
MeshWalker: Deep Mesh Understanding by Random Walks

ALON LAHAV, Technion ś Israel Institute of Technology

AYELLET TAL, Technion ś Israel Institute of Technology

Walk step: Walk step: Walk step:

flamingo

Fig. 1. Classification by MeshWalker. This figure shows classification results as the walk (in green) proceeds along the surface of a camel (4𝐾 faces) from

SHREC11 [Lian et al. 2011]. The initial point was randomly chosen on the neck. After𝑉 /50 steps (left),𝑉 being the number of vertices, the system is uncertain

regarding the class, and the highest probability predictions are for the flamingo class and for the hand class (out of 30 classes). After continuing the random

walk along the body and the front leg for𝑉 /7 steps, the probability of being a horse is higher than before, but the camel already has quite a high probability.

Finally, after𝑉 /2.5 steps (right) and walking also along the hump, the system correctly classifies the model as a camel.

Most attempts to represent 3D shapes for deep learning have focused on

volumetric grids, multi-view images and point clouds. In this paper we look

at the most popular representation of 3D shapes in computer graphicsÐ

a triangular meshÐand ask how it can be utilized within deep learning.

The few attempts to answer this question propose to adapt convolutions &

pooling to suit Convolutional Neural Networks (CNNs). This paper proposes a

very different approach, termedMeshWalker to learn the shape directly from

a given mesh. The key idea is to represent the mesh by random walks along

the surface, which "explore" the mesh’s geometry and topology. Each walk

is organized as a list of vertices, which in some manner imposes regularity

on the mesh. The walk is fed into a Recurrent Neural Network (RNN) that

"remembers" the history of the walk. We show that our approach achieves

state-of-the-art results for two fundamental shape analysis tasks: shape

classification and semantic segmentation. Furthermore, even a very small

number of examples suffices for learning. This is highly important, since

large datasets of meshes are difficult to acquire.

CCS Concepts: · Computing methodologies→ Shape analysis; Super-

vised learning.

Authors’ addresses: Alon Lahav, Technion ś Israel Institute of Technology, alon.lahav2@
gmail.com; Ayellet Tal, Technion ś Israel Institute of Technology, ayellet@ee.technion.
ac.il.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.
0730-0301/2020/12-ART263 $15.00
https://doi.org/10.1145/3414685.3417806

Additional Key Words and Phrases: Deep Learning, Random Walks

ACM Reference Format:

Alon Lahav and Ayellet Tal. 2020. MeshWalker: Deep Mesh Understanding

by Random Walks. ACM Trans. Graph. 39, 6, Article 263 (December 2020),

13 pages. https://doi.org/10.1145/3414685.3417806

1 INTRODUCTION

The most-commonly used representation of surfaces in computer

graphics is a polygonal mesh, due to its numerous benefits, including

efficiency and high-quality. Nevertheless, in the era of deep learning,

this representation is often bypassed because of its irregularity,

which does not suit Convolutional Neural Networks (CNNs). Instead,

3D data is often represented as volumetric grids [Ben-Shabat et al.

2018; Maturana and Scherer 2015; Roynard et al. 2018; Sedaghat

et al. 2016b] or multiple 2D projections [Boulch et al. 2017; Feng

et al. 2018a; Kanezaki et al. 2018; Su et al. 2015; Yavartanoo et al.

2018]. In some recent works point clouds are utilized and new ways

to convolve or pool are proposed [Atzmon et al. 2018; Hua et al.

2018; Li et al. 2018; Thomas et al. 2019; Xu et al. 2018].

Despite the benefits of these representations, they miss the no-

tions of neighborhoods and connectivity and might not be as good

for capturing local surface properties. Recently, several works have

proposed to maintain the potential of the mesh representation, while

still utilizing neural networks. FeaStNet [Verma et al. 2018] proposes

a graph neural network in which the neighborhood of each vertex

for the convolution operation is calculated dynamically based on

its features. MeshCNN [Hanocka et al. 2019] defines pooling and

convolution layers over the mesh edges. MeshNet [Feng et al. 2019]

ACM Trans. Graph., Vol. 39, No. 6, Article 263. Publication date: December 2020.

263:2 • Alon Lahav and Ayellet Tal

treats the faces of a mesh as the basic unit and extracts their spatial

and structural features individually to offer the final semantic rep-

resentation. LRF-Conv [Yang et al. 2020] learns descriptors directly

from the raw mesh by defining new continuous convolution kernels

that provide robustness to sampling. All these methods redefine the

convolution operation, and by doing so, are able to fit the unordered

structure of a mesh to a CNN framework.

We propose a novel and fundamentally different approach, named

MeshWalker. As in previous approaches that learn directly from the

mesh data, the basic question is how to impose regularity on the

unordered data. Our key idea is to represent the mesh by random

walks on its surface. These walks explore the local geometry of the

surface, as well as its global one. Every walk is fed into a Recurrent

Neural Network (RNN), that "remembers" the walk’s history.

In addition to simplicity, our approach has three important bene-

fits. First, we will show that even a small dataset suffices for training.

Intuitively, we can generate multiple random walks for a single

model; these walks provide multiple explorations of the model. This

may be considered as equivalent to using different projections of 3D

objects in the case of image datasets. Second, as opposed to CNNs,

RNNs are inherently robust to sequence length. This is vital in the

case of meshes, as datasets include objects of various granularities.

Third, the meshes need not be watertight or have a single connected

component; our approach can handle any triangular mesh.

Our approach is general and can be utilized to address a variety

of shape analysis tasks. We demonstrate its benefit in two basic

applications: mesh classification and mesh semantic segmentation.

Our results are superior to those of state-of-the-art approaches on

common datasets and on highly non-uniform meshes. Furthermore,

when the training set is limited in size, the accuracy improvement

over the state-of-the-art methods is highly evident.

Hence, this paper makes three contributions:

(1) We propose a novel representation of meshes for neural net-

works: random walks on surfaces.

(2) We present an end-to-end learning framework that realizes

this representation within RNNs. We show that this frame-

work works well even when the dataset is very small. This is

important in the case of 3D, where large datasets are seldom

available and are difficult to generate.

(3) We demonstrate the benefits of our method in two key appli-

cations: 3D shape classification and semantic segmentation.

2 RELATED WORK

Our work is at the crossroads of three fields, as discussed below.

2.1 Representing 3D objects for Deep Neural Networks

A variety of representations of 3D shapes have been proposed in the

context of deep learning. The main challenge is how to re-organize

the shape description such that it could be processed within deep

learning frameworks. Hereafter we briefly review the main repre-

sentations; see [Gezawa et al. 2020] for a recent excellent survey.

Multi-view 2D projections. This representation is essentially a

set of 2D images, each of which is a rendering of the object from

a different viewpoint [Bai et al. 2016; Feng et al. 2018b; Gomez-

Donoso et al. 2017; Han et al. 2019; He et al. 2018; Johns et al. 2016;

Kalogerakis et al. 2017; Kanezaki et al. 2018; Qi et al. 2016; Sarkar

et al. 2018; Su et al. 2015; Wang et al. 2019c; Zanuttigh and Minto

2017]. The major benefit of this representation is that it can naturally

utilize any image-based CNN. In addition, high-resolution inputs

can be easily handled. However, it is not easy to determine the

optimal number of views; if that number is large, the computation

might be costly. Furthermore, self-occlusions might be a drawback.

Volumetric grids. These grids are analogous to the 2D grids of

images. Therefore, the main benefit of this representation is that

operations that are applied on 2D grids can be extended to 3D in

a straightforward manner [Brock et al. 2016; Fanelli et al. 2011;

Maturana and Scherer 2015; Sedaghat et al. 2016a; Tchapmi et al.

2017; Wang et al. 2019a; Wu et al. 2015; Zhi et al. 2018]. The primary

drawbacks of volumetric grids are their limited resolution and the

heavy computation cost needed.

Point clouds. This representation consists of a set of 3D points,

sampled from the object’s surface. The simplicity, close relationship

to data acquisition, and the ease of conversion from other represen-

tations, make point clouds an attractive representation. Therefore,

a variety of recent works proposed successful techniques for point

cloud shape analysis using neural networks [Atzmon et al. 2018;

Guerrero et al. 2018; Li et al. 2018; Liu et al. 2019; Qi et al. 2017a,b;

Wang et al. 2019d; Williams et al. 2019; Xu et al. 2019; Zhu et al.

2019]. These methods attempt to learn a representation for each

point, using its neighbors (Euclidean-wise) either by multi layer per-

ceptions or by convolutional layers. Some also define novel pooling

layers. Point cloud representations might fall short in applications

when the connectivity is highly meaningful (e.g. segmentation) or

when the salient information is concentrated in small specific areas.

Triangular meshes. This representation is the most widespread

representation in computer graphics and the focus of our paper. The

major challenge of using meshes within deep learning frameworks

is the irregularity of the representationÐeach vertex has a different

number of neighbors, at different distances.

The pioneering work of [Masci et al. 2015] introduces deep learn-

ing of local features and shows how to make the convolution oper-

ations intrinsic to the mesh. In [Poulenard and Ovsjanikov 2018]

a new convolutional layer is defined, which allows the propaga-

tion of geodesic information throughout the network layers. FeaSt-

Net [Verma et al. 2018] proposes a graph neural network in which

the neighborhood of each vertex for the convolution operation is

calculated dynamically based on its features. Another line of works

exploits the fact that local patches are approximately Euclidean. The

3D manifolds are then parameterized in 2D, where standard CNNs

are utilized [Boscaini et al. 2016; Ezuz et al. 2017; Haim et al. 2019;

Henaff et al. 2015; Maron et al. 2017; Sinha et al. 2016]. A different

approach is to apply a linear map to a spiral of neighbors [Gong

et al. 2019; Lim et al. 2018], which works well for meshes with a

similar graph structure.

Two approaches were recently introduced: MeshNet [Feng et al.

2019] treats faces of a mesh as the basic unit and extracts their

spatial and structural features individually, to offer the final semantic

representation. MeshCNN [Hanocka et al. 2019] is based on a very

unique idea of using the edges of the mesh to perform pooling and

ACM Trans. Graph., Vol. 39, No. 6, Article 263. Publication date: December 2020.

MeshWalker: Deep Mesh Understanding by Random Walks • 263:3

(a) 5 walks on the surface (b) Classification: Samples from the class the input belongs to (c) Semantic segmentation

Fig. 2. Outline. To explore a mesh, walks on its surface are generated and study the surface both locally and globally (a). These walks provide sufficient

information to perform shape analysis tasks, such as classification and segmentation. Specifically, (b) shows samples from the class to which MeshWalker

correctly classified the model from (a) and (c) shows the resulting segmentation. The models are from SHREC11 [Lian et al. 2011].

convolution. The convolution operations exploit the regularity of

edgesÐhaving 4 edges of their incidental triangles. An edge collapse

operation is used for pooling, which maintains surface topology

and generates new mesh connectivity for further convolutions.

2.2 Classification

Object classification refers to the task of classifying a given shape

into one of pre-defined categories. Before deep learning methods be-

camewidespread, themain challenges were finding good descriptors

and good distance functions between these descriptors. According

to the thorough review of [Lian et al. 2013], the methods could be

roughly classified into algorithms employing local features [Johnson

and Hebert 1999; Liu et al. 2006; Lowe 2004; Ovsjanikov et al. 2009;

Sun et al. 2009], topological structures [Hilaga et al. 2001; Sundar

et al. 2003; Tam and Lau 2007], isometry-invariant global geometric

properties [Jain and Zhang 2007; Mahmoudi and Sapiro 2009; Reuter

et al. 2005], direct shape matching, or canonical forms [Bronstein

et al. 2006; Elad and Kimmel 2003; Mémoli 2007; Mémoli and Sapiro

2005].

Many of the recent techniques already use deep learning for clas-

sification. They are described in Section 2.1, for instance [Bronstein

et al. 2011; Ezuz et al. 2017; Feng et al. 2019; Hanocka et al. 2018;

Kipf and Welling 2016; Li et al. 2018; Liu et al. 2019; Perozzi et al.

2014; Qi et al. 2017a,b; Thomas et al. 2019; Veličković et al. 2017;

Wang et al. 2019b].

2.3 Semantic segmentation

Mesh segmentation is a key ingredient in many computer graphics

tasks, including modeling, animation and a variety of shape anal-

ysis tasks. The goal is to determine, for the basic elements of the

mesh (vertex, edge or face), to which segment they belong. Many

approaches were proposed, including region growing [Chazelle et al.

1997; Katz et al. 2005; Koschan 2003; Lavoué et al. 2005; Sun et al.

2002; Zhou and Huang 2004], clustering [Attene et al. 2006; Gelfand

and Guibas 2004; Katz and Tal 2003; Shlafman et al. 2002], spectral

analysis [Alpert and Yao 1995; Gotsman 2003; Liu and Zhang 2004;

Zhang et al. 2005] and more. See [Attene et al. 2006; Rodrigues et al.

2018; Shamir 2008] for excellent surveys of segmentation methods.

Lately, deep learning has been utilized for this task as well. Each

proposed approach handles a specific shape representation, as de-

scribed in Section 2.1. These approaches include among others [Guo

et al. 2015; Haim et al. 2019; Hanocka et al. 2018; Li et al. 2018; Maron

et al. 2017; Qi et al. 2017a,b,b; Yang et al. 2020].

3 MESHWALKER OUTLINE

Imagine an ant walking on a surface; it will "climb" on ridges and

go through valleys. Thus, it will explore the local geometry of the

surface, as well as the global terrain. Random walks have been

shown to incorporate both global and local information about a

given object [Grady 2006; Lai et al. 2008; Lovász et al. 1993; Noh and

Rieger 2004]. This information may be invaluable for shape analysis

tasks, nevertheless, random walks have not been used to represent

meshes within a deep learning framework before.

Given a polygonal mesh, we propose to randomly walk through

the vertices of the mesh, along its edges, as shown in Fig. 2(a). In our

ant analogy, the longer the walk, the more information is acquired

by the ant. But how shall this information be accumulated? We

propose to feed this representation into a Recurrent Neural Network

(RNN) framework, which aggregates properties of the walk. This

aggregated information will enable the ant to perceive the shape of

the mesh. This is particularly beneficial for shape analysis tasks that

require both the 3D global structure and some local information of

the mesh, as demonstrated in Fig. 2(b-c).

Algorithm 1 describes the training procedure of our proposed

MeshWalker approach. A defining property of it is that the same

piece of algorithm is used for every vertex along the walk (i.e.,

each vertex the ant passes through). The algorithm iterates on the

following: A mesh is first extracted from the dataset (it could be a

ACM Trans. Graph., Vol. 39, No. 6, Article 263. Publication date: December 2020.

263:4 • Alon Lahav and Ayellet Tal

ALGORITHM 1: MeshWalker Training

Input: Labeled mesh dataset,M

Output: 𝜃ÐRNN model parameters

𝜃0 ← 𝑅𝑁𝑁 random parameters;

M ←MeshPreprocessing(M);

repeat

(𝑀𝑖 , 𝑦𝑖) ← random mesh𝑀𝑖 ∈ M and label(s) 𝑦𝑖 ;

𝑣𝑖 𝑗 ← random starting vertex;

𝑤𝑖 𝑗 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑊𝑎𝑙𝑘 (𝑀𝑖 , 𝑣𝑖 𝑗) ;

𝑥𝑖 𝑗 ← 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑊𝑎𝑙𝑘 (𝑀𝑖 , 𝑤𝑖 𝑗) ;

𝜃𝑖 ← 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐹𝑟𝑜𝑚𝑊𝑎𝑙𝑘𝑠 (𝜃𝑖−1, 𝑥𝑖 𝑗 , 𝑦𝑖) ;

until Convergence;

mesh that was previously extracted). A vertex is chosen randomly as

the head of the walk and then a randomwalk is generated. This walk

is the input to an RNNmodel. Finally, the RNNmodel’s parameters 𝜃

are updated by minimizing the Softmax cross entropy loss 𝐿, using

Adam optimizer [Kingma and Ba 2014].

Section 4 elaborates on the architecture of our MeshWalker learn-

ing model, as well as on each of the ingredients of the iterative step.

Section 6.2 explains the mesh pre-processing step, which essentially

performs mesh simplification, and provides implementation details.

4 LEARNING TO WALK OVER A SURFACE

This section explains how to realize Algorithm 1. It begins by elab-

orating on the construction of a random walk on a mesh. It then

proceeds to describe the network that learns from walks in order to

understand meshes.

4.1 What is a walk?

Walks provide a novel way to organize the mesh data. A walk is

a sequence of vertices (not necessarily adjacent), each of which is

associated with basic information.

Walk generation. We adopt a very simple strategy to generate

walks, out of many possible ones. Recall that we are given the

first vertex 𝑣𝑖 𝑗 of a walk. Then, to generate the walk𝑤𝑖 𝑗 , the other

vertices are iteratively added, as follows. Given the current vertex

of the walk, the next vertex is chosen randomly from its adjacent

vertices (those that belong to its one-ring neighbors).

If such a vertex does not exist (as all the neighbors already be-

long to the walk), the walk is tracked backwards until an un-visited

neighbor is found; this neighbor is added to the walk. In this case,

the walk is not a linear sequence of vertices connected via edges,

but rather a tree. If the mesh consists of multiple connected compo-

nent, it is possible that the walk reaches a dead-end. In this case, a

new random un-visited vertex is chosen and the walk generation

proceeds as before. We note that in all cases, the input to the RNN

is a sequence of vertices, arranged by their discovery order. In prac-

tice, the length of the walk is set by default to ⌈𝑉 /2.5⌉, where 𝑉 is

number of vertices.

Walk representation. Once the walk𝑤𝑖 𝑗 is determined, the repre-

sentation 𝑥𝑖 𝑗 of this walk should be defined; this would be the input

to the RNN. Each vertex is represented as the 3D translation from

the previous vertex in the walk (Δ𝑋,Δ𝑌,Δ𝑍). This is inline with

the deep learning philosophy, which prefers end-to-end learning

instead of hand-crafted features that are separated from a classi-

fier, We note that we also tried other representations, including

vertex coordinates, normals, and curvatures, but the results did not

improve.

Walks at inference time. At inference, several walks are being

used for each mesh. Each walk produces a vector of probabilities to

belong to the different classes (in the case of classification). These

vectors are averaged to produce the final result. To understand the

importance of averaging, let us consider the walks on the camel in

Fig. 1. Since walks are generated randomly, we expect some of them

to explore atypical parts of the model, such as the legs, which are

similar to horse legs. Other walks, however, are likely to explore

unique parts, such as the hump or the head. The average result will

most likely be the camel, as will be shown in Section 5.

4.2 Learning from walks

Once walks are defined, the next challenge is to distillate the infor-

mation accumulated along a walk into a single descriptor vector.

Hereafter we discuss the network architecture and the training.

Network architecture. The model consists of three sub-networks,

as illustrated in Fig. 3. The first sub-network is given the current

vertex of the walk and learns a new feature space, i.e. it transforms

the 3D input feature space into a 256D feature space. This is done

by two fully connected (FC) layers, followed by an instance normal-

ization [Ulyanov et al. 2016] layer and ReLu as nonlinear activation;

both empirically outperform other alternatives.

The second sub-network is the core of our approach. It utilizes a

recurrent neural network (RNN) whose defining property is being

able to "remember" and accumulate knowledge. Briefly, a recurrent

neural network [Cho et al. 2014; Graves et al. 2008; Hochreiter and

Schmidhuber 1997] is a connectionist model that contains a self-

connected hidden layer. The benefit of self-connection is that the

‘memory’ of previous inputs remains in the network’s internal state,

allowing it to make use of past context. In our setting, the RNN gets

as input a feature vector (the result of the previous sub-network),

learns the hidden states that describe the walk up to the current

vertex, and outputs a state vector that contains the information

gathered along the walk.

Another benefit of RNNs, which is crucial in our case, is not being

confined to fixed-length inputs or outputs. Thus, we can use the

model to inference on a walk of a certain length, which may differ

from walk lengths the model was trained on.

To implement the RNN part of our model, we use three Gated

Recurrent Unit (GRU) layers of [Cho et al. 2014]. Briefly, the goal of

an GRU layer is to accumulate only the important information from

the input sequence and to forget the non-important information.

Formally, let 𝑥𝑡 be the input at time 𝑡 and ℎ𝑡 be the hidden state

at time 𝑡 ; let the reset gate 𝑟𝑡 and the update gate 𝑧𝑡 be two vectors,

which jointly decide which information should be passed from

time 𝑡-1 to time 𝑡 . To realize GRU’s goal, the network performs the

following calculation, which sets the hidden state at time 𝑡 . Its final

content is based on updating the hidden state in the previous time

(the update gate 𝑧𝑡 determines which information should be passed)

ACM Trans. Graph., Vol. 39, No. 6, Article 263. Publication date: December 2020.

MeshWalker: Deep Mesh Understanding by Random Walks • 263:5

Fig. 3. Network architecture. The network consists of three components: The first component (FC layers) changes the feature space; the second component

(RNN layers) aggregates the information along the walk; and the third component (an FC layer) predicts the outcome of the network. For classification, the

prediction of the last vertex of the walk is considered and Softmax is applied to its resulting vector (the bottom-right orange circle, classified as a camel). For

segmentation (not shown in this figure), the network is similar. However, Softmax is applied to each of the resulting vectors of the vertices (the orange circles

in the right column); each vertex is classified into a segment.

and on its candidate memory content ℎ̃𝑡 :

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ̃𝑡 , (1)

where ⊙ is an element-wise multiplication. Here, ℎ̃𝑡 is defined as:

ℎ̃𝑡 = tanh
(

𝑊 (ℎ)𝑥𝑡 +𝑈
(ℎ)ℎ𝑡−1 ⊙ 𝑟𝑡 + 𝑏

(ℎ)
)

. (2)

That is, when the reset gate is close to 0, the hidden state ignores

the previous hidden state and resets with the current input only.

This effectively allows the hidden state to drop any information that

will later be found to be irrelevant.

Finally, the reset gate 𝑟𝑡 and the update gate 𝑧𝑡 are defined as:

𝑧𝑡 = 𝜎
(

𝑊 (𝑧)𝑥𝑡 +𝑈
(𝑧)ℎ𝑡−1 + 𝑏

(𝑧)
)

, (3)

𝑟𝑡 = 𝜎
(

𝑊 (𝑟)𝑥𝑡 +𝑈
(𝑟)ℎ𝑡−1 + 𝑏

(𝑟)
)

, (4)

where 𝜎 is a logistic Sigmoid function.𝑊 (ℎ) ,𝑊 (𝑧) ,𝑊 (𝑟) ,𝑈 (ℎ) ,𝑈 (𝑧)

and𝑈 (𝑟) are trainable weight matrices and 𝑏 (ℎ) , 𝑏 (𝑟) , 𝑏 (𝑟) are train-

able bias vectors. The initial hidden state ℎ 𝑗 is set to 0.

GRU outperforms a vanilla RNN, due to its ability to both remem-

ber the important information along the sequence and to forget

unimportant content. Furthermore, it is capable of processing long

sequences, similarly to the Long Short-TermMemory (LSTM) [Hochre-

iter and Schmidhuber 1997]. Being able to accumulate information

from long sequences is vital for grasping the shape of a 3D model,

which usually consists of thousands of vertices. We chose GRU

over LSTM due to its simplicity and its smaller computational re-

quirements. For comparison, LSTM would require 16.8𝑀 trainable

parameters in our case, whereas𝐺𝑅𝑈 uses 12.7𝑀 . Furthermore, the

inference time is smallerÐfor instance, a single 100-steps walk takes

5𝑚𝑆𝑒𝑐 using LSTM and 3𝑚𝑆𝑒𝑐 using GRU.

The third sub-network in Fig. 3 predicts the object class in case

of classification, or the vertex segment in case of semantic segmen-

tation. It consists of a single fully connected (FC) layer on top of the

state vector calculated in the previous sub-network. More details

on the architectures & the implementation are given in Section 6.

Loss calculation. The Softmax cross entropy loss is used on the

output of the third part of the network. In the case of the classifica-

tion task, only the last step of the walk is used as input to the loss

function, since it accumulates all prior information from the walk.

In Fig. 3, this is the bottom-right orange component.

In the case of the segmentation task, each vertex has its own

predicted segment class. Each of the orange components in Fig. 3

classifies the segment that the respected vertex belongs to. Since

at the beginning of the walk the results are not trustworthy (as

the mesh is not yet well understood), for the loss calculation in the

training process we consider the segment class predictions only for

the vertices that belong to the second half of the walk.

5 APPLICATIONS: CLASSIFICATION & SEGMENTATION

MeshWalker is a general approach, whichmay be applied to a variety

of applications. We demonstrate its performance for two fundamen-

tal tasks in shape analysis: mesh classification and mesh semantic

segmentation. Our results are compared against the reported SOTA

results for recently-used datasets, hence the methods we compare

against vary according to the specific dataset.

5.1 Mesh classification

Given a mesh, the goal is to classify it into one of pre-defined classes.

For the givenmeshwe generate multiple randomwalks. These walks

are run through the trained network. For each walk, the network

ACM Trans. Graph., Vol. 39, No. 6, Article 263. Publication date: December 2020.

263:6 • Alon Lahav and Ayellet Tal

predicts the probability of this mesh to belong to each class. These

prediction vectors are averaged into a single prediction vector. In

practice we use 32 walks; Section 6 will discuss the robustness of

MeshWalker to the number of walks.

To test our algorithm, we applied our method to three recently-

used datasets: SHREC11 [Lian et al. 2011], engraved cubes [Hanocka

et al. 2019] and ModelNet40 [Wu et al. 2015], which differ from each

other in the number of classes, the number of objects per class, as

well as the type of shapes they contain. As common, the accuracy

is defined as the ratio of correctly predicted meshes.

SHREC11. This dataset consists of 30 classes, with 20 examples

per class. Typical classes are camels, cats, glasses, centaurs, hands

etc. Following the setup of [Ezuz et al. 2017], we split the objects

in each class into 16 (/10) training examples and 4 (/10) testing

examples.

Table 1 compares the performance, where each result is the aver-

age of the results of 3 randoms splits (of 16/4 or of 10/10). When the

split is 10 objects for training and 10 for testing, the advantage of

our method is apparent. When 16 objects are used for training and

only 4 for testing, we get the same accuracy as that of the current

state-of-the-art. In Section 6.1 we show that indeed the smaller the

training dataset, the more advantageous our approach is.

Table 1. Classification on SHREC11 [Lian et al. 2011]. Split-16 and Split-

10 are the number of training models per class (out of 20models in the class).

In both cases our method achieves state-of-the-art results, yet it is most

advantageous for a small training dataset (Split-10). (We have not found

point cloud-based networks that were tested on SHREC11).

Method Input Split-16 Split-10

MeshWalker (ours) Mesh 98.6% 97.1%

MeshCNN [Hanocka et al. 2019] Mesh 98.6% 91.0%

GWCNN [Ezuz et al. 2017] Mesh 96.6% 90.3%

SG [Bronstein et al. 2011] Mesh 70.8% 62.6%

Cube engraving. This dataset contains 4600 objects, with 3910/690

training/testing split. Each object is a cube "engraved" with a shape

at a random face in a random location, as demonstrated in Fig. 4.

The engraved shape belongs to a dataset of 23 classes (e.g., car,

heart, apple, etc.), each contains roughly 20 shapes. This dataset

was created in order to demonstrate that using meshes, rather than

point clouds, may be critical for 3D shape analysis.

Table 2 provides the results. It demonstrates the benefit of our

method over state-of-the-art methods.

Table 2. Classification on Cube Engraving [Hanocka et al. 2019]. Our

results outperform those of state-of-the-art algorithms.

Method Input accuracy

MeshWalker (ours) Mesh 98.6%

MeshCNN [Hanocka et al. 2019] Mesh 92.16%

PointNet++ [Qi et al. 2017b] Point cloud 64.26%

Fig. 4. Engraved cubes dataset. This image is courtesy of [Hanocka et al.

2019].

ModelNet40. This commonly-used dataset contains 12, 311 CAD

models from 40 categories, out of which 9, 843 models are used

for training and 2, 468 models are used for testing. Unlike previous

datasets, many of the objects contain multiple components and

are not necessarily watertight, making this dataset prohibitive for

some mesh-based methods. However, such models can be handled

by MeshWalker since as explained before, if the walk gets into a

dead-end during backtracking, it jumps to a new random location.

Table 3 shows that our results outperform those of mesh-based

state-of-the-art methods. We note that without 5 classes that are

cross-labeled (desk/table & plant/flower-pot/vase) our method’s

accuracy is 94.4%. The table shows that multi-views approaches are

excellent for this dataset. This is due to relying on networks that

are pre-trained on a large number of images. However, they might

fail for other datasets, such as the engraved cubes, and do not suit

other shape analysis tasks, such as semantic segmentation.

Table 3. Classification on ModelNet40 [Wu et al. 2015]. MeshWalker

is competitive with other mesh-based methods. Multi-view methods are ad-

vantageous for this dataset, possibly due to relying on pre-trained networks

for image classification and to naturally handling multiple components and

nonśwatertight models, which characterize many meshes in this dataset.

Method Input Accuracy

MeshWalker (ours) mesh 92.3%

MeshNet [Feng et al. 2019] mesh 91.9%

SNGC [Haim et al. 2019] mesh 91.6%

KPConv [Thomas et al. 2019] point cloud 92.9%

PointNet [Qi et al. 2017a] point cloud 89.2%

RS-CNN [Liu et al. 2019] point cloud 93.6%

RotationNet [Kanezaki et al. 2018] multi-views 97.3%

GVCNN [Feng et al. 2018b] multi-views 93.1%

3D2SeqViews [Han et al. 2019] multi-views 93.4%

5.2 Mesh semantic segmentation

Shape segmentation is an important building block for many appli-

cations in shape analysis and synthesis. The goal is to determine,

for every vertex, the segment it belongs to. We tested MeshWalker

on two datasets: COSEG [Wang et al. 2012] and human-body Seg-

mentation [Maron et al. 2017].

ACM Trans. Graph., Vol. 39, No. 6, Article 263. Publication date: December 2020.

MeshWalker: Deep Mesh Understanding by Random Walks • 263:7

(a) Ours (b) [Hanocka et al. 2019] (c) Ours (d) [Hanocka et al. 2019]

Fig. 5. Qualitative results for human shape segmentation from [Maron et al. 2017]. Our system avoids mis-classifications, not mixing lower legs with

lower arms or hands with feet. We note that for most shapes in the dataset, both systems produce equally-good results.

Given mesh, multiple random walks are generated (in practice,

32 × # segment classes; see the discussion in Section 6). These

walks are run through the trained network, which predicts the

probabilities of belonging to the segments. Similarly to the training

process, only vertices of the second half of each walk are considered

trustworthy. For each vertex, the predictions of the walks it belongs

to are averaged. Then, as post-processing, we consider the average

prediction of the vertex neighbors and add this average with 0.5

weight. Finally, the prediction for each vertex is the argmax-ed.

Formally, let {𝑊 } be the set of walks performed on a mesh. Let

𝑃𝑖𝑣 be the vector that is the Softmax output for vertex 𝑣 from walk 𝑖

(if walk 𝑖 does not visit 𝑣 , 𝑃𝑖𝑣 is set to a 0-vector). Let 𝑣𝑟𝑖𝑛𝑔 be the

list of the vertices adjacent to 𝑣 and 𝑁𝑣 be the size of this list. The

predicted label, 𝑙𝑣 of vertex 𝑣 is defined as (where 𝑎𝑟𝑔𝑚𝑎𝑥 finds the

maximum vector entry):

𝑙𝑣 = 𝑎𝑟𝑔𝑚𝑎𝑥 (
∑

𝑖∈{𝑊 }

𝑃𝑖𝑣 +
1

2𝑁𝑣

∑

𝑣̃∈𝑣𝑟𝑖𝑛𝑔

∑

𝑖∈{𝑊 }

𝑃𝑖𝑣̃) . (5)

We follow the accuracy measure proposed in [Hanocka et al.

2019]: Given the prediction for each edge, the accuracy is defined

as the percentage of the correctly-labeled edges, weighted by their

length. Since MeshWalker predicts the segment of the vertices, if

the predictions of the endpoints of the edge agree, the edge gets the

endpoints’ label; otherwise, the label with the higher prediction is

chosen. The overall accuracy is the average over all meshes.

Human-body segmentation. The dataset consists of 370 training

models from SCAPE [Anguelov et al. 2005], FAUST [Bogo et al.

2014], MIT [Vlasic et al. 2008] and Adobe Fuse [Adobe 2016]. The

test set consists of 18 humans from SHREC’07 [Giorgi et al. 2007] .

The meshes are manually segmented into eight labeled segments

according to [Kalogerakis et al. 2010].

There are two common measures of segmentation results, accord-

ing to the correct classification of faces [Haim et al. 2019] or of edges

[Hanocka et al. 2019]. Tables 4 and 5 compare our results to those of

Table 4. Human-body segmentation results on [Maron et al. 2017].

The accuracy is calculated on edges of the simplified meshes.

Method Edge Accuracy

MeshWalker 94.8%

MeshCNN 92.3%

Table 5. Human-body segmentation results on [Maron et al. 2017].

The reported results are on the original meshes; For MeshCNN, the results

shown are ours. Our results outperform those of state-of-the-art algorithms.

Method Input Face

Accuracy

MeshWalker (ours) Mesh 92.7%

MeshCNN [Hanocka et al. 2019] Mesh 89.0%

LRF-Conv [Yang et al. 2020] Mesh 89.9%

SNGC [Haim et al. 2019] Mesh 91.3%

Toric Cover [Maron et al. 2017] Mesh 88.0%

GCNN [Masci et al. 2015] Mesh 86.4%

MDGCNN Mesh 89.5%

[Poulenard and Ovsjanikov 2018]

PointNet++ [Qi et al. 2017b] Point cloud 90.8%

DynGraphCNN [Wang et al. 2019d] Point cloud 89.7%

previous works, according to the reported measure and the type of

objects (simplified or not). Since our method is trained on simplified

meshes, to get results on the original meshes, we apply a simple

projection to the original meshes jointly with boundary smoothing,

as in [Katz and Tal 2003]. In both measures, MeshWalker outper-

forms other methods. Fig. 5 presents qualitative examples where

the difference between the resulting segmentations is evident.

ACM Trans. Graph., Vol. 39, No. 6, Article 263. Publication date: December 2020.

263:8 • Alon Lahav and Ayellet Tal

(a) Vases (b) Aliens (c) Chairs

Fig. 6. Qualitative results of segmentation for meshes from COSEG [Wang et al. 2012].

COSEG segmentation. This dataset contains three large classes:

aliens, vases and chairs with 200, 300 and 400 shapes, respectively.

Each category is split into 85%/15% train/test sets. Fig. 6 presents

some qualitative results, where it can be seen that our method

performs very well. Table 6 shows the accuracy of our results, where

the results of the competitors are reported in [Hanocka et al. 2019].

Our method achieves state-of-the-art results for all categories.

Table 6. Segmentation results on COSEG [Wang et al. 2012]. Our

method achieves state-of-the-art results for all categories.

Method Vases Chairs Telealiens Mean

MeshWalker (ours) 98.7% 99.6% 99.1% 99.1%

MeshCNN 97.3% 99.6% 97.6% 98.2%

PointNet++ 94.7% 98.9% 79.1% 90.9%

PointCNN [Li et al. 2018] 96.4% 99.3% 97.4% 97.7%

6 EXPERIMENTS

6.1 Ablation study

Size of the training dataset. Howmany trainingmodels are needed

in order to achieve good performance? In the 3D case this question is

especially important, since creating a dataset is costly. Table 7 shows

the accuracy of our model for the COSEG dataset, when trained on

different dataset sizes. As expected, the larger the dataset, the better

the results. However, even when using only 4 shapes for training,

the results are pretty good (80.5%). This outstanding result can be

explained by the fact that we can produce many random walks for

each mesh, hence the actual number of training examples is large.

This result is consistent across all categories and datasets. Table 8

shows a similar result for the human-body segmentation dataset.

Walk length. Fig. 1 has shown that the accuracy of our method

depends on the walk length. What would be an ideal length for our

system to "understand" a shape? Fig. 7 analyzes the influence of the

length on the task of classification for SHREC11. As expected, the

accuracy increases with length. However, it can be seen that when

we use at least 16 walks per mesh, a walk whose length is 0.15𝑉

suffices to get excellent results. Furthermore, there is a trade-off

between the number of walks we use and the length of these walks.

Though the exact length depends both on the task in hand and on

the dataset, this correlation is consistent across datasets and tasks.

Table 7. Analysis of the training dataset size (COSEG segmentation).

"Full" training is 170, 255 and 240 shapes for tele-aliens, vases and chairs,

respectively. As expected, the larger the dataset, the better the results. How-

ever, even if the training dataset is very small, our results are good.

training shapes Vases Chairs Tele-aliens Mean

Full 98.7% 99.6% 99.1% 99.1%

32 95.3% 98.5% 94.2% 96.0%

16 93.6% 93.4% 92.4% 93.1%

8 83.7% 87.7% 86.7% 86.0%

4 77.5% 83.7% 80.4% 80.5%

2 67.3% 78.4% 69.7% 71.8%

1 60.9% 59.9% 40.6% 53.8%

Table 8. Analysis of the training dataset size (human-body segmen-

tation). As before, the performance of our method degrades gracefully with

the size of the training set. We note that the results of MeshCNN are not

reported in their paper, but rather the results of new runs of their system.

training shapes MeshWalker MeshCNN

(ours) [Hanocka et al. 2019]

381 (full) 94.8% 92.3%

16 92.0% 55.7%

4 84.3% 48.3%

2 80.8% 42.4%

Number of walks. How many walks are needed at inference time?

Table 9 shows that the more walks, the better the accuracy. However,

even very few walks result in very good accuracy. In particular, on

SHREC11, even with a single walk the accuracy is 90.8%. For the

Engraved-Cubes dataset, more walks are needed, since the model is

engraved on a single cube facet, which certain walks might not get

to. Even in this difficult case, 4 walks already achieve 92.1% accuracy.

We note that the STD is between 2.5% for a single walk to 0.4% for

32 walks. As expected, the more walks used, the more stable the

results are and the smaller the STD is.

Robustness. We use various rotations within data augmentation,

hence robustness to orientations. In particular, to test the robustness

to rotation, we rotated the models in the Human-body segmentation

dataset and in SHREC11 classification dataset 36 times for each axis,

ACM Trans. Graph., Vol. 39, No. 6, Article 263. Publication date: December 2020.

MeshWalker: Deep Mesh Understanding by Random Walks • 263:9

Fig. 7. Walk length analysis. The accuracy increases with walk length,

for classification on SHREC11. Here, the 𝑋 axis is number of vertices along

the walk, normalized by number of mesh vertices. This figure illustrates

trade-off between the number of walks we use and the length of these

walks. As the walk begins, using many walks is not beneficial since the RNN

has not accumulated enough information yet. However, after e.g. 0.3V, two

walks are better than a single 0.6V-length walk. This is because they explore

different mesh regions.

Table 9. Number of walks analysis. The accuracy improves with the num-

ber of walks per shape (demonstrated on 2 datasets).

Walks SHREC11 Acc Eng.Cubes Acc

32 98.3% 97.6%

16 97.8% 97.4%

8 97.8% 95.3%

4 95.5% 92.1%

2 95.0% 84.8%

1 90.8% 77.1%

by increments of 10◦. For each of these rotated versions of the

datasets we applied the same testing as before. For both datasets,

there was no difference in the results. Furthermore, the meshes are

normalized, hence robustness to scaling.

Our approach is inherently robust to different triangulations,

as random walks (representing the same mesh) may vary greatly

anyhow. Specifically, we generated a modified version of the COSEG

segmentation dataset by randomly perturbing 30% of the vertex

positions, realized as a shift towards a random vertex in its 1-ring.

The performance degradation is less than 0.1%.

6.2 Implementation

Mesh pre-processing: simplification & data augmentation. All the

meshes used for training are first simplified into roughly the same

number of faces [Garland and Heckbert 1997; Hoppe 1997] (Mesh-

Processing procedure in Algorithm 1). Simplification is analogous

to the initial resizing of images. It reduces the network capacity

required for training. Moreover, we could use several simplifications

for each mesh as a form of data augmentation for training and for

testing. For instance, for ModelNet40 we use 1𝐾 , 2𝐾 and 4𝐾 faces.

The meshes are normalized into a unit sphere, if necessary.

In addition, we augment the training data and add diversity by

rotating the models. As part of batch preparation, each model is

randomly rotated in each axis prior to each training iteration.

t-SNE analysis. Does the network produce meaningful features?

Fig. 8 opens the network’s "black box" and shows the t-SNE projec-

tion to 2D of the multi-dimensional features after each stage of our

learning framework, applied to the human-body segmentation task.

Each feature vector is colored by its correct label.

In the input layer all the classes are mixed together. The same

behavior is noticed after the first two fully-connected layers, since

no information is shared between the vertices up to this stage. In

the next three GRU layers, semantic meaning evolves: The features

are structured as we get deeper in the network. In the last RNN

layer the features are meaningful, as the clusters are evident. This

visualization demonstrates the importance of the RNN hierarchy.

Fig. 9 reveals another invaluable property of our walks. It shows

the t-SNE visualization of walks for classification of objects from 5

categories of SHREC11. Each feature vector is colored by its correct

label; its shape (rectangle, triangle etc) represents the object the

walk belongs to. Not only clusters of shapes from the same category

clearly emerge, but also walks that belong to the same object are

grouped together! This is another indication to the quality of our

proposed features.

Computation time. Training takes between 5 hours (for classifica-

tion on SHREC11) to 12 hours (for segmentation on human-body),

using GTX 1080 TI graphics card. At inference, a 100-step walk,

which is typical for SHREC11, takes about 4 milliseconds. When we

use 32 walks per shape, the running time would be 128 milliseconds.

Remeshing takes e.g. 4.6 seconds from 400𝐾 faces to 1.5𝐾 or 0.85

from 100𝐾 face to 1.5𝐾 faces. We note that our method is easy to

parallelize, as every walk could be processed on a different processor,

which is yet another benefit of our approach.

Training configurations. We implemented our network using Ten-

sorFlow V2. The network architecture is given in Table 10. The source

code is available on "https://github.com/AlonLahav/MeshWalker".

Table 10. Training configuration

Layer Output Dimension

Vertex description 3

Fully Connected 128

Instance Normalization 128

ReLU 128

Fully Connected 256

Instance Normalization 256

ReLU 256

GRU 1024

GRU 1024

GRU 512

Fully Connected # of classes

ACM Trans. Graph., Vol. 39, No. 6, Article 263. Publication date: December 2020.

263:10 • Alon Lahav and Ayellet Tal

(a) input (b) FC1 (c) FC2 (d) GRU1 (e) GRU2 (f) GRU3

Fig. 8. t-SNE of the internal layers. This is a visualization of the output of the different layers for the human-body segmentation task. It can be seen how

the semantic meaning of the layers’ output starts to evolve after the first GRU layer and gets better in the next two layers.

Fig. 9. t-SNE analysis for classification. This figure shows feature hier-

archy: Meshes that belong to the same category (indicated by the color)

are clustered together. Furthermore, walks that belong to the same mesh

(indicated by the shape of the 2D point) are also clustered.

Optimization: To update the network weights, we use Adam

optimizer [Kingma and Ba 2014]. The learning rate is set in a cyclic

way, as suggested by [Smith 2017]. The initial and the maximum

learning rates are set to 10−6 and 5 · 10−4 respectively. The cycle

size is 20𝑘 iterations.

Batch strategy: Walks are grouped into batches of 32 walks each.

For mesh classification, the walks are generated from different

meshes, whereas for semantic segmentation each batch is composed

of 4 walks on 8 meshes.

Training iterations: We train for 60k, 60k, 460k, 200k, 200k itera-

tions for SHREC11, COSEG, human-body segmentation, engraved-

cubes and ModelNet40 datasets, respectively. This is so since for the

loss to converge fast, many of the walks should cover the salient

parts of the shape, which distinguish it from other classes/segments.

When this is not the case, more iterations are needed in order for the

few meaningful walks to influence the loss. This is the case for in-

stance in the engraved cubes dataset, where the salient information

lies on a single facet.

6.3 Limitations

Fig. 10 shows a failure of our algorithm, where parts of the hair were

wrongly classified as a torso. This is the case since the training data

does not contain enough models with hair to learn from. In general,

learning-based algorithms rely on good training data, which is not

always available.

Another limitation is handling large meshes. The latter require

long walks, which in turn might lead to run-time and memory

(a) Ground truth (b) Ours (c) [Hanocka et al. 2019]

Fig. 10. Limitation. Our algorithm fails to classify the hair due to not

having sufficient similar shapes in the dataset.

issues. In this paper, this is solved by simplifying the meshes and

then projecting the segmentation results onto the original meshes.

(For classification, this is not a concern, as simplified meshes may

be used).

7 CONCLUSION

This paper has introduced a novel approach for representing meshes

within deep learning schemes. The key idea is to represent the mesh

by random walks on its surface, which intuitively explore the shape

of the mesh. Since walks are described by the order of visiting mesh

vertices, they suit deep learning.

Utilizing this representation, the paper has proposed an end-to-

end learning framework, termedMeshWalker. The randomwalks are

fed into a Recurrent Neural Network (RNN), that "remembers" the

walk’s history (i.e. the geometry of the mesh). Prior works indicated

that RNNs are unsuitable for point clouds due to both the unordered

nature of the data and the number of vertices used to represent a

shape. Surprisingly, we have shown that RNNs work extremely well

for meshes, through the concept of random walks.

Our approach is general, yet simple. It has several additional ben-

efits. Most notably, it works well even for extremely small datasets.

e.g. even 4 meshes per class suffice to get good results. In addition,

the meshes are not require to be watertight or to consist of a single

component (as demonstrated by ModelNet40 [Wu et al. 2015]); some

other mesh-based approaches impose these conditions and require

the meshes to be manifolds.

Last but not least, the power of this approach has been demon-

strated for two key tasks in shape analysis: mesh classification and

ACM Trans. Graph., Vol. 39, No. 6, Article 263. Publication date: December 2020.

MeshWalker: Deep Mesh Understanding by Random Walks • 263:11

mesh semantic segmentation. In both cases, we present state-of-the-

art results.

An interesting question for future work is whether there are

optimal walks for meshes, rather than random walks. For instance,

are there good starting points of walks? Additionally, reinforcement

learning could be utilized to learn good walks. Exploring other

applications, such as shape correspondence, is another intriguing

future direction. Another interesting practical future work would be

to work on the mesh as is, without simplification as pre-processing.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the Israel Science Foun-

dation (ISF) 1083/18 amd PMRI ś Peter Munk Research Institute ś

Technion.

REFERENCES
Adobe. 2016. Adobe Fuse 3D Characters. https://www.mixamo.com.
Charles J Alpert and So-Zen Yao. 1995. Spectral partitioning: the more eigenvectors, the

better. In Proceedings of the 32nd annual ACM/IEEE Design Automation Conference.
195ś200.

Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers,
and James Davis. 2005. SCAPE: shape completion and animation of people. In ACM
SIGGRAPH 2005 Papers. 408ś416.

Marco Attene, Bianca Falcidieno, and Michela Spagnuolo. 2006. Hierarchical mesh
segmentation based on fitting primitives. The Visual Computer 22, 3 (2006), 181ś193.

M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, and A. Tal. 2006. Mesh
Segmentation - A Comparative Study. In IEEE International Conference on Shape
Modeling and Applications 2006 (SMI’06). 7ś7.

Matan Atzmon, Haggai Maron, and Yaron Lipman. 2018. Point convolutional neural
networks by extension operators. arXiv preprint arXiv:1803.10091 (2018).

Song Bai, Xiang Bai, Zhichao Zhou, Zhaoxiang Zhang, and Longin Jan Latecki. 2016.
Gift: A real-time and scalable 3d shape search engine. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 5023ś5032.

Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fischer. 2018. 3dmfv: Three-
dimensional point cloud classification in real-time using convolutional neural net-
works. IEEE Robotics and Automation Letters 3, 4 (2018), 3145ś3152.

Federica Bogo, Javier Romero, Matthew Loper, and Michael J Black. 2014. FAUST:
Dataset and evaluation for 3Dmesh registration. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 3794ś3801.

Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael Bronstein. 2016.
Learning shape correspondence with anisotropic convolutional neural networks. In
Advances in neural information processing systems. 3189ś3197.

Alexandre Boulch, Bertrand Le Saux, and Nicolas Audebert. 2017. Unstructured Point
Cloud Semantic Labeling Using Deep Segmentation Networks. 3DOR 2 (2017), 7.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. 2016. Generative and
discriminative voxel modeling with convolutional neural networks. arXiv preprint
arXiv:1608.04236 (2016).

Alexander M Bronstein, Michael M Bronstein, Leonidas J Guibas, and Maks Ovsjanikov.
2011. Shape google: Geometric words and expressions for invariant shape retrieval.
ACM Transactions on Graphics (TOG) 30, 1 (2011), 1ś20.

Alexander M Bronstein, Michael M Bronstein, and Ron Kimmel. 2006. Efficient compu-
tation of isometry-invariant distances between surfaces. SIAM Journal on Scientific
Computing 28, 5 (2006), 1812ś1836.

Bernard Chazelle, David P Dobkin, Nadia Shouraboura, and Ayellet Tal. 1997. Strate-
gies for polyhedral surface decomposition: an experimental study. Computational
Geometry 7, 5-6 (1997), 327ś342.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078 (2014).

Asi Elad and Ron Kimmel. 2003. On bending invariant signatures for surfaces. IEEE
Transactions on pattern analysis and machine intelligence 25, 10 (2003), 1285ś1295.

Danielle Ezuz, Justin Solomon, Vladimir G Kim, and Mirela Ben-Chen. 2017. GWCNN:
A metric alignment layer for deep shape analysis. In Computer Graphics Forum,
Vol. 36. Wiley Online Library, 49ś57.

Gabriele Fanelli, Thibaut Weise, Juergen Gall, and Luc Van Gool. 2011. Real time
head pose estimation from consumer depth cameras. In Joint pattern recognition
symposium. Springer, 101ś110.

Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and Yue Gao. 2019. MeshNet: mesh
neural network for 3D shape representation. In Proceedings of the AAAI Conference

on Artificial Intelligence, Vol. 33. 8279ś8286.
Yifan Feng, Zizhao Zhang, Xibin Zhao, Rongrong Ji, and Yue Gao. 2018a. GVCNN:

Group-View Convolutional Neural Networks for 3D Shape Recognition. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Yifan Feng, Zizhao Zhang, Xibin Zhao, Rongrong Ji, and Yue Gao. 2018b. GVCNN:
Group-view convolutional neural networks for 3D shape recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 264ś272.

Michael Garland and Paul S Heckbert. 1997. Surface simplification using quadric error
metrics. In Proceedings of the 24th annual conference on Computer graphics and
interactive techniques. 209ś216.

Natasha Gelfand and Leonidas J Guibas. 2004. Shape segmentation using local slippage
analysis. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on
Geometry processing. 214ś223.

Abubakar Sulaiman Gezawa, Yan Zhang, Qicong Wang, and Lei Yunqi. 2020. A Re-
view on Deep Learning Approaches for 3D Data Representations in Retrieval and
Classifications. IEEE Access 8 (2020), 57566ś57593.

Daniela Giorgi, Silvia Biasotti, and Laura Paraboschi. 2007. Shape retrieval contest
2007: Watertight models track. SHREC competition 8, 7 (2007).

Francisco Gomez-Donoso, Alberto Garcia-Garcia, J Garcia-Rodriguez, Sergio Orts-
Escolano, and Miguel Cazorla. 2017. Lonchanet: A sliced-based cnn architecture
for real-time 3d object recognition. In 2017 International Joint Conference on Neural
Networks (IJCNN). IEEE, 412ś418.

Shunwang Gong, Lei Chen, Michael Bronstein, and Stefanos Zafeiriou. 2019. Spiral-
net++: A fast and highly efficient mesh convolution operator. In Proceedings of the
IEEE International Conference on Computer Vision Workshops. 0ś0.

Craig Gotsman. 2003. On graph partitioning, spectral analysis, and digital mesh pro-
cessing. In 2003 Shape Modeling International. IEEE, 165ś171.

Leo Grady. 2006. Random walks for image segmentation. IEEE transactions on pattern
analysis and machine intelligence 28, 11 (2006), 1768ś1783.

Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst Bunke, and
Jürgen Schmidhuber. 2008. A novel connectionist system for unconstrained hand-
writing recognition. IEEE transactions on pattern analysis and machine intelligence
31, 5 (2008), 855ś868.

Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J Mitra. 2018. PCPNet
learning local shape properties from raw point clouds. In Computer Graphics Forum,
Vol. 37. Wiley Online Library, 75ś85.

Kan Guo, Dongqing Zou, and Xiaowu Chen. 2015. 3d mesh labeling via deep con-
volutional neural networks. ACM Transactions on Graphics (TOG) 35, 1 (2015),
1ś12.

Niv Haim, Nimrod Segol, Heli Ben-Hamu, Haggai Maron, and Yaron Lipman. 2019. Sur-
face Networks via General Covers. In Proceedings of the IEEE International Conference
on Computer Vision. 632ś641.

ZhizhongHan, Honglei Lu, Zhenbao Liu, Chi-ManVong, Yu-Shen Liu, Matthias Zwicker,
Junwei Han, and CL Philip Chen. 2019. 3d2seqviews: Aggregating sequential views
for 3d global feature learning by cnn with hierarchical attention aggregation. IEEE
Transactions on Image Processing 28, 8 (2019), 3986ś3999.

Rana Hanocka, Noa Fish, Zhenhua Wang, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. 2018. Alignet: Partial-shape agnostic alignment via unsupervised learning.
ACM Transactions on Graphics (TOG) 38, 1 (2018), 1ś14.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. 2019. MeshCNN: a network with an edge. ACM Transactions on Graphics
(TOG) 38, 4 (2019), 1ś12.

Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and Xiang Bai. 2018. Triplet-center
loss for multi-view 3d object retrieval. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 1945ś1954.

Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks on
graph-structured data. arXiv preprint arXiv:1506.05163 (2015).

Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L Kunii. 2001. Topol-
ogymatching for fully automatic similarity estimation of 3D shapes. In Proceedings of
the 28th annual conference on Computer graphics and interactive techniques. 203ś212.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735ś1780.

Hugues Hoppe. 1997. View-dependent refinement of progressive meshes. In Proceedings
of the 24th annual conference on Computer graphics and interactive techniques. 189ś
198.

Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. 2018. Pointwise convolutional
neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 984ś993.

Varun Jain and Hao Zhang. 2007. A spectral approach to shape-based retrieval of
articulated 3D models. Computer-Aided Design 39, 5 (2007), 398ś407.

Edward Johns, Stefan Leutenegger, and Andrew J Davison. 2016. Pairwise decompo-
sition of image sequences for active multi-view recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 3813ś3822.

Andrew E. Johnson and Martial Hebert. 1999. Using spin images for efficient object
recognition in cluttered 3D scenes. IEEE Transactions on pattern analysis andmachine
intelligence 21, 5 (1999), 433ś449.

ACM Trans. Graph., Vol. 39, No. 6, Article 263. Publication date: December 2020.

263:12 • Alon Lahav and Ayellet Tal

Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, and Siddhartha Chaudhuri.
2017. 3D shape segmentation with projective convolutional networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 3779ś3788.

Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. 2010. Learning 3D mesh
segmentation and labeling. In ACM SIGGRAPH 2010 papers. 1ś12.

Asako Kanezaki, Yasuyuki Matsushita, and Yoshifumi Nishida. 2018. Rotationnet: Joint
object categorization and pose estimation using multiviews from unsupervised
viewpoints. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 5010ś5019.

Sagi Katz, George Leifman, and Ayellet Tal. 2005. Mesh segmentation using feature
point and core extraction. The Visual Computer 21, 8-10 (2005), 649ś658.

Sagi Katz and Ayellet Tal. 2003. Hierarchical mesh decomposition using fuzzy clustering
and cuts. ACM transactions on graphics (TOG) 22, 3 (2003), 954ś961.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

AF Koschan. 2003. Perception-based 3D trianglemesh segmentation using fast marching
watersheds. In 2003 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2003. Proceedings., Vol. 2. IEEE, IIśII.

Yu-Kun Lai, Shi-Min Hu, Ralph R. Martin, and Paul L. Rosin. 2008. Fast Mesh Seg-
mentation Using Random Walks. In Proceedings of the 2008 ACM Symposium
on Solid and Physical Modeling (SPM ’08). ACM, New York, NY, USA, 183ś191.
https://doi.org/10.1145/1364901.1364927

Guillaume Lavoué, Florent Dupont, and Atilla Baskurt. 2005. A new CAD mesh seg-
mentation method, based on curvature tensor analysis. Computer-Aided Design 37,
10 (2005), 975ś987.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. 2018.
Pointcnn: Convolution on x-transformed points. In Advances in neural information
processing systems. 820ś830.

Z Lian, A Godil, B Bustos, M Daoudi, J Hermans, S Kawamura, Y Kurita, G Lavoua,
and P Dp Suetens. 2011. Shape retrieval on non-rigid 3D watertight meshes. In
Eurographics workshop on 3d object retrieval (3DOR). Citeseer.

Zhouhui Lian, Afzal Godil, Benjamin Bustos, Mohamed Daoudi, Jeroen Hermans,
Shun Kawamura, Yukinori Kurita, Guillaume Lavoué, Hien Van Nguyen, Ryutarou
Ohbuchi, et al. 2013. A comparison of methods for non-rigid 3D shape retrieval.
Pattern Recognition 46, 1 (2013), 449ś461.

Isaak Lim, Alexander Dielen, Marcel Campen, and Leif Kobbelt. 2018. A simple approach
to intrinsic correspondence learning on unstructured 3d meshes. In Proceedings of
the European Conference on Computer Vision (ECCV). 0ś0.

Rong Liu and Hao Zhang. 2004. Segmentation of 3D meshes through spectral clustering.
In 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004.
Proceedings. IEEE, 298ś305.

Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. 2019. Relation-shape
convolutional neural network for point cloud analysis. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 8895ś8904.

Yi Liu, Hongbin Zha, and Hong Qin. 2006. Shape topics: A compact representation
and new algorithms for 3d partial shape retrieval. In 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06), Vol. 2. IEEE,
2025ś2032.

László Lovász et al. 1993. Random walks on graphs: A survey. Combinatorics, Paul
erdos is eighty 2, 1 (1993), 1ś46.

David G Lowe. 2004. Distinctive image features from scale-invariant keypoints. Inter-
national journal of computer vision 60, 2 (2004), 91ś110.

Mona Mahmoudi and Guillermo Sapiro. 2009. Three-dimensional point cloud recogni-
tion via distributions of geometric distances. Graphical Models 71, 1 (2009), 22ś31.

Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer,
Vladimir G Kim, and Yaron Lipman. 2017. Convolutional neural networks on surfaces
via seamless toric covers. ACM Trans. Graph. 36, 4 (2017), 71ś1.

Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. 2015.
Geodesic convolutional neural networks on riemannian manifolds. In Proceedings
of the IEEE international conference on computer vision workshops. 37ś45.

Daniel Maturana and Sebastian Scherer. 2015. Voxnet: A 3d convolutional neural
network for real-time object recognition. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 922ś928.

FacundoMémoli. 2007. On the use of Gromov-Hausdorff distances for shape comparison.
(2007).

Facundo Mémoli and Guillermo Sapiro. 2005. A theoretical and computational frame-
work for isometry invariant recognition of point cloud data. Foundations of Compu-
tational Mathematics 5, 3 (2005), 313ś347.

Jae Dong Noh and Heiko Rieger. 2004. Random walks on complex networks. Physical
review letters 92, 11 (2004), 118701.

Maks Ovsjanikov, Alexander M Bronstein, Michael M Bronstein, and Leonidas J Guibas.
2009. Shape google: a computer vision approach to isometry invariant shape retrieval.
In 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV
Workshops. IEEE, 320ś327.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701ś710.

Adrien Poulenard and Maks Ovsjanikov. 2018. Multi-directional geodesic neural net-
works via equivariant convolution. ACM Transactions on Graphics (TOG) 37, 6 (2018),
1ś14.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017a. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 652ś660.

Charles R Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas J
Guibas. 2016. Volumetric and multi-view cnns for object classification on 3d data.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
5648ś5656.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017b. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in neural
information processing systems. 5099ś5108.

Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. 2005. Laplace-spectra as
fingerprints for shape matching. In Proceedings of the 2005 ACM symposium on Solid
and physical modeling. 101ś106.

Rui SV Rodrigues, José FM Morgado, and Abel JP Gomes. 2018. Part-based mesh
segmentation: a survey. In Computer Graphics Forum, Vol. 37. Wiley Online Library,
235ś274.

Xavier Roynard, Jean-Emmanuel Deschaud, and François Goulette. 2018. Classifica-
tion of point cloud scenes with multiscale voxel deep network. arXiv preprint
arXiv:1804.03583 (2018).

Kripasindhu Sarkar, Basavaraj Hampiholi, Kiran Varanasi, and Didier Stricker. 2018.
Learning 3d shapes as multi-layered height-maps using 2d convolutional networks.
In Proceedings of the European Conference on Computer Vision (ECCV). 71ś86.

Nima Sedaghat, Mohammadreza Zolfaghari, Ehsan Amiri, and Thomas Brox. 2016a.
Orientation-boosted voxel nets for 3d object recognition. arXiv preprint
arXiv:1604.03351 (2016).

Nima Sedaghat, Mohammadreza Zolfaghari, and Thomas Brox. 2016b. Orientation-
boosted Voxel Nets for 3D Object Recognition. CoRR abs/1604.03351 (2016).
arXiv:1604.03351 http://arxiv.org/abs/1604.03351

Ariel Shamir. 2008. A survey on mesh segmentation techniques. In Computer graphics
forum, Vol. 27. Wiley Online Library, 1539ś1556.

Shymon Shlafman, Ayellet Tal, and Sagi Katz. 2002. Metamorphosis of polyhedral
surfaces using decomposition. In Computer graphics forum, Vol. 21. Wiley Online
Library, 219ś228.

Ayan Sinha, Jing Bai, and Karthik Ramani. 2016. Deep learning 3D shape surfaces using
geometry images. In European Conference on Computer Vision. Springer, 223ś240.

Leslie N Smith. 2017. Cyclical learning rates for training neural networks. In 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV). IEEE, 464ś472.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. 2015. Multi-
view convolutional neural networks for 3d shape recognition. In Proceedings of the
IEEE international conference on computer vision. 945ś953.

Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. 2009. A concise and provably infor-
mative multi-scale signature based on heat diffusion. In Computer graphics forum,
Vol. 28. Wiley Online Library, 1383ś1392.

Yiyong Sun, David Lon Page, Joon Ki Paik, Andreas Koschan, and Mongi A Abidi. 2002.
Triangle mesh-based edge detection and its application to surface segmentation
and adaptive surface smoothing. In Proceedings. International Conference on Image
Processing, Vol. 3. IEEE, 825ś828.

Hari Sundar, Deborah Silver, Nikhil Gagvani, and Sven Dickinson. 2003. Skeleton based
shape matching and retrieval. In 2003 Shape Modeling International. IEEE, 130ś139.

G Tam and R Lau. 2007. Deformable model retrieval based on topological and geometric
signatures. IEEE transactions on visualization and computer graphics. 13, 3 (2007),
470ś482.

Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung Gwak, and Silvio Savarese.
2017. Segcloud: Semantic segmentation of 3d point clouds. In 2017 international
conference on 3D vision (3DV). IEEE, 537ś547.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François
Goulette, and Leonidas J Guibas. 2019. Kpconv: Flexible and deformable convolution
for point clouds. In Proceedings of the IEEE International Conference on Computer
Vision. 6411ś6420.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. 2016. Instance normalization:
The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016).

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903
(2017).

Nitika Verma, Edmond Boyer, and Jakob Verbeek. 2018. Feastnet: Feature-steered graph
convolutions for 3d shape analysis. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 2598ś2606.

Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan Popović. 2008. Articulated
mesh animation from multi-view silhouettes. In ACM SIGGRAPH 2008 papers. 1ś9.

ACM Trans. Graph., Vol. 39, No. 6, Article 263. Publication date: December 2020.

MeshWalker: Deep Mesh Understanding by Random Walks • 263:13

Cheng Wang, Ming Cheng, Ferdous Sohel, Mohammed Bennamoun, and Jonathan Li.
2019a. NormalNet: A voxel-based CNN for 3D object classification and retrieval.
Neurocomputing 323 (2019), 139ś147.

Chu Wang, Marcello Pelillo, and Kaleem Siddiqi. 2019c. Dominant set clustering and
pooling for multi-view 3d object recognition. arXiv preprint arXiv:1906.01592 (2019).

Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and Jie Shan. 2019b. Graph
attention convolution for point cloud semantic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 10296ś10305.

Yunhai Wang, Shmulik Asafi, Oliver Van Kaick, Hao Zhang, Daniel Cohen-Or, and
Baoquan Chen. 2012. Active co-analysis of a set of shapes. ACM Transactions on
Graphics (TOG) 31, 6 (2012), 1ś10.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. 2019d. Dynamic graph cnn for learning on point clouds. ACM Transactions
on Graphics (TOG) 38, 5 (2019), 1ś12.

Francis Williams, Teseo Schneider, Claudio Silva, Denis Zorin, Joan Bruna, and Daniele
Panozzo. 2019. Deep geometric prior for surface reconstruction. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 10130ś10139.

ZhirongWu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 2015. 3d shapenets: A deep representation for volumetric shapes.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
1912ś1920.

Mingye Xu, Zhipeng Zhou, and Yu Qiao. 2019. Geometry Sharing Network for 3D Point
Cloud Classification and Segmentation. arXiv preprint arXiv:1912.10644 (2019).

Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. 2018. Spidercnn: Deep
learning on point sets with parameterized convolutional filters. In Proceedings of
the European Conference on Computer Vision (ECCV). 87ś102.

Zhangsihao Yang, Or Litany, Tolga Birdal, Srinath Sridhar, and Leonidas Guibas. 2020.
Continuous Geodesic Convolutions for Learning on 3D Shapes. arXiv preprint
arXiv:2002.02506 (2020).

Mohsen Yavartanoo, Euyoung Kim, and Kyoung Mu Lee. 2018. SPNet: Deep 3D Object
Classification and Retrieval using Stereographic Projection. CoRR abs/1811.01571
(2018). arXiv:1811.01571 http://arxiv.org/abs/1811.01571

Pietro Zanuttigh and Ludovico Minto. 2017. Deep learning for 3d shape classification
from multiple depth maps. In 2017 IEEE International Conference on Image Processing
(ICIP). IEEE, 3615ś3619.

Hao Zhang, Rong Liu, et al. 2005. Mesh segmentation via recursive and visually salient
spectral cuts. In Proc. of vision, modeling, and visualization. 429ś436.

Shuaifeng Zhi, Yongxiang Liu, Xiang Li, and Yulan Guo. 2018. Toward real-time
3D object recognition: A lightweight volumetric CNN framework using multitask
learning. Computers & Graphics 71 (2018), 199ś207.

Yinan Zhou and Zhiyong Huang. 2004. Decomposing polygon meshes by means of crit-
ical points. In 10th International Multimedia Modelling Conference, 2004. Proceedings.
IEEE, 187ś195.

Lei Zhu,Weinan Chen, Xubin Lin, Li He, Yisheng Guan, and Hong Zhang. 2019. Random
Walk Network for 3D Point Cloud Classification and Segmentation. In 2019 IEEE
International Conference on Robotics and Biomimetics (ROBIO). IEEE, 1921ś1926.

ACM Trans. Graph., Vol. 39, No. 6, Article 263. Publication date: December 2020.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Representing 3D objects for Deep Neural Networks
	2.2 Classification
	2.3 Semantic segmentation

	3 MeshWalker outline
	4 Learning to walk over a surface
	4.1 What is a walk?
	4.2 Learning from walks

	5 Applications: Classification & Segmentation
	5.1 Mesh classification
	5.2 Mesh semantic segmentation

	6 Experiments
	6.1 Ablation study
	6.2 Implementation
	6.3 Limitations

	7 Conclusion
	Acknowledgments
	References

