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A B S T R A C T

This paper proposes an algorithm for finding correspondences between shapes in 3D.
The method is designed to address three challenging cases: large deformations, partial-
ity of the shapes, and topological noise. At the core of the method lies a novel, yet
simple, similarity measure that analyzes statistical properties of the nearest-neighbor
field from the source surface to the target. This information is shown to be powerful,
compared to minimizing some function of distances. In particular, the proposed simi-
larity function analyzes the diversity of the nearest-neighbor field and its preservation of
distances. Empirical evaluation on partial matching benchmarks shows that our method
outperforms state-of-the-art techniques, both quantitatively and qualitatively.
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1. Introduction1

Shape correspondence is a fundamental problem in computer2

vision and computer graphics, both in 2D and in 3D. Numerous3

applications require robust correspondences, for instance in an-4

imation, reconstruction, and shape analysis [1]. The focus of5

this paper is on shape correspondence between meshes in 3D.6

Finding correspondences between shapes is highly challeng-7

ing, even when the objects are rigid and full [3, 4, 5, 6]. This pa-8

per, however, addresses the problem of shape correspondence,9

when the following additional challenges are added (see Fig-10

ure 1): (1) The objects may have gone through non-rigid defor-11

mations [7, 8, 9, 10, 11]; (2) only part of the shape is given and12

should be matched to the correct region within the full shape13

(partiality) [12, 13, 2, 14], and (3) non-adjacent parts of the14

surfaces intersect [15, 16, 17, 18] (topological noise). All of15

the above frequently occur in real world scenarios.16

Previous approaches have focused on minimization of some17

distortion criteria, of either point-wise shape descriptors [16,18

2], pair-wise shape descriptors [14], or the combination of19

both [18]. Impressive result have been exhibited , yet some20
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downfalls still exist. This is in particular evident in the three 21

cases mentioned above, in particular when the deformation is 22

extreme, when partiality is severe, and in many cases of topo- 23

logical noise. 24

Some recent approaches have utilized deep neural net- 25

works [19, 20, 21, 22]. These show a lot of promise on a couple 26

of full-shape benchmarks. In [19] the results are analyzed also 27

for a partial correspondence benchmark; we will show that our 28

method outperforms their results. All these methods require a 29

significant amount of labeled training data, which is currently 30

difficult to acquire. 31

The algorithm proposed in this paper belongs to the first class 32

of algorithms, which does not utilize deep learning. It proposes 33

a novel similarity function, which analyzes the nearest neighbor 34

field in vertex shape descriptor space. That is to say, for each 35

vertex of a source mesh we find the nearest neighbor in the tar- 36

get mesh, in terms of a specific shape descriptor and a distance 37

function. Rather than minimizing some function of distances, 38

we analyze statistics of this field. The statistical nature of our 39

method lets it ignore outliers, which are the source of unreli- 40

ability in some other methods. Specifically, the statistics we 41

are concerned about regard two aspects of the nearest neigh- 42

bor field: (1) the diversity of the field, i.e. how many different 43

matches the nearest neighbor field contains, and (2) preserva- 44

tion of pairwise distances of the matches in the nearest neighbor 45

http://www.sciencedirect.com
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(a) large deformations

(b) partiality

(b) topological noise

Input [2] Ours

Fig. 1. Challenging correspondences. Corresponding vertices are colored
similarly. (a) While the corresponding arms are switched in [2], our al-
gorithm manages to match the arms correctly. (b) When given a highly
partial model of a dog as input, our algorithm manages to match its four
dog’s legs correctly. (c) The right hand is well matched by our algorithm.

field.1

We have tested our method on the two challenging bench-2

marks of SHREC’16, the one that contains partial deformed3

shapes [23] and and the one that contains deformed shapes with4

topological noise [24]. We exhibit the benefit of our method5

both qualitatively (Figure 1) and quantitatively. In particular,6

our method obtains a 10-20% improvement over the state-of-7

the-art on the first dataset and is competitive on the second.8

In addition, we also show qualitative results on the FAUST9

dataset [25].10

Hence, our contribution is twofold.11

1. We introduce a new approach for finding correspondences12

between given meshes, which is robust to deformations,13

partiality and topological noise. The novelty of our ap-14

proach is relying on properties of the nearest-neighbor15

field.16

2. We demonstrate the benefits of our algorithm on the17

commonly-used benchmarks, both quantitatively and qual-18

itatively.19

2. Related work20

Correspondence of deformable shapes in 3D. The problem of21

finding shape correspondences between deformable objects in22

3D has been studied extensively. Most methods attempt to min- 23

imize some distortion criteria, which falls into one of three cat- 24

egories: (1) local shape similarity, commonly computed as the 25

distance between corresponding point descriptors [26, 27, 28, 26

29, 30, 31, 32, 33], (2) pairwise relations [15, 34, 11], or (3) a 27

combination of both [18]. 28

The underlying assumption of most of these methods is that 29

the shapes are either approximately isometric or that they are 30

topologically homeomorphic. This assumption usually do not 31

hold in the case of partial correspondence and topological noise. 32

A variety of approaches have been proposed to handle topo- 33

logical differences. In [35], resilience to topological shortcuts 34

in the context of intrinsic symmetry detection of deformable 35

shapes is studied. Wang et al. [36] considered the metrics 36

induced by commute-time kernels as a more robust alterna- 37

tive to geodesic distance. In [37, 38] sparse relaxations to 38

this framework were introduced. A different kernel was pro- 39

posed by [39] and bilateral maps were suggested by [17]. Chen 40

and Koltun [15] reformulated the isometric embedding prob- 41

lem with a robust norm accounting for topological artifacts. 42

Boscaini et al. [40] proposed a CNN-based shape descriptor to 43

address the problem. Litani et al. [16] modified the functional 44

mapping of [41] to better handle topological noise. Vestner et 45

al. [18] formulated the problem as a quadratic assignment prob- 46

lem that incorporates matching of both point-wise and pair-wise 47

descriptors. 48

Partial correspondence was first tackled, assuming that the 49

shapes are rigid [42, 43, 13]. In the non-rigid case, the notion of 50

minimum distortion correspondence was utilized [44, 37, 38]. 51

A voting-based method was proposed by [45], to match shape 52

extremities. Other works include the alignment of tangent 53

spaces [46] and the design of robust descriptors for partial 54

matching [17]. In the context of collections of shapes, par- 55

tial correspondence has been considered in [47, 48]. Masci et 56

al. [21] introduced a deep learning framework for computing 57

a dense correspondence between deformable shapes. [19] im- 58

proved upon this by introducing anisotropic convolution ker- 59

nels. In [2, 16] the notion of functional maps [41] was adapted 60

to the partial matching scenario. 61

The method introduced in this paper addresses both partial 62

matching and topological noise. We present a novel similarity 63

measure that inherently differs from the above methods. In- 64

stead of relying explicitly on distances between descriptors, our 65

similarity measure is based on statistics of simple properties of 66

the nearest neighbor field between the points of the two given 67

surfaces. 68

Correspondence of deformable shapes in images. In images, 69

partial matching is often termed template matching. Numerous 70

papers have attempted to solve the problem; a good review is 71

given in [49]. The commonly-used methods are pixel-wise [50, 72

51]. Geometric transformations have also been addressed [52, 73

53]. Another group of methods considers a global probabilistic 74

property of the template [54, 55]. Recently, machine learning 75

based techniques have also been used [56]. 76

Our work is inspired by the methods of [57, 58], which also 77

look at various statistics of the nearest-neighbor field of the 78
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correspondence. In particular, in [57] it is proposed to sim-1

ply count points which are mutually nearest neighbors of each2

other. In [58] it is suggested to rely mostly on a subset of3

matches—on points that have distinct nearest neighbors. We4

adopt this general approach, but use other criteria, which are5

more suitable to surfaces in 3D that are orderless and lack con-6

stant density.7

3. General Approach8

Given two surfaces M and N , represented as triangulated9

meshes, the goal is to find the best match ofN (a partial shape)10

within M (a full mesh). In particular, we aim at extracting a11

sparse set of point correspondences between the shapes. Our12

approach is based on the following four key ideas, of which13

the first two capture properties of the nearest-neighbor field in14

shape descriptor space between the surfaces.15

First, inspired by [58], when N and a part ofM correspond,16

most points in that part of M have unique NN-matches in N .17

This implies that the NN field should be highly diverse, in the18

sense that many different points in N are being matched. This19

is illustrated in Figure 2(a) where the two surfaces are equal and20

in Figure 2(b) where the two surfaces correspond, since one is21

a deformation of the other. Therefore, in both of these cases,22

most points have unique matches and hence, each line connects23

a different pair of points. Conversely, Figure 2(d) shows a case24

of inherently-different surfaces, resulting in a small number of25

target points that happen to be somewhat similar to the input26

points.27

Second, arbitrary matches typically imply a large inconsis-28

tency in the location of the matches, whereas correct matches29

are consistent. We propose to measure the degree of consis-30

tency by looking at the geodesic distances of points within a31

surface. Specifically, when two surfaces correspond, the pair-32

wise geodesic distances between a reference point and other33

vertices in that surface should match the pairwise distances be-34

tween the reference point and other vertices on the other sur-35

face. In Figure 2 this is encoded by the color of the lines that36

connect the two shapes. In Figure 2(a,b), which show corre-37

sponding surfaces, the pairwise distances from their reference38

points are similar, and hence they are colored in blue. Con-39

versely, in Figure 2(c,d), the colors of the lines indicate incon-40

sistent distances between the corresponding points, and many41

of the lines are yellow or cyan, as expected since the surfaces42

are non-corresponding. Combining the above two ideas leads43

to a new similarity measure, which is based both on the diver-44

sity of the Nearest-Neighbor field and on the consistency of the45

distances between the points.46

Third, rather than realizing the above two ideas on N as a47

whole, it is preferable to perform it on a set of smaller sub-48

surfaces of N . This is due to two reasons: (1) A small sub-49

surface is more likely to exhibit consistent distances, especially50

in the presence of partiality, holes or topological noise. For in-51

stance, take two corresponding vertices, one on a full surface52

and the other on a surface with holes; the geodesic distances53

between each of these vertices and other vertices on their as-54

sociated surfaces will greatly vary, as a result of ”bypassing”55

(a) Same surface (b) Deformed surface

(c) Shifted surface (d) Different surfaces
√

Area(M)

Fig. 2. Properties of the nearest-neighbor field. The surfaces are colored
by their geodesic distances from the magenta reference point (center of
the surface); the lines are colored by the difference between the geodesic
distances from the reference point of the corresponding pairs of points.
Clearly, similar surfaces (a,b), even when deformed, exhibit diversity in
matching. This can be seen by the fact that the points of the correspond-
ing pairs, connected by lines, are all distinct, rather than having some
point(s) into which many lines converge. Furthermore, in this case, most
lines are blue, which indicates similar distances from the reference point.
Conversely, in (c), though the surfaces are similar, the reference point is
different. In this case there are many cyan lines, indicating a worse cor-
respondence due to bad localization. Finally, when the surfaces are highly
different (d), there are many yellow and cyan lines, indicating bad corre-
spondence.

holes. (2) In the case of repeating patterns and a large surface, 56

the diversity will be small, contrary to what we seek-after. 57

Fourth, a multi-scale approach with respect to the size of 58

matched sub-surfaces is beneficial [59]. This is so since larger 59

surfaces contain more global context, resulting in matches 60

which lie within the correct region, but provide poor localiza- 61

tion. On the other hand, matching smaller surfaces leads to 62

results that are better locally, but may be globally inconsistent 63

(e.g., mapping a hind leg to a front leg, which is identical lo- 64

cally). 65

Our algorithm, which is illustrated in Figure 3, realizes these 66

ideas. It consists of five steps, as follows. 67

1. Descriptors & Nearest-Neighbors. Shape descriptors are 68

calculated for every vertex of both meshes. Many descriptors 69

have been proposed in the literature [60, 32, 31]. We use the 70

Fast Point Feature Histogram (FPFH) [30], which captures the 71

relative angular directions of the normals with respect to one 72

another. FPFH is robust to small deformations and partiality of 73

the data, whilst sensitive to symmetrical flips, since it relies on 74

the angles between many local reference frames around each 75

point [61]. Therefore, it addresses a major drawback of match- 76

ing a right arm, for example, to the left one. 77

We then compute an approximate nearest neighbor field 78

(NNF) mapping. This is done by assigning each vertex ofM its 79

nearest neighbor in N , in terms of their FPFH descriptors. 80

2. Patch extraction. Inline with the third key idea, we aim at 81

extracting a meaningful set of sub-surfaces, which cover (rather 82
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M

N

input Step 1: NN Step 2: patch extraction Step 3: similarity Step 4: correspondence Step 5: refinement

Fig. 3. Algorithm outline. In Step 1, we compute the nearest-neighbor field that maps the shape descriptors ofM to their corresponding nearest neighbors
onN . In Step 2, sub-surfaces (patches) are extracted for every sample point inN and for every vertex inM. Examples of six such patches are shown; note
that they may overlap. A reference point on each subsurface is shown in magenta and the colors on the surface encode the geodesic distance from it. Step 3,
which is the core of the algorithm, computes the similarity between the patches inM and N . In the figure, the nearest neighbors are connected by lines.
The color of the lines encodes the difference of the geodesic distances between each of these vertices and the reference point in its own subsurface. In Step 4,
the color of the points represent their correspondence— points that achieve the maximal similarity score are corresponding (and have the same color on
both models). Step 5 refines the correspondences, by modifying the outliers according to the correspondences in their environment. See, for instance, the
changes of the corresponding points of those marked by red circles.

than partition) the surface. This is done in two steps: First, we1

extract a meaningful set of sample points. We then extract the2

patches using these samples. We elaborate hereafter.3

To extract the sample point set S , we start from the extremi-4

ties of the surface, which are considered salient points [62]. A5

vertex is defined as an extremity if it resides on a tip of the sur-6

face (e.g., tips of limbs), In practice, we define an extremity to7

be a vertex that is a local maximum of the sum of the geodesic8

distance functional.9

Formally, ∀v ∈ N , let Nv be the set of neighboring vertices of10

vertex v. Let GeoDist(vi, v j) be the geodesic distance between11

vertices vi and v j on mesh N . Vertex v is an extremity if it12

satisfies13 ∑
vi∈N

GeoDist(v, vi) >
∑
vi∈N

GeoDist(vn, vi) ∀vn ∈ Nv. (1)14

Then, we iteratively add more samples,so as to gradually15

cover more and more of the mesh. At each iteration, the next16

sample point is chosen as follows. We construct a ”forbidden”17

region around every point in the set. This region is a geodesic18

disc of radius 0.05
√

Area(M); the constant is chosen so as19

the number of points would be on par with other sparse meth-20

ods [23]. The next point to be added to the set is a vertex whose21

geodesic distance to any sample point is minimal and it must not22

fall in any of the forbidden regions. This process stops when the23

entire surface is marked forbidden.24

Once the set of representing samples is defined, a disc (sub-25

surface) of geodesic radius RT is extracted around each sample26

point. This is the sought-after set of patches that covers the27

surface. Specifically, RT = β ·
√

Area(M). As our approach is28

multi-scale, β, which was found empirically by minimizing the29

error of correspondences on a training set, varies. In practice30

we use β = {0.6, 0.4, 0.2}.31

3. Computing similarities between pairs of patches. This 32

step is the core of our algorithm, which realizes the first two 33

key ideas. 34

For each pair of patches of the same scale, Pi ⊂ N and 35

Q j ⊂ M, constructed around vertices vi and w j respectively, 36

as described in Step 2, we compute a similarity value. Recall 37

that our goal is to reward a nearest-neighbor field with high 38

diversity and low inconsistency. We will define the similarity 39

function that achieves it in Section 4. We note that this step, as 40

well, is performed in a multi-scale manner. 41

4. Extracting a sparse set of corresponding points. Given the 42

similarity values between the patches, as computed in Step 3, 43

our goal now is to extract a set of corresponding points between 44

N andM. If we had a single scale, then for each sample point 45

(the center of a patch) of N , we would choose the vertex ofM 46

that maximizes the similarity function. However, if the scale is 47

too coarse, the exact matching point is likely not to be found; 48

and if the scale is too fine we may find a corresponding ver- 49

tex, but on other parts of the model (e.g., on almost-symmetric 50

parts). 51

Our multi-scale approach addresses these difficulties. We 52

proceed from coarse to fine, first finding the most likely region 53

the corresponding point should lie on and then refining the ex- 54

act location. Suppose that Pi ⊂ N and Q j ⊂ M were found 55

to have the highest similarity in a coarsest scale. The coarsest 56

correspondence is then set between vi ∈ Pi and w j ∈ Q j, where 57

vi,w j are the geodesic centers of Pi,Q j, respectively (i.e. these 58

are the sample points that define the patches in Step 2). When 59

moving to a finer scale, we replace Q j with a smaller patch in 60

which w j is the center. Once this patch is constructed, we re- 61

place the w j-centered patch by a new patch of the same (small) 62

scale centered around w jn . The latter is set to be the patch that 63
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maximizes the similarity function of Stage 3 compared to all the1

patches centred at vertices within w j-centered patch. Since the2

patch around w jn is more similar to the patch centered at vi than3

any other patch, w jn is considered to be the new corresponding4

point of vi. In this manner we move from one scale to the next5

and refine the corresponding vertex of vi.6

Figure 4 illustrates how the correspondence found at the first7

scale improves throughout the scales. This is compared to the8

case in which a single scale is used and the corresponding point9

is either inexact (β = 0.6) or is erroneous (β = 0.4, 0.2) .
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M
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lts

β = 0.6 β = 0.4 β = 0.2
N M

Fig. 4. Multi-scale similarity. The input is the the sample point on the
left (in magenta). In the coarsest level (β = 0.6)), the region of the cor-
responding point is found, but the point itself is imprecise. In a single-scale
approach (top row), finer scales miss the correct region altogether. Con-
versely, our multi-scale approach (bottom row) utilizes the coarse corre-
sponding region to keep refining the correspondence, and the precise cor-
respondence is found in the finest scale.

10

5. Coherency-based correspondence refinement. The result11

of Step 4 is a set of corresponding pairs of points. In most cases12

(> 92% in all our examples), the correspondences are correct.13

The goal of this step is to identify the incorrect ones and replace14

them by the correct correspondences.15

The key idea is to utilize coherency, i.e., if all points in the16

neighborhood of point v ∈ N are mapped to points that reside17

in the same region onM, it is expected that the corresponding18

point of v, w ∈ M, will also reside in this region. In other19

words, we are looking for outliers of the mapping in order to fix20

them.21

To detect these outliers, we check the sum of difference of22

geodesic distances induced by the mapping between a pair of23

points in N and their corresponding points inM. On average,24

outliers will result in a large difference of geodesic distances25

and can therefore be detected by an empirically-set threshold.26

Let us define the sum of differences of geodesic distances be-27

tween a point v j ∈ N and its corresponding point w j ∈ M as28

∆v j,w j =
∑
vi∈S

|GeoDist(v j, vi) −GeoDist(w j,wi)|, (2)29

where wi is the corresponding point of vi. We consider a corre- 30

spondence (v j,w j) to be correct if it is smaller than the average 31

distance of all other correspondences, 32

∆v j,w j < C
∑

vi∈S ∆vi,wi

|S |
, (3) 33

where C is empirically set to 1.15. 34

If Equation 3 is violated, it indicates geodesic distance incon- 35

sistency with many other correspondences, thus, v j is consid- 36

ered an outlier. In this case, we replace w j, the corresponding 37

point of v j, by a ”better” point w j∗. We require this point to 38

satisfy two conditions: (1) it is a local maximum of the simi- 39

larity function of Step 3 (to be discussed hereafter in Section 4) 40

and (2) among the vertices that satisfy condition (1) we choose 41

as w j∗ the vertex whose ∆v j,w j∗ is minimal. The first condition 42

means that the two vertices are indeed similar. The second con- 43

dition means that the correspondence is consistent. 44

4. Similarity between sub-surfaces 45

This section elaborates on Step 3, which is the core of the 46

algorithm. Given a pair of patches of the same scale, Q ⊂ M 47

and P ⊂ N , this section defines a similarity function between 48

them. We require that this function be oblivious to non-rigid 49

deformations, to different resolutions of the meshes, to noise, 50

to topological noise, and to partiality of the data. 51

We would like to reward a correspondence for which the 52

nearest-neighbor (NN) field satisfies two properties: it has high 53

diversity of the corresponding points, as well as low inconsis- 54

tency of the distances. In what follows we explain these two 55

properties. 56

Diversity. When Q and P correspond, each point on Q should 57

have a unique NN-match on P. Conversely, if Q and P do not 58

correspond, most of the points on Q do not have a good match 59

on P. In the latter case, the nearest neighbors are likely to be- 60

long to a small set of points that happen to be somewhat similar 61

to the points of Q. This implies that if the patches correspond, 62

their NN-field is highly diverse, i.e., pointing to many different 63

points in P. 64

An intuitive and efficient way to measure diversity is to count 65

the number of unique nearest neighbors between the points of 66

Q and P: 67

Div(Q, P) = |{pi ∈ P : ∃q j ∈ Q,NN(q j, P) = pi}|, (4) 68

where {pi}
|P|
i=1 and {q j}

|Q|
j=1 are the set of points of Q and P, re- 69

spectively and the nearest neighbors is computed between the 70

descriptors (FPFH) of the points. However, we will see below 71

that the diversity can be calculated implicitly. 72

Distance inconsistency. A relatively stable property of de- 73

formed surfaces is their geodesic distances. Therefore, if two 74

patches correspond, points that belong to a nearest neighbor 75

pair tend to have similar geodesic distances to the centers of the 76

patches they reside on. Conversely, arbitrary matches typically 77

do not hold this relation. 78

To realize this observation, we define DistInconst(Q, P), the 79

inconsistency of Q and P, as follows. Let p ∈ P and q ∈ Q 80
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Fig. 5. Results of our algorithm on examples from various datasets. The corresponding points are colored in the same color. Note the accuracy of our
algorithm in cases of symmetry (all), partiality (top), topological noise (middle) and large deformations (bottom).

be the centers of P and Q, respectively; furthermore, let pi =1

NN(q j, P) be the nearest-neighbor of q j ∈ Q. The deformation2

implied by the NN-Field for pi, q j is defined by:3

DistInconst(q j, pi,Q, P) = (5)
|GeodDist(q j, q) −GeodDist(pi, p)|/ε,

where 0 < ε << Area(M) is a used for numerical stability.4

We note that diversity was defined between patches, whereas5

inconsistency was defined between points; this will be clarified6

later, when we show how to use these ideas within our general7

similarity function.8

Similarity function. Next, we should integrate the above con-
siderations within a similarity definition, such that similar sur-
faces will have high diversity and small distance inconsistency.
For each pi ∈ P, we find the minimal inconsistency

r∗i = minq j∈QDistInconst(q j, pi,Q, P),

such that pi is the nearest neighbor of q j in the descriptor9

(FPFH) space. Note that some points in P might not be associ-10

ated with any point in Q, since they are not nearest neighbors of11

any point q j ∈ Q; in this case we set r∗i = ∞, in order to make12

the contribution of pi be zero.13

Finally, we define the similarity between patches p and Q as:14

S imilarity(P,Q) =
∑
pi∈P

1
1 + r∗i

. (6)15

It is easy to see that this function rewards low inconsistency. 16

However, why does it also reward high diversity of the NN- 17

Field? To understand this, consider the special case where r∗i ∈ 18

{0,∞}. When this occurs, the value of Equation 6 is either 1 (if 19

ri∗ = 0) or 0 (if ri∗ = ∞). In the former case, this indicates 20

that a point pi has a point in Q that considers pi to be its nearest 21

neighbor. In this scenario, the similarity function simply counts 22

the number of points in P that are nearest neighbors of some 23

point in Q. But, this is precisely the diversity function we seek- 24

after. 25

In the general case, the contribution of every point is in- 26

versely weighted by its inconsistency r∗i . This gives preference 27

to NN Fields that preserve pair-wise distances. 28

5. Results 29

We have evaluated our method both qualitatively and quanti- 30

tatively on the two datasets of SHREC’16: (1) the benchmark 31

of SHREC’16A—partial matching of deformable shapes [23]; 32

(2) the even more challenging benchmark of SHREC’16B— 33

matching of deformable shapes with topological noise [24]. In 34

both cases, our method either outperforms the results of state- 35

of-the-art methods or is competitive. In addition, we provide 36

qualitative evaluation on challenging objects from FAUST [25]; 37

see Figure 5. 38

SHREC’16A contains 400 partial shapes, each is a near- 39

isometrically deformed version of one of eight base models, 40

given in a neutral pose. The dataset is further divided into two 41
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input [2] ours-dense ours-sparse [2] ours-dense ours-sparse

Fig. 6. Results on examples from SHREC’16A. The left column shows the input model in a neutral pose. The other columns compare our results (both
dense and sparse) to the SOTA results of [2], for which the code is gratefully provided. The models are partial, deformed and have many holes. Our results
outperform those of [2], when run with the default parameters. For instance, the front leg of the dog has the correct color in our result, whereas the result
of [2] matched it to the rear leg (in yellow).

subsets, according to the type of partiality: (1) cuts, which is1

composed of shapes produced by dividing shapes by a plane,2

and (2) holes, obtained by eroding many areas around ran-3

dom vertices. SHREC’16B contains 10 shapes, which are de-4

rived from the same base human shape and underwent deforma-5

tions and topological changes stemming from self-intersections.6

FAUST contains 60 pairs of high-resolution real-world scans of7

10 different human subjects. The acquisition process introduces8

topological artifacts and missing parts due to occlusions.9

Correspondence algorithms can be categorized into two10

classes, according to the density of the resulting correspon-11

dences: sparse and dense. Dense-correspondences algorithms12

match every vertex on one shape to a vertex on the other shape.13

Sparse-correspondence algorithms cover the surface by a sparse14

set of points and find correspondences only for them.15

Our algorithm belongs to the latter class: it produces a sparse16

set of correspondences. However, as a post-processing step,17

we can convert the set of sparse correspondences to a dense set18

using the method of [16].19

Qualitative results. Figure 5 illustrates our results on various20

shapes, which contain symmetries, large deformations, partial-21

ity and topological noise. In this figure, the input modelM is22

color-coded according to the coordinates of the vertices. The23

matches on the target model N are colored according to the24

color of their corresponding vertices. Therefore, it is easy to vi-25

sually verify the accuracy of our results, by comparing the color26

”by eye”.27

Figure. 6 compares our dense-correspondence results from28

SHREC’16A to those of [2] (which computes dense correspon-29

dence directly). Our method produces better results especially30

in cases of symmetries (e.g., the legs). This is due to distance31

preservation between points in Equation 6. This is particu-32

larly important when the model contains holes. This figure also33

demonstrates our results of sparse correspondence, where the34

dots on the model suit in color the matching parts ofM .35

Figure 7 further demonstrates the quality of our results, by36

color-coding the errors. The larger the error, the more reddish37

[2] Ours [2] Ours

Fig. 7. Errors on examples from SHREC’16A. The error is color-coded
from white (no error) to red (large error). Our results evidently are less
erroneous than those of [2].

the color is. It can be seen that our results hardly have any 38

yellow/red, whereas the results of [2] have yellow/red regions. 39

Similarly, Figure 8 shows a couple of examples from 40

SHREC’16B, where the models have topological noise, i.e. re- 41

gions that should not intersect semantically, do intersect geo- 42

metrically (e.g., the triangles of the face and the head intersect). 43

Generally, our method outperforms that of [2], having fewer 44

and scarce failures. Moreover, our failures are constrained to 45

regions near the topological noise. 46

Figure 9 compares our result to the reported failure case 47

of [20], which introduces a deep learning model. It can be seen 48

that our method is able to handle extreme partiality. 49

Quantitative results. Next, we provide a quantitative evalua- 50

tion of our method on the above datasets w.r.t previously re- 51

ported results. The common error metric used in previous work 52

is the normalized geodesic distance (NGD) [63]. NGD is de- 53

fined as follows: Let the corresponding point of p ∈ N , as 54

found by the algorithm, be q ∈ M, and let the ground truth 55

corresponding point of p be q∗ ∈ M. The error for p is the 56



8 Preprint Submitted for review / Computers & Graphics (2019)

input [2] Ours

Fig. 8. Results on SHREC’16B. Top: the result of [2] contains more erro-
neous segments than ours (e.g., segments on the legs). Furthermore, our er-
rors are more constrained to regions that indeed contain topological noise.
Bottom: the legs are switched in [2], but not in our method. This is not only
thanks to our similarity function that maintains distances, but also thanks
to our multi-scale approach.

normalized geodesic distance between q and q∗ onM:1

NGD(p) =
GeoDistM(q, q∗)√

area(M)
. (7)2

Figure 10 shows the cumulative curves, which indicate the3

percentage of correspondences falling below a varying thresh-4

old of NGD errors. The figure shows both sparse correspon-5

dences (dashed lines) and dense correspondences (solid lines),6

compared to other state-of-the-art algorithms [64, 16, 37, 65,7

2, 66, 38], as provided in the benchmark site [23]. In both8

cases, our method considerably outperforms state-of-the-art al-9

gorithms on SHREC’16A, both on the subset of the dataset that10

contains models with holes and on the subset that contains par-11

tial models. The obtained increase in performance in 10% for12

the cuts subset and 20% for the holes subset.13

Figure 11 shows the mean NGD error of the correspondence
between a partial modelN and a full modelM, as a function of
their partiality. The latter is defined as the ratio between their
surface areas:

1 − area(N)/area(M).

It can be seen that our method is less dependent on the partial-14

ity of the model than other methods. This benefit of our method15

is mainly due to the inherent use of properties of the nearest-16

neighbor field (rather than explicit distances between descrip-17

tors), which is more robust, as well as due to our multi-scale18

approach.19

Figure 12 compares our results to those of state-of-the-art20

algorithms [15, 23, 16, 65, 2, 67, 18] for SHREC’16B. Our21

method outperforms most of the other algorithms and is com-22

petitive with that of [18]. This is interesting since our algorithm23

heavily depends on geodesic distances, while topological noise24

shortens these distances.25

input [20]

input Ours

Fig. 9. Comparison with [20]. Our method manages to handle extreme
partiality, compared to a result of a recent deep learning model.

Robustness to parameters. The parameters of the algorithm 26

were tuned once on the cuts subset of the training set provided 27

by SHREC’16A and used for the test sets of all datasets. Fig- 28

ures 13–15 show that our algorithm is robust to the choice of 29

these parameters 30

In particular, Figure 13 shows the performance of the algo- 31

rithm when changing the radius of the neighborhood used in the 32

calculation of the FPFH in Stage 1 of the algorithm. It shows 33

that the cumulative error curves achieved by choosing different 34

radii hardly change. 35

Figure 14 shows the performance of the algorithm when 36

changing the sizes of the patches (β) used in Stage 2 of the algo- 37

rithm. It shows that the algorithm is fairly robust to the choice 38

of this parameter, where the distance between any two curves is 39

at most 3% of the matches (this happens for NGD = 0.05). 40

Finally, Figure 15 shows the influence of the threshold C on 41

detecting outliers and replacing them in Stage 5 (refinement). 42

As before, our algorithm is robust to the choice of C. The best 43

result is obtained for C = 1.15, whereas the worst results is 44

obtained for C = 4. This yields only a 1.5% increase in the per- 45

centage of matches (specifically, falling below an error thresh- 46

old of NGD = 0.05). This can be explained by the fact that for 47

most objects, our algorithm works well without refinement; yet 48

for some objects (such as the half cat in Figure 3), refinement is 49

beneficial. 50

Runtime and complexity. The average runtime of our algorithm 51

for a pair of meshes from SHREC16’A is ∼ 50s on an Intel i7- 52

4970. Out of the 50s, 15s are devoted to the computation of the 53

geodesic distances (stage 2) and 33s for the similarity calcula- 54

tion loop (stage 3). The other stages amount to 2s altogether. 55

If densification is required, this adds 40s. For comparison, the 56

running time of [2] is ∼ 450s and of [16] ∼ 120s. We note that 57

the runtime of GPU-based deep learning methods, excluding 58

training, is 1-4 seconds. 59

The asymptotic complexity of the algorithm is O(|S |n2) + 60

O(n2logn), where n denotes the number of vertices of N and 61
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Fig. 10. Cumulative normalized geodesic error (NGD) curves on
SHREC’16A. Our method (in magenta) outperforms other algorithms,
both for dense correspondence (solid line) and for sparse correspondence
(dashed line), on the two subsets of the dataset: cuts & holes.
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Fig. 11. Mean NGD as a function of model partiality. The error of our
method increases less than the errors of other methods.

%
C

or
re

sp
on

de
nc

es

NGD

Ours Vestner’17[18] Litany’17[16]
Rodola’16[2] Rodola’14[65] Burghard’16[24]

Sahillioglu’12[14] Chen’15[15]

Fig. 12. Cumulative NGD on SHREC’16B. Our method is competitive
with [18] and is better than other reported methods.
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Fig. 13. Robustness of the algorithm for different radii of FPFH. The radius
is calculated as a percentage of area of the mesh (e.g., 0.02

√
area(M)).
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Fig. 14. Robustness of the algorithm for different patch radii (β) in Stage 2.
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Fig. 15. Robustness of the algorithm to different choices of outlier thresh-
olds (C) in Stage 5. Note that the lines are invisible, as they overlap.
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M and |S | is the number of samples. We elaborate on the com-1

plexity of each stage of the algorithm below.2

In Stage 1, FPFH calculation is O(n · k) where k is the num-3

ber of neighbors for each point [30]; the approximated nearest4

neighbor calculation takes O(n log n) on average [68]. Stage 25

is dominated by the computation of the geodesic distances be-6

tween all pairs of points, which takes O(n2 log n) [69]. Stage 37

computes the similarities between all pairs of patches (i.e., all8

patches ofM and a sample of |S | patches ofN). A pass over the9

vertices of a patch costs the size of the patch, which is bounded10

by n. Since this is performed for O(|S |n) pairs of patches, the11

total complexity is O(|S |n2). Stage 4 simply computes the max-12

ima of the similarities, which is O(|S |n). Finally, Stage 5, which13

detects outliers, takes O(|S |2) (as the geodesic distances are al-14

ready computed).15

Implementation details. We implemented our code in C++ and16

used the Point Cloud library (PCL) [70] implementation for the17

FPFH shape descriptors and for the approximate nearest neigh-18

bor field computation. The entire code is parallelized using19

OpenMP. Since most of the work is devoted to computing the20

similarities between points, and the similarities are independent21

on each other, the obtained speedup is almost linear. Our imple-22

mentation is available at https://github.com/pitbullil/23

Partial-Correspondence-3D-NNF.24

Limitations. Figure 16 shows two types of failures, the first is25

due to strong topological noise and the other is due to highly-26

complex deformation. These are highly challenging models,27

on which other methods are unseccessful as well. The errors28

can be explained by the fact that the FPFH descriptors do not29

capture the shape sufficiently well and the geodesic distances30

are erroneous due to the elasticity of the models.31

Fig. 16. Limitations. Our method might fail in cases of topological noise
(top) or highly-deformed partial shapes (bottom), in which the cat’s legs
are folded and its tail is curled. Note that the topological noise may seem
similar to the poses of FAUST in Figure 5, where our method works well.
However, the noise here is much larger, as the entire arms are fused to the
torso and the upper legs to the lower.

6. Conclusion 32

This paper has introduced a novel approach for finding corre- 33

spondences between shapes in 3D. This approach is based on a 34

simple observation: Statistical properties the nearest-neighbor 35

field from the source surface to the target provide robust infor- 36

mation about the correspondence. In particular, we use the di- 37

versity of the nearest-neighbor field and the consistency of the 38

internal distances within the surface of corresponding points. 39

Two additional ideas of our approach are the use of small sub- 40

surfaces when computing the similarity (rather than using the 41

whole surface) and utilizing a multi-scale approach. 42

Our approach improves the state-of-the-art results both quan- 43

titatively and qualitatively on the challenging benchmarks of 44

SHREC’16. In particular, these benchmarks contain examples 45

having large deformations, symmetries, partiality of the shapes, 46

and topological noise. We have demonstrated that our method is 47

robust to the scale of partiality, as well as to its own parameters. 48
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[67] Sahillioğlu, Y, Yemez, Y. Scale normalization for isometric shape match-15

ing. In: Computer Graphics Forum; vol. 31. 2012, p. 2233–2240.16

[68] Bentley, JL. Multidimensional binary search trees used for associative17

searching. Communications of the ACM 1975;18(9):509–517.18

[69] Kimmel, R. Fast marching methods for computing distance maps and19

shortest paths 1996;.20

[70] Rusu, RB, Cousins, S. 3D is here: Point Cloud Library (PCL). In: IEEE21

International Conference on Robotics and Automation (ICRA). 2011,.22


	Introduction
	Related work
	General Approach
	Similarity between sub-surfaces
	Results
	Conclusion

