the other descriptors, detecting the fine dis-
tinctive features, such as the rosette, the crosses on the top
of the towers and the sculptures in the windows. This can
be explained by the fact that the other descriptors are highly
dependent on accurate normal estimation at the query point,
which is not the case for our noisy data. Conversely, in
FPFH the normals in the whole neighborhood are consid-
ered, reducing the dependency on a specific normal.

An additional advantage of our descriptor is its compact-
ness (33 bins), which makes it applicable to extremely large
data sets. The Spin Images descriptor is twice as big as the
FPFH (64 bins), while SHOT is ten times bigger than the
FPFH (352 bins). The nearest neighbor calculation using
FPFH is 20 times faster than using SHOT and 6 times faster
than using Spin Images. Therefore, the large size of our
data renders the use of SHOT or Spin Images impractical.

Dissimilarity measure: We seek a dissimilarity measure
that is robust to noise and to sampling density. In addition,
its computation should be fast, due to the large data the al-
gorithm is designated to work on.

To address the performance requirement, we are using
the K-D Tree data structure to organize the descriptors.
Since cross-bin metrics cannot be used within a K-D Tree,
we considered several metrics which can, including L1, L2,
Manhattan distance and Chi-Square (χ2). We found that χ2

is superior to the others, being less affected by noise, while
still being sensitive to delicate features.

Formally, given two points, pi and pj , and their FPFH



descriptors, the χ2 dissimilarity measure between them is:

Dχ2(pi, pj) =

N∑
n=0

(
FPFHn(pi)− FPFHn(pj)

)2
FPFHn(pi) + FPFHn(pj)

, (4)

where N is the number of bins in the FPFH and FPFHn

denotes the nth bin of the histogram.

4. Hierarchical Saliency Computation

Our goal is to compute saliency based on the dissimilar-
ity between the descriptors, discussed in the previous sec-
tion. Following human visual perception, we analyze both
the unique delicate features, as well as the large meaningful
regions of the scene.

First, we identify the low-level distinctness that high-
lights the fine details. Then, we use this information in the
high-level stage, where entire significant parts of the scene
are detected. We use a small neighborhood for the low-level
distinctness and a large neighborhood for the high-level dis-
tinctness. Without loss of generality, we assume that our
point sets are normalized to fit in a unit sphere.

Low-level distinctness: A point p is distinct when it dif-
fers from the other points in its appearance. This is usu-
ally realized by looking for point descriptors whose dissim-
ilarity to other descriptors is high. However, in the low-
level stage, where the point descriptor is calculated on a
small neighborhood, this consideration is insufficient. Sim-
ilar points that are far away indicate the existence of a 3D
texture and thus, the distances between the points are im-
portant as well. Inspired by [9], a point is distinct when
the points similar to it are nearby and less distinct when
the resembling points are far away. Therefore, the low-level
dissimilarity measure is proportional to the difference in ge-
ometry and inverse proportional to the Euclidian distance:

dL(pi, pj) =
Dχ2(pi, pj)

1 + ||pi − pj ||
. (5)

In practice, computing this dissimilarity between all the
points of the point set is too expensive. It suffices to con-
sider only points that are highly similar to the query point.
Therefore, for every point pi, we search for a set of points P
for which Dχ2(pi, pj) ≤ dmin,∀j, using our K-D tree data
structure. In our implementation the threshold dmin is 1%
of the maximal distance between the descriptors.

Finally, a point pi is distinct when dL(pi, pj) is high
∀pj ∈ P. Thus, the low-level distinctness value of point
pi is defined as:

Dlow(pi) = 1− exp

(
− 1

|P|
∑
pj∈P

dL(pi, pj)

)
. (6)

Point association: Detecting low-level distinctness usu-
ally results in isolated points. However, people tend to
group close items together, since visual forms possess one
or several focus points about which the form is organized.
We model this effect, similarly to [9], by defining a fraction
(20% in our implementation) of points having the highest
low-level distinctness, as focus points. Let pfi be the closest
focus point to pi andDfoci(pi) be the low-level distinctness
of pfi. The association of point pi is defined as (σ = 0.05):

Alow(pi) = Dfoci(pi) · exp

(
−||pfi − pi||

2

2σ2

)
. (7)

High-level distinctness: To evaluate the distinctness of
entire regions, we compute our descriptors on large neigh-
borhoods. For cases where no prior information on the data
is available, we pick the neighborhood to be a sphere with
radius 0.1. For city scans, we set the radius to be half the
height of the tallest building.

When the descriptors are computed on large neighbor-
hoods, the neighborhoods of close points almost fully over-
lap, leading to very similar descriptors. Therefore, we
would like to decrease the contribution of nearby points and
consider a point distinct when it is dissimilar to far points.

This is achieved by logarithmic weighting, which re-
duces the contribution of very close points, without affect-
ing faraway points. In particular, we define the high-level
dissimilarity measure between pi and pj as:

dH(pi, pj) = Dχ2(pi, pj) · log(1 + ||pi − pj ||). (8)

Finally, high-level distinctness is defined as:

Dhigh(pi) = 1− exp

(
− 1

|P|
∑
pj∈P

dH(pi, pj)

)
. (9)

Since the high-level distinctness depends on the low-
level distinctness, the descriptor of each point is computed
by considering only 10% of the points with the highest low-
level distinctness.

5. Results

Our algorithm is designed to run on extremely large data
sets. An example of such data is city scans, which have
recently become prevalent. We are not aware of any related
work that handles saliency of such huge data. This section
demonstrates our results on this type of data. Moreover, to
assess the quality of our results, we compare them to those
produced by surface saliency detection algorithms. In this
case, we show that our results are competitive, despite the
lack of connectivity information.



(a) Our saliency for the campus (zoom-in) (b) An image of the campus from Google maps
Figure 5. The saliency for the Jacobs University campus (15M points). The buildings are salient and therefore are colored in orange.
The trees, of which there are many, are less salient and are colored in green. The floor is blue.

Saliency in urban scenes: Urban point sets usually con-
sist of millions of noisy points, which are generated by
merging multiple range scans. We ran our algorithm on two
such point sets, the city center of Bremen and the Jacobs
University campus (Figures 1, 5), which were scanned by a
Riegl VZ-400 laser scanner [3].

Figure 1 shows our saliency map for the city center of
Bremen. Our high-level distinctness identifies the entire
facades of the most interesting buildings: the St. Peter’s
Cathedral and Bremen’s town hall. The low-level distinct-
ness highlights the fine details of the buildings, such as the
rosette on the Cathedral, the crosses on the towers, and the
small statues on the roof.

Figure 5 shows our saliency for the Jacobs University
campus. The buildings are found salient and therefore are
colored in orange. The trees, which are similar in their ap-
pearance and of which there are many, are less salient and
are thus colored in green. The floor appears in blue.

General 3D objects: Hereafter, we demonstrate the re-
sults of our algorithm on 3D objects that contain up to mil-
lions of points. In the case where the objects are represented
as surfaces, we use only their vertices as the input to our al-
gorithm, ignoring the connectivity. Figure 6 demonstrates
that our algorithm detects the “expected” salient regions,
such as the fork of Neptune and the fish next to his feet, and
the facial features of Max Planck and the dinosaur.

Qualitative evaluation: In order to assess the quality of
our algorithm, we compare our results to those of saliency
detection of surfaces. Unlike the case of surfaces, we do
not have information regarding the connectivity between the
points, the exact normals, the ability to compute geodesic
distances, etc. Nevertheless, we show below that our ap-
proach is competitive, while being more efficient.

In particular, we compare our method to the recent work
of [18]. As can be seen in Figure 7, for small models, like
the frog, the results are similar, as both methods detect the
facial features and the limbs. However, when running on
models with hundreds of thousands of points, our method

2M points 204K points 129K points
Figure 6. Saliency for large point sets. Our algorithm detects the
“expected” salient regions, e.g., the fork of Neptune and the fish
near his feet and the facial features.

produces better saliency maps, detecting fine features, such
as the delicate relief features on the bowl and fins of the fish.
This can be explained by the fact that in [18] the models are
simplified as a preprocessing step, as their algorithm can-
not run on large data. Conversely, for our algorithm, these
models are considered small.

Quantitative evaluation: We evaluated our algorithm on
the benchmark of [6], whose goal is to evaluate the detec-
tion of interest points on surfaces vs. human-marked points.
Our algorithm outperforms other methods [4, 8, 17, 20, 21,
26] for two error measures out of three. For the third error
measure, our method is similar to the results of the other
methods. The full description, settings and results are avail-
able in the supplementary material.

Complexity analysis: The complexity of the distinctness
computation depends on that of the FPFH and on that of
finding the K-nearest neighbors. It is O(kn log n), where
n is the number of points and k is the number of neigh-
bors used. For instance, the actual running time on Igea
(134K points) is 2 minutes. On the Bremen cathedral (627K
points), the running time is∼1 hour, of which the FPFH cal-
culation takes 13 minutes and the distinctness computation
takes 48 minutes.
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7K points 134K points 505K point 743K points
Figure 7. Comparison with [18]. Our results (bottom row) compete favorably with those of [18] (top row). Our saliency is computed
based on the vertices, ignoring connectivity information, which is used by [18]. For small data, like the frog, the results are similar,
detecting the facial features and the limbs. However, for larger models, our method produces better saliency maps, detecting fine features,
such as delicate relief features on the bowl, and the fins of the fish. This is due to the fact that our algorithm is efficient enough to work on
the full objects without simplifying them, losing the fine details.

6. Applications
We demonstrate the utility of our saliency in two appli-

cations. First, we propose a technique for producing a set
of the most informative viewpoints of the data. Second,
given urban data, we construct an informative tour of the
city, which maximizes the saliency viewed along the path.

Viewpoint selection: Given a point set, our goal is to
automatically produce a set of the most informative view-
points. The idea is to maximize the accumulative saliency
viewed by the set of viewpoints. These are generated it-
eratively, adding each time a viewpoint with the maximal
additional saliency.

Our algorithm proceeds as follows. First, a set of candi-
date camera locations is produced. For city scans, we use
the scanning locations when available. Otherwise, the can-
didates are generated by uniformly sampling the city at an
average human height.

Next, the viewpoints are produced by placing a camera
at each candidate location and rotating it to cover all the
viewing directions. Each viewpoint is associated with a set
Vi containing the points visible by the camera. The visible
points are found by performing frustum culling and then
removing the hidden points using the HPR operator of [15].

For each candidate viewpoint and its associated set Vi,
we calculate the amount of saliency it views by:

S̄(Vi) =
∑
pj∈Vi

S(pj) · wi(pj), (10)

where S(pj) is the saliency of pj , computed by Equa-
tion (1). It is weighted according to:

wi(pj) =
cos(βij)

(1 + ||Li − pj ||)
, (11)

whereLi is the camera location and βij is the angle between
the normal at pj and the viewing direction Li − pj .

The first viewpoint selected is the one having the max-
imal saliency (Equation 10). Then, similarly to [18], we
add a viewpoint, which jointly with the previously-selected
viewpoints, maximizes the viewed saliency. We define the
added visible saliency contributed by the viewpoint Vi as:

δ(Vi) =
∑
pj∈Vi

S(pj) max
(
wi(pj)− wmax(pj), 0

)
, (12)

where wmax(pj) is the maximal weight assigned to pj by
any of the viewpoints selected so far. The viewpoint that
maximizes δ is added to the previously-selected viewpoints.

We keep adding viewpoints until the accumulated
viewed saliency is at least 30% of the saliency viewed by
all the viewpoints. The final number of viewpoints is dy-
namic and depends on the city’s geometry.

Figure 8 shows the viewpoints found by our algorithm.
They indeed capture the most famous buildings of the city.
The St. Peter’s Cathedral and Bremen’s town hall. For an
additional example, see the supplementary material.

We are not aware of any previous work that generates in-
formative viewpoints for urban scans. Therefore, we com-
pare our results to those of the viewpoint selection algo-
rithm of surfaces [18]. As demonstrated in Figure 9, in most
of the cases the resulting viewpoints are similar. However,
for some cases our results are better. For example, for the
head of Igea, both algorithms choose a side-view, but our
view presents the side with the salient scar near the mouth.
For the bowl, our viewpoint is more natural.

Producing the most informative tour: Given a point set
of an urban scene and its saliency map, our aim is to suggest



Figure 8. Viewpoint selection. The most informative viewpoints
generated by our algorithm indeed capture the most interesting
buildings of Bremen from various angles.

an informative tour of the city. The idea is to maximize the
area of the viewed salient regions along a path.

Our algorithm consists of five steps. First, we compute
a set of candidate locations and pick a subset, Ls, of the
most salient locations, similarly to viewpoint selection. We
stop when at least 75% of the total saliency is viewed by the
candidates. Second, as shown in Figure 10(a), we find the
shortest closed path PL passing through the points in Ls,
creating segments ei = (li, li+1). Third, we generate a path
from li to li+1, by replacing ei as follows. For a small step
size, we consider three directions to advance: one towards

li+1 and two rotated by±30◦from this direction. We choose
the one that maximizes the viewed saliency. Finally, since
the resulting path is closed, we remove the segment of the
path that views the least average saliency. See Figure 10(b).

We note that even though we do not consider obsta-
cle avoidance explicitly, our algorithm avoids obstacles
in practice. This can be explained by the fact that we
weigh our saliency according to the viewing angle. Con-
sequently, when approaching an obstacle, the value of the
cosine in Equation 11 decreases, thus reducing the saliency
of viewed points. Moreover, as we get closer to an obsta-
cle, more points become hidden by it, which also decreases
the viewed saliency. Hence, our algorithm usually avoids
proceeding in the direction of the obstacles.

7. Conclusion
This paper has studied saliency detection for 3D point

sets. Our saliency detection algorithm is based on finding
the distinct points, using a multi-level approach. It is very
efficient and therefore can be applied to huge point sets,
such as urban scenes. The efficiency is achieved without
sacrificing the detection quality. Our approach is compet-
itive, and often outperforms, approaches that handle sur-
faces, though it does not rely on connectivity information.

Finally, we demonstrate the utility of our saliency in two
applications: selecting a set of informative viewpoints and
producing an informative tour in an urban environment.
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Figure 9. Comparison of our viewpoints to those of [18]. In most cases, (a-c), our viewpoints (bottom row) are similar to those of [18]
(top row). In some cases, (d-f), our results are superior. For the head of Igea, our viewpoint shows the scar near the mouth. For the bowl,
our viewpoint is more natural. For David, similarly to [18] we get the 3/4 view, but we see also the other eye.



(a) The candidate points (red and blue) and the shortest path
passing through the points in Ls (colored in red)

(b) The generated path
Figure 10. The recommended tour for Bremen city center.
Walking along the suggested path leads the tourist through all the
interesting sites of the center without passing through the walls.
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