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Abstract

Empty-Region graphs are well-studied in Computer Graphics, Geometric Modeling, Computational Geometry, as well as in
Robotics and Computer Vision. The vertices of these graphs are points in space, and two vertices are connected by an arc if
there exists an empty region of a certain shape and size between them. In most of the graphs discussed in the literature, the empty
region is assumed to be a circle or the union/intersection of circles. In this paper we propose a new type of empty-region graphs—
the γ-visibility graph. This graph can accommodate a variety of shapes of empty regions and may be defined in any dimension.
Interestingly, we will show that commonly-used shapes are a special case of our graph. In this sense, our graph generalizes some
empty-region graphs. Though this paper is mostly theoretical, it may have practical implication—the numerous applications that
make use of empty-region graphs would be able to select the best shape that suits the problem at hand.

1. Introduction

In this paper we re-visit empty-region graphs. These graphs
are aimed at structural analysis of point sets [1]. Intuitively, a
vertex of an empty-region graph represents a point in space and
an arc connects two vertices if there exists an empty region of
a certain shape and size between their respective points. These
graphs have applications in computer vision [2, 3, 4], machine
learning [5, 6], computer graphics [7], pattern classification [8],
geographic analysis [13], as well as in networking [9] and in
Bioinformatics [10].

We establish a novel link between two concepts in computer
graphics: visibility of point clouds and empty-region graphs.
This is done by defining a new empty-region graph, the γ-visibi-
lity graph, which connects the two. Differently from previous
works, our graph accommodates a variety of shapes of empty
regions. Therefore, though this paper is theoretical, it may find
various uses in graphics and in robotics, as specific shapes of
empty-regions may better suit specific problems. We further
prove that our graph generalizes some commonly-used empty-
region graphs.

We start by a short description of visibility of point sets.
Given a point set, considered to be a sample of a continuous
surface, and a viewpoint, the goal is to determine the sub-set of
visible points. More precisely, since points cannot occlude each
other, we are basically seeking a sub-set that would be visible
to the viewpoint, if the surface from which the set of points was
sampled, was known. The traditional way to perform the task
is to reconstruct the surface from which the points are sampled
and then determine visibility on the reconstructed surface.

However, in [11] an operator was introduced that deter-
mines visibility directly on the set, skipping reconstruction. The
operator performs two steps: In Step 1, a function maps every
point in the set to an inverted domain. In Step 2, the convex
hull of the transformed points and the viewpoint is calculated.

Points that reside on the convex hull of Step 2 turn out to be
the pre-images of the visible points. In [12] the properties that
should be satisfied by the function in Step 1 were identified and
the operator was accordingly generalized to any function that
satisfied these properties. This operator is termed the General-
ized Hidden Point Removal (GHPR) operator.

We introduce in this paper a new graph structure, the γ-
visibility graph. In this graph, two vertices are connected by an
arc only if they are found to be visible to one another by the
GHPR operator. This graph turns out to be an empty-region
graph, as defined by [13]. Intuitively, this is so since indirectly,
the GHPR operator “thresholds” the size of the empty regions
between the viewpoint and the visible points. The shape of this
region depends on the function applied in Step 1 and its size
depends on the parameter γ of that function.

In contrast to most of the empty-region graphs proposed in
the literature, in our case, the shape (template) region is not
necessarily a union of circles or their intersection. Rather, it
may take various shapes, which are determined by the function
used in Step 1.

Our proposed γ-visibility graph has a couple of benefits.
First, it generalizes empty-region graphs. The ability to define
different shapes of empty regions makes it possible to match
a specific shape to a specific application. For instance, a robot
moving forward may not necessarily care about a circular empty
region, but rather about a non-symmetric shape that emanates
from the camera. Conversely, applications in communication
may prefer circles. Second, we show that the Delaunay Trian-
gulation is a special case of our γ-visibility graph.

The contributions of this paper are hence two-fold. First,
we introduce a new and general graph structure, the γ-visibility
graph and show how it provides a link between the class of vis-
ibility graphs to the class of empty-region graphs (Section 3).
Second, we prove that the Delaunay triangulation is a special
case of this graph (Section 4). This may have a couple of in-
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Figure 1: The GHPR Operator. Left: Transformation (in red) of a set of 2D
points (in blue), with a viewpoint in magenta, using the fmirror kernel. Right:
back projection of the convex hull, which is the set of visible points.

teresting implications. On one hand, the relation between the
structures leads to a novel algorithm for computing the Delau-
nay triangulation—one of the most useful geometric structures
(Section 5) . On the other hand, the Delaunay triangulation can
be utilized to efficiently construct an approximation of the γ-
visibility graph (Section 6).

2. Background

2.1. Visibility of point sets

Given a point cloud P and a viewpoint C, the goal is to de-
termine the subset of P that would be visible to C, if the surface
from which P was sampled was known. Since points cannot oc-
clude each other (unless they accidentally fall on the same line
from the viewpoint), the traditional way to solve the problem is
to reconstruct the surface [14, 15] and determine visibility on
the reconstructed surface.

In [11] an elegant operator (HPR) is proposed to determine
visibility directly from the point set, without surface reconstruc-
tion or normal estimation. This operator was later generalized
in [12] to the GHPR operator. Briefly, the operator consists of
two steps:

1. Point transformation: A function maps every point pi ∈

P to an inverted domain P̂. Assuming, without loss of
generality, that the viewpoint is at the origin, the trans-
formation is defined as

p̂i = F f (pi) =

{ pi
‖pi‖

f (‖pi‖), pi , 0
0 pi = 0

. (1)

The kernel function f (d) is a 1-dimensional continuous
kernel function f : R+ → R+ that, given the distance d of
pi from C, outputs an updated distance. f should satisfy
three properties discussed in [12]: f ′(d) < 0, f (d) > 0,
and a condition regarding the parameter γ of the kernel.

2. Convex hull construction: The convex hull of the trans-
formed points and the viewpoint is calculated.

The main result of [11, 12] is that points that reside on the
boundary of the convex hull of Step 2 are the pre-images of
the visible points, as illustrated in Figure 1. (From now on we
will refer to the boundary of the convex hull as the convex hull.)

Figure 2: Transformation setup & Empty region. The curve Λ is transformed
to the line Λ̂ by F f , where f (d) = γ − d. The empty region associated with pi
and bounded by Λ is in purple. The larger this area, the smaller β.

The underlying idea of this operator is that when the trans-
formed points in P̂ reside on the convex hull, their pre-images
in P are associated with large empty regions between them and
the viewpoint. Thus, there is no need to find for each point the
neighboring points that maximize the empty region size. This
observation is important computationally and is the reason why
the GHPR operator is so efficient. Without it, for every point,
we would have to find the closest point(s), making the algorithm
quadratic (and in 3D even cubic). Instead, all that needs to be
done is to compute the convex hull and consider a point visi-
ble if its image is on the convex hull of the set of transformed
points. Thus, the GHPR operator defines both the shape and
the size of the empty region. The size of the empty region is
adaptively determined by a point’s neighbors.

Formally, given a kernel f and a point pi, the Λ-curve is
defined as a parametric curve that is the pre-image under F f of
a line passing through a transformed point p̂i = F f (pi), as illus-
trated in Figure 2. In this figure, which uses polar coordinates,
the line Λ̂ creates an angle β with the x-axis. Any point on the
Λ-curve, having a polar angle α, is transformed to a point on
the line Λ̂ with distance f (rΛ(α)) from C. If p̂i is on the con-
vex hull, i.e. all the points in P̂ fall on one side of it, then its
associated Λ-curve is empty of points from P. The larger the
empty region, the smaller β. Therefore, the convex hull indi-
rectly thresholds the size of the empty region, since for a point
to be on the convex hull, its associated angle β should be < Π.

The kernel function f has a single parameter, γ. It con-
trols the desirable size of the empty region, whereas f con-
trols the shape of this region. Examples of kernel functions
are finversion(d) = dγ, fmirror(d) = γ − d, and fnatural = e−dγ.

Visibility graphs are graphs with nodes for each object, and
arcs between objects that can see one another [16]. When the
objects are points, the point visibility graph for a given point
set P is defined as a graph G is which there is an undirected
edge between two points (vertices) that are mutually visible to
each other [17]. One can note that unless points are collinear,
they cannot block each other. Therefore, this definition is strict
and has only limited use in real-world problems where zero-
dimensional points are rarely collinear. Some work has been
done on proving theoretical properties for the point visibility
graphs [18, 19]. Some variants of the problem were also ex-
plored, such as point visibility graph within a simple polygon [20,
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(a) γ = 20 (b) γ = −0.5 (c) γ = 0.1

(d) γ = 40 (e) γ = −1 (f) γ = 0.01

fmirror = γ − d finversion = dγ fnatural = e−dγ

Figure 3: Empty regions. The empty regions (bounded by Λ-curves) for different kernels and parameter values, for a single point pi = (10, 0) and C = (0, 0). Each
graph contains several Λ-curves, each corresponds to a different value of β, the angle between the x-axis and the line that is the image of the Λ-curve (see Figure 2).
It can be seen that the size of the empty region increases as β gets smaller.

21].
In this paper we introduce a new class of graphs—the γ-

visibility graph, which is induced from the GHPR operator.

2.2. Empty-region graphs

An empty-region graph is defined in R2 as follows [13]:

Definition 2.1. An Empty-Region Graph of a point set P, pa-
rameterized by a template region Ω, ERGΩ(P) = (V, E), is a
graph where V = P and ∀pi, p j ∈ V, pi p j ∈ E ⇔ Ω(pi, p j) ∩
P \ {pi, p j} = ∅.

If the template region Ω is not symmetric, the graph is directed,
and it is undirected otherwise.

Below, we briefly review some well-studied empty-region
graphs. In [22], Toussaint introduces the relative neighborhood
graph for which an arc exists between two points if they are
close to each other at least as they are close to any other point.
In a Gabriel graph [23] an arc exists between two points p and
q, if there exists an empty ball with radius d(p,q)

2 that passes
through both p and q. The Gabriel graph is contained in the
Delaunay triangulation and contains the relative neighborhood
graph.

In [1], Edelsbrunner et al. introduce the α-shapes. An edge
of the alpha-shape is drawn between two points whenever there
exists a generalized disk of radius 1/α containing the entire
point set and which has the property that the two points lie on
its boundary.

Kirkpatrick and Radke introduce the β-skeleton, which is an
undirected graph for which an edge exists between two points
of P if and only if the β-neighborhood between the points is
empty [24]. The β-neighborhood is the intersection or the union
of disks. The β-neighborhood is generalized in [25].

Amenta et al. prove that for a specific value of β, the β-
skeleton forms a polygonal reconstruction of an r-sampled smooth
curve [26]. They also introduce the Crust, a subgraph of the De-
launay triangulation, which forms a reconstruction. The crust is
an empty-region graph, where an edge between two points be-
longs to the Crust, if there exists a disk, empty of points, touch-
ing the two points. Finally, the θ-graph is a directed empty-
region graph for which there exists an arc between p and q, if q
is the nearest vertex to p within the cone it lies in [27].

3. Definition of the γ-visibility graph

In this section, we define a new type of graphs, the γ-visibility
graph, which is defined over a set of points P ∈ Rn. We show
that this graph is an empty-region graph. However, unlike the
graphs reviewed in Section 2.2, its template region may be of
various shapes. This is demonstrated in Figure 3, where a vari-
ety of empty region templates are drawn.

Formally, given a set of points P ∈ Rn, we define two types
of γ-visibility graphs—a directed and an undirected graph, as
follows. Let GHPR(P,C) be the subset of points of P that are
detected visible by the GHPR operator with the viewpoint at C.
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Definition 3.1. A directed γ-visibility graph: G(V, E) is a di-
rected γ-visibility graph if its set of vertices is V = P and, given
two nodes pi, p j ∈ P, there exists an edge from pi to p j in E
if p j ∈ GHPR(P, pi), i.e. p j is detected visible by the GHPR
operator with a viewpoint at pi.

According to [12], p j is detected as visible to pi (and thus,
this edge exists), when there is an empty region, Ωi j, associated
with p j for the viewpoint C = pi and that this empty region is
sufficiently large (as defined in [12]). This is equivalent to the
empty region in Definition 2.1.

The undirected version of the γ-visibility graph is defined
as follows.

Definition 3.2. An undirected γ-visibility graph: G(V, E) is an
undirected γ-visibility graph if its set of vertices is V = P and,
given two nodes pi, p j ∈ P, there exists an edge pi p j in E if
p j ∈ GHPR(P, pi) and pi ∈ GHPR(P, p j).

Note that γ, which is the parameter for the GHPR operator,
becomes a parameter for the γ-visibility graph.

Construction of the γ-visibility graph:. To construct the directed
γ-visibility graph, we first set V = P and then run the GHPR
operator for each point as a viewpoint. The result gives us the
edges emanating from each of the points. The accumulation of
the edges is the set of edges E of the graph we seek-after.

The complexity of the algorithm is O(n × time(GHPR)),
where time(GHPR) is the time to execute the GHPR opera-
tor. The latter is the time of computing the convex hull, which
is O(n log n) in 2D and in 3D. Therefore, the algorithm costs
O(n2 log n) in 2D and in 3D.

4. γ−Visibility graphs & Delaunay triangulations

This section makes a couple of contributions. First, we
prove the relation between the GHPR operator and the Delau-
nay triangulation / Voronoi diagram. Second, using this rela-
tion, we prove that the Delaunay triangulation is a special case
of the γ-Visibility Graph. In the subsequent section we will use
this fact to show that the visible shape, which is induced by
GHPR operator (and will be formally defined below), in three
dimensions forms a Delaunay triangulation in two dimensions.

While the γ-visibility graph can be constructed using any
valid GHPR kernel f , we focus on the inversion kernel, due to
its unique properties, which are described hereafter.

The inversion kernel: This kernel is defined, for a parameter
γ < 0, as

finversion(d) = dγ.

Recall that this kernel is applied within Equation 1. Figures 3(b),-
(e) show the kernel’s empty regions for different γ parameter
values for a single point.

We start by proving below that for the inversion kernel with
γ = −1, the Λ-curves are circles in R2 (spheres in R3). We
will then use this lemma to prove the relation of our γ-visibility
graph to the Delaunay Triangulation.

Lemma 4.1. The Λ-curves for the inversion kernel with pa-
rameter γ = −1 are spheres that pass through the viewpoint
C.

Proof: Without loss of generality, suppose that C is located
at the origin of the coordinate system. We begin by examining
a given line in R2, between two points p̂i, p̂ j of the transformed
set of points P̂ (after applying Equation 1). This line can be
represented either in Cartesian coordinates as (x, ax + b), or in
polar coordinates as (r(θ), θ) = ( b

sin(θ)−a cos(θ) , θ).
We would like to find the Λ-curve transformed to this line

by F f . For this, we need to apply an inverse transformation on
the line. It is shown in [12] that the inverse transformation F f

−1

uses an inverse kernel, which in this case is f −1(d) = d
1
γ =

d−1 = f (d). Applying this inverse kernel on the above line re-
sults with

(r(θ), θ) = (
sin(θ) − a cos(θ)

b
, θ), (2)

and in Cartesian coordinates:

(x, y) = (
sin(θ) cos(θ) − a cos2(θ)

b
,

sin2(θ) − a sin(θ) cos(θ)
b

).

This curve is a circle with radius

R =

√
1 + a2

2|b|

centered at
(cx, cy) = (

−a
2b
,

1
2b

).

It remains to show that the circle passes through the origin.
This can be shown by using Equation 2 and solving the follow-
ing equation for θ:

r(θ) =
sin(θ) − a cos(θ)

b
= 0.

The solution to this equation is θ = arctan (a), for any given a
and b , 0. b = 0 represents the case where C = pi. In this
case the circle passes through C since the line (x, ax + b) be-
comes (x, ax) and passes through the origin, which is C. Thus,
the radius of the circle is infinite and the circle is in fact a line
connecting C = pi with p j.�

Figure 4(a) shows an example of the Λ-curves for γ = −1.
For the rest of this paper, we will denote the Λ-curves for the
case of γ = −1 as the Λ-circles.

The proof is very similar for R3, where ax + by + cz + d = 0
is the plane that passes through 3 points (instead of the line in
R2) and is transformed to a sphere by F f

−1.
Thus far, we have shown that empty regions associated with

pairs of point from P are shaped as circles. We now prove that
the centers of these circles are vertices of the Voronoi Diagram
of P ∪ C (Lemma 4.2) and show how they are related to the
Delaunay triangulation (Lemmas 4.3–4.4).

Lemma 4.2. Given P ∈ R2 and C (where C may belong to P),
the centers of the Λ-circles are the Voronoi vertices of a single
Voronoi cell, the one that contains C, of the Voronoi diagram of
P ∪ {C}.
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(a) (b)

(c) (d)

Figure 4: Voronoi cell. GHPR with γ = −1 calculates the Voronoi cell (in
red) for C (in green). Each blue circle is centered at a Voronoi vertex. In the
left column C < P, whereas in the right column, C ∈ P. The Voronoi cell is
made up of centers of the Λ-circles (a)-(b). Points for which there are no circles
(e.g., the ears) are invisible from C. For intuition, (c)-(d) show the full Voronoi
diagram. It can be seen that the red region is indeed one cell of the full diagram.

Proof: According to Lemma 3.5 in [12], the regions Ω that
are encapsulated in the Λ-curves are guaranteed to be empty (as
they are back projections of edges of the convex hull). More-
over, the size of the empty region found by the GHPR operator
and constrained by the shape of the Λ-curves, is maximized.
Utilizing Theorem 7.4 from [28], these properties indicate that
the centers of the Λ-circles are vertices of the Voronoi Diagram
of P ∪ {C}.

To explain this, according to the above theorem, a point is
a vertex of the Voronoi diagram if and only if the largest empty
circle that is centered at this point contains three or more sites
on its boundary. In our case, it is shown in Lemma 3.3 in [12]
that the Λ-curves that bound the largest empty region must pass
through at least two points from P. In addition, we have shown
that every Λ-curve must pass through C (Lemma 4.1).

These centers of circles form all the vertices of the Voronoi
cell since C participates in all the Λ-circles. Therefore, con-
necting the centers of the circles forms the Voronoi cell of C.
�

Figure 4(a)-(b) shows (in red) the Voronoi cell, calculated
for point C, located inside a bunny-shaped point set. The blue
circles are the Λ-circles. Note that this lemma can be extended
to higher dimensions.

In a dual manner, we show the relation of the GHPR oper-
ator to the Delaunay triangulation. Before doing that, we make
a couple of definitions and illustrate them in Figure 5.

Definition 4.1. Visible hull: The visible hull is the back projec-
tion of the convex hull of P̂ ∪C.

(a) γ = −1 (b) γ = −0.01

Figure 5: Visible hull. The visible hull that connects the blue points, bounds
the gray region. The viewpoint is in red, the blue points on the boundary are
visible, whereas the green points are not. Here, the inversion kernel is used.

Note that the visible hull is a union of Λ-curves, as defined by
the GHPR operator. This is so since every edge of the convex
hull is back projected to a Λ-curve, bounding an empty region,
as defined in Figure 2.

Definition 4.2. Visible shape: The visible shape is a piecewise
linear approximation of the visible hull, where points of P are
connected by straight lines instead of by arcs.

Lemma 4.3. Given P ∈ R2 and C, every pair of points of P that
are detected visible by the GHPR operator (γ = −1), whose
transformed points are neighbors on the convex hull of P̂∪ {C},
together with the viewpoint C, form a Delaunay triangle of the
Delaunay triangulation of P ∪ {C}.

Proof: According to Theorem 9.6 from [28], three points
pi, pk, pk ∈ P are vertices of a face of the Delaunay graph of
P if and only if the circle through the points contain no point
of P in its interior. In our case, the Λ-curves form circles that
pass through C and at least two points from P. Moreover, since
the points are marked visible, the circles are empty. Therefore,
the viewpoint C together with the two points from P form a
Delaunay triangle. �

The above lemma suggests that connecting the vertices of
the visible shape to the viewpoint C forms a subset of the De-
launay triangulation of P ∪ {C}. The following lemma proves
that this set of triangles is the maximal subset of Delaunay tri-
angles that include C as a vertex.

Lemma 4.4. The set of Delaunay triangles created by connect-
ing the visible shape with C is the set of all the Delaunay trian-
gles that contain C as a vertex.

Proof: Suppose, by contradiction, that there is an addi-
tional Delaunay triangle that contains C and does not belong to
the GHPR triangles. Suppose, without loss of generality, that
this triangle contains the points pi, p j and C. If pi is inside
the visible shape, it contradicts the fact that the visible shape is
free of points from P. This is so since the visible shape is con-
tained within the visible hull (as the arc is convex relatively to
the viewpoint and is replaced by a straight edge) and the latter
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is provenly empty of points. If pi is outside the visible shape,
then the edge connecting pi with C must cross an edge of the
visible hull, which contradicts the planarity of the Delaunay tri-
angulation (Figure 6). �

Figure 6: Connecting the visible shape (bold black lines) with C is the set of all
Delaunay triangles that contain C as a vertex. If we add an additional triangle
(red lines), it will cross the visible shape, which contradicts the planarity of the
Delaunay Triangulation.

Figure 7 demonstrates the calculated Delaunay triangles, as
described above. In particular, Figure 7(a) shows an example
where C < P, whereas Figure 7(b) shows an example where
C ∈ P.

(a) C < P (b) C ∈ P

Figure 7: Local Delaunay triangulation. The visible set, as detected by the
GHPR operator with γ = −1, can be used to calculate a local Delaunay trian-
gulation of P ∪ {C}. The Delaunay triangles that include C are marked in red,
the Voronoi cell in blue and C in green.

5. Computing Delaunay triangulations by applying GHPR

After establishing the relation between the GHPR operator
and the Delaunay triangulation, the natural question to ask is
whether the GHPR operator can be a basis for a new algorithm
for constructing the Delaunay triangulation of a set of points.

A naive algorithm may apply the GHPR operator once for
each of the points of P (see Figure 8). One should note that it
is possible to calculate the Delaunay triangulation and not just
the Delaunay edges due to the fact that the visible shape, calcu-
lated by the GHPR operator, also radially sorts the neighboring
points around a viewpoint.

However, this algorithm is not an efficient way of calculat-
ing the Delaunay triangulation, as applying the GHPR operator
n times costs O(n2 log n), whereas this task can be performed in
O(n log n) (in 2D and 3D). This raises the question of whether

Figure 8: Full Delaunay triangulation. The full Delaunay triangulation is
calculated in a naive manner, by applying the GHPR operator n times, where n
is the number of points in P.

Figure 9: Efficient computation of Delaunay triangulation. A 2D Delaunay
triangulation is calculated by applying the GHPR operator with Ĉ positioned
in R3. Green and black edges represent the visible shape. Edges that do not
include Ĉ (in green) form the Delaunay triangulation.

the Delaunay triangulation can be efficiently computed using
the GHPR operator.

If we could run the GHPR only once, the time complexity
would be O(n log n), which is optimal. However, in order to be
able to do it, two requirements need to be satisfied:

1. The GHPR operator with γ = −1 should be used, so that
empty Λ-circles are created.

2. All the points in P should be visible from C, so that the
visible shape will include all the points.

Can we locate C so that all the points in P are visible to it?
The key idea is as follows. We define C in one dimension higher
than the points. For example, when P is in R2, any viewpoint
C ∈ R3 with z , 0, will see all the points in P, so that all the
points will belong to the visible shape, as required.

For instance, in Figure 4(a) only some of the points are vis-
ible to the viewpoints C. We now raise C above its 2D location
to reside in R3 and denote this point Ĉ. Then, the points would
not be able to occlude one another and all the points would be
marked visible to Ĉ by the GHPR operator. In this case, the
empty Λ-circles become empty Λ-spheres. The visible shape,
excluding the triangles adjacent to Ĉ, is the Delaunay triangu-
lation, as illustrated in Figure 9.

Algorithm 1 summarizes the method described above. The
subsequent lemmas prove the correctness of this algorithm. We
begin by extending Lemma 4.3 to 3D and showing that connect-
ing the 3D visible shape to Ĉ results in 3D Delaunay tetrahedra.
Then, we prove that the 3D Delaunay tetrahedra facets that do
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not contain Ĉ are in fact the 2D Delaunay triangulation we seek
after.

Algorithm 1 Constructing the 2D Delaunay triangulation of P
using the GHPR operator in 3D
Input: A point set P ∈ R2

Output: An edge set EDT of the Delaunay triangulation
Algorithm:

Q← {∅}
EDT ← {∅}

Ĉ ← (cx, cy, cz) where cz , 0
for all pi = (pi,x, pi,y) ∈ P do

Q← Q ∪ {qi = (pi,x, pi,y, 0)}
end for
// Applying the GHPR operator:
Q̂← F f (Q, Ĉ) with γ = −1
CH ← ConvexHull(Q̂ ∪ Ĉ)
for all i j s.t. i j ∈ CH, qi, q j , Ĉ do

EDT ← EDT ∪ {i j}
end for

Lemma 5.1. Given P ∈ R3 and C ∈ R3, every three points
of P whose transformed points form a triangle on the convex
hull of P̂∪ {C}, together with the viewpoint C, form a Delaunay
tetrahedron of P ∪ {C}.

Proof: In order to belong to the 3D Delaunay triangulation,
a tetrahedron must be created by four points of the set, whose
circumsphere is empty. It was already shown in Lemma 4.1 that
the 3-dimensional empty regions form spheres that pass through
C. The spheres are transformed by F f to facets of the convex
hull of P̂ ∪ C. Therefore, in addition to C, the empty spheres
also pass through at least three other points from P. �

Lemma 5.2. Let P2 ∈ R2 be a set of points and let P3 ∈ R3 be
its corresponding set of points, such that

P3 = { p̂i = (xi, yi, 0)|pi = (xi, yi) ∈ P2}.

Also, let Ĉ ∈ R3 with cz , 0 be a viewpoint. The triangles,
connecting points of P2, that have corresponding triangles on
the convex hull of P̂3 ∪ Ĉ, form the 2D Delaunay triangulation
of P2.

Proof: Lemma 5.1 already showed that connecting Ĉ with
triangles of P3 that have corresponding triangles on the con-
vex hull of P̂3 ∪ Ĉ, form 3D Delaunay tetrahedra. Now, it re-
mains to show that the triangles that do not include Ĉ of these
3D tetrahedra, form the 2D Delaunay triangulation of P2. For
this, suppose that three points pi, p j, pk ∈ P3 with the addition
of the point Ĉ define a Delaunay tetrahedron and therefore, an
empty sphere passes through these 4 points. Now, define a plane
through the points pi, p j, pk. The intersection of this plane with
the empty sphere forms an empty circle. Therefore, there is an
empty circle passing through the corresponding points in P2 and
these corresponding three points form a 2D Delaunay triangle.

(a) γ = −1 (b) γ = −0.01 (c) γ = −0.01
C = (100, 0, 100) C = (100, 0, 100) C = (0, 300, 100)

Figure 10: Point set triangulations. Using γ = −1 always produces a Delau-
nay triangulation. Using other values of γ produces triangulations that depend
on the location of C.

Moreover, all the triangles of the 2D Delaunay triangulation
of P2 can be found in this way. This is so since this method
covers the area bounded by the convex hull of P2 with triangles.
�

It should be mentioned that one may produce a triangulation
for a given point set using γ , −1. However, in this case the
resulting triangulation will not be the Delaunay triangulation
and the triangles created will depend on the location of C. In
fact, as γ approaches 0, the triangles will become more and
more “directed” toward the projection of the viewpoint, as show
in Figure 10.

Note that although the connection between the Delaunay
triangulation and the convex hull in a higher dimension is well-
known [28] (using z = x2 + y2), the method described above
(that uses a different transformation) gives it a new meaning
in the context of visibility: The Delaunay triangulation can be
thought of as being the visible shape, as seen from a viewpoint
in a higher dimension.

As a final note, we observe that the Delaunay triangulation
is not an empty-region graph in the traditional sense (as in [13]),
because it does not rely on a single empty region uniquely de-
fined by two points p and q. To connect the Delaunay triangu-
lation back to γ-visibility graphs, notice that each line through
a mapped neighbor q is inverse mapped back to a circle whose
interior could be viewed as one of many potential empty re-
gions that may serve as witnesses of the edge between p and
q. In fact, this interior (a disk) defines an empty region, which
through inversion is mapped to a half-space with linear bound-
ary.

6. Approximation of the γ-visibility graph using Delaunay
Triangulation

In the previous section we showed how to utilize the GHPR
operator in order to construct the Delaunay triangulation. This
section proceeds to discuss the relationship between the γ-visibi-
lity graph (Definitions 3.1, 3.2) and the Delaunay triangulation.
In particular, we do the “reverse” of the previous section—we
show how to use the Delaunay triangulation in order to approx-
imate the γ-visibility graph.

While the γ-visibility graph generally requires O(n2 log n)
time to construct in 2D and 3D (Section 3), we observe that the
Delaunay triangulation gives rise to an O(n log n) algorithm for
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approximating the γ-visibility graph using the inversion kernel
and γ ≤ −1.

Before describing the algorithm, we first prove that the γ-
visibility graph, for γ = −1, is the Delaunay triangulation.

Lemma 6.1. The γ-visibility graph, defined with the inversion
kernel and γ = −1, is the Delaunay triangulation.

Proof: We need to show that an edge belongs to the Delaunay
triangulation of P, pi p j ∈ EDT , if and only if it is an edge of
the γ-visibility graph, pi p j ∈ EGV . According to Definition 3.1,
the existence of the edge pi p j in the γ-visibility graph means
that p j ∈ GHPR(P, pi). According to Lemma 4.3, this mean
that pi p j ∈ EDT . Moreover, if the edge belongs to the Delaunay
triangulation, pi p j ∈ EDT , then according to Lemma 4.4 it also
belongs to the γ-visibility graph pi p j ∈ EGV .�

Utilizing Lemma 6.1, the algorithm, which is depicted in
Algorithm 2, begins by calculating the Delaunay triangulation
of P, which requires O(n log n) time. Then, for every point
pi ∈ P, its neighboring points are checked for visibility by
transforming them using the inversion kernel (when C = pi)
and checking if they are on the convex hull. This operation is
essentially similar to the regular GHPR operation, however, all
the points that do not share an edge with pi are assumed to be
invisible and therefore, are not taken into account (as they are
internal to the convex hull).

The latter operation requires O(E), where E is the number
of edges in the Delaunay triangulation. Therefore, the entire
construction requires O(E + n log n). Using the Euler character-
istic (which applies to planar graphs), this amounts to O(n log n).

Algorithm 2 An O(n log n) algorithm for constructing an ap-
proximated γ-visibility graph (γ ≤ −1)
Input: A point set P
Output: An edge map EGV of the approximated γ-visibility
graph
Algorithm:

EDT ← ComputeDelaunay(P)
EGV ← EDT

for all pi ∈ P do
C ← pi

P̃← {p j|pi p j ∈ EDT }

Pv ← GHPR(P̃, pi)
for all { j s.t. p j < Pv} do

EGV ← EGV \ {pi p j}

end for
end for

Figure 11 shows an approximated γ-visibility graph, for a
2D point set, versus an exact γ-visibility graph. It can be seen
that for γ = −1, both methods result with the Delaunay trian-
gulation. For smaller values of γ, the results are very similar,
although not identical.

7. Conclusion

The contribution of this paper is mostly theoretical. It estab-
lished a link between two problems: visibility of point clouds

Approx. γ-visibility graph Exact γ-visibility graph

(a) γ = −1

(b) γ = −3

(c) γ = −5

(d) γ = −10

Figure 11: The approximated γ-visibility graph. This figure compares the
approximation to the exact γ-visibility graph for various values of γ. The results
show that the graphs are similar, though small changes exist. As γ decreases,
we are left with fewer edges of the graph, where only the vertices that are most
visible one to another are connected. It is interesting to note that the result of
the approximation provides hints for segmenting an object, given a sample of
its boundary.

8



and empty-region graphs. This is done by introducing a new
type of graphs, the γ-visibility graph.

Unlike previous empty-region graphs, this is a general graph,
whose empty-regions can be shaped in a variety of forms and in
any dimension. This has the potential to benefit the numerous
applications that make use of empty-region graphs, by better
choosing the template that is most suitable to the problem.

Finally, we have proved that the Delaunay triangulation is
a special case of our graph. This leads to a novel optimal al-
gorithm for constructing the Delaunay triangulation, by apply-
ing the GHPR operator. Conversely, we have shown how the
Delaunay triangulation can be utilized for approximating the
γ-visibility graph.

A natural direction for future research is investigating appli-
cations that may benefit from different shapes of empty-region
graphs. As mentioned before, a robot may rather utilize a non-
circular shape of the kernel, such as fnatural, which emanates
from the camera, whereas more circular shapes may be prefer-
able in clustering.
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