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(a) Paths—Ours & [30]’s (b) Our agent’s view (c) Our attention (d) [30]’s view
Figure 1. Visual navigation. (a) The agent aims at finding a TV (red rectangle) in a living room (top view), starting from a given location
(black circle). Our agent’s path is marked in orange and [30]’s path is in magenta. At each step, the agent is given a specific view, depending
on its position. In this example, our agent starts by turning around in its starting location to gather information—a strategy it has learned.
(b) shows our agent’s view before the first move forward, whereas (d) shows [30]’s view before its first move forward. (c) shows our
attention model, which combines semantic and spatial information of (b)’s view; it directs our agent to move forward, towards the TV.
Differently, the view in (d) is part of [30]’s lengthy exploration (magenta path in (a)) after the sought-after TV.

Abstract

This work focuses on object goal visual navigation, aim-
ing at finding the location of an object from a given class,
where in each step the agent is provided with an egocen-
tric RGB image of the scene. We propose to learn the
agent’s policy using a reinforcement learning algorithm.
Our key contribution is a novel attention probability model
for visual navigation tasks. This attention encodes seman-
tic information about observed objects, as well as spa-
tial information about their place. This combination of
the “what” and the “where” allows the agent to navigate
toward the sought-after object effectively. The attention
model is shown to improve the agent’s policy and to achieve
state-of-the-art results on commonly-used datasets.

1. Introduction
Human and animals can navigate new environments rel-

atively well. This adaption to new surroundings, although
natural, is not trivial. It requires to find parallels between the
new observations and our past experience. This is largely
possible due to our ability to sort through new visual in-
formation and intelligently focus on the most relevant se-

mantic cues. For instance, when looking for a toaster in a
previously-unvisited kitchen, our intuition is to look for the
refrigerator, while ignoring other ”irrelevant” information,
since our past experience indicates that the toaster is usually
located not far from the refrigerator.

Object goal visual navigation tasks include two basic
components: semantic understanding of the scene and path
planning [28, 3, 14]. With the increase of data and com-
putation power, reinforcement learning algorithms excelled
in learning policies for these two components jointly in an
end-to-end manner [25, 21, 13, 6]. As a result, many exten-
sions to visual navigation were presented, including tasks
specified by natural language instructions [7], by a desired
goal image [37], or by a target object [30, 10]. Reinforce-
ment learning of spatial and semantic relations is a funda-
mental challenge for these tasks [31].

This work focuses on object goal visual navigation,
where the goal is to find an instance of the target object class
(Figure 1). Like previous works, we utilize reinforcement
learning. We propose to improve the agent’s policy by en-
coding semantic information about observed objects using a
convolutional net, as well as spatial information about their
place, using an attention probability model. This combina-
tion of both semantic and spatial information, i.e., of “what”
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Figure 2. Path sampling. The first row shows a top view of the scene, with the path thus far, along with the agent’s view (white triangle)
at this step. The second row shows the image the agent views at this step. The third row shows the fused attention map per step, as well as
the three maps that build it. The agent is looking for a toaster (red rectangle) and starts from the opposite side of the kitchen. In Step 1 the
agent focuses on the refrigerator, which is an indicator to a nearby toaster; in Step 11 it moves toward the refrigerator; in Step 16 it decides
to turns right and then in Step 22 the toaster becomes visible, at which point the agent’s focus switches from the refrigerator to the toaster
and the agent turns right; in Step 24 it starts moving forward, toward the toaster; in Step 29 it is sufficiently close and declares Done.

and of “where”, allows the agent to navigate towards the
sought objects effectively. Our novel attention mechanism
consists of three types of attention probability models for
navigation: target attention that considers the target infor-
mation in the image; action attention that takes into account
the last action of the agent; memory attention that consid-
ers the agent’s previous steps in the scene. Our attention
probability model results in an attended embedding, which
preserves the semantic and spatial information of objects.

We validate our approach using the AI2-THOR [37] en-
vironment. We use Wortsman et al. [30] setup with their
scenes from four room categories: kitchen, living room,
bedroom and bathroom, where an agent is navigating to a
given object using only visual observations. In our exper-
imental validation we show that not only we outperform
the state-of-the-art, but also our attention unit carries spa-
tial information about the objects. This is achieved using
a probability distribution over areas of the observed image
that are represented by the spatial locations of the topmost
convolutional neurons of a standard convolutional net (e.g.,
ResNet18). As this attention probability distribution pre-
serves the spatial information that is fed to the reinforce-
ment learner, it controls the areas of the image that the agent
considers when improving its policy. Hence, this attention
unit also carries the promise to explain the agent’s actions
in visual navigation tasks.

Figure 2 illustrates this promise. For instance, in Step 1
the attention map suggests that the agent focuses on the
refrigerator, which is a good indicator to the location of
the toaster. Similarly, once the toaster becomes visible in

Step 22, the attention map switches from focusing on the
refrigerator to focusing on the sought-after toaster, and in
accordance with that, the agent turns right.

Hence, this paper makes three contributions:

1. We propose a novel attention mechanism that suits
navigation. It consists of three types of attentions: tar-
get, action, and memory.

2. We present an end-to-end reinforcement learning
framework that realizes the attention mechanism and
achieves state-of-the-art results.

3. An added benefit of the different attention maps is be-
ing able to explain the agent’s actions through visual-
ization.

2. Related Work

Navigation is one of the most fundamental problems in
mobile robotics. Traditional navigation approaches decom-
pose the problem into two separate stages: mapping the sur-
rounding and planning a path to the goal [3, 8, 9, 14, 16, 28].
Generally, these works treat navigation as a purely geomet-
ric problem. Reinforcement learning (RL) methods were
applied to learn policies for robotic tasks [17, 18, 21, 25].
While RL methods are able to learn complex tasks in an
end-to-end manner, their main challenge in visual naviga-
tion tasks is to understand both the visual cues as well as
the navigation plan. Recently, Shen et al. [27] fused differ-
ent visual representations in navigation. In a related thread,
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Gupta et al. [13] developed a cognitive mapping and plan-
ning approach whose map. Similarly, [12, 5] build semantic
maps in a pre-exploration setting to capture spatial informa-
tion in visual navigation. While our approach also uses a
latent spatial representation, it differs in important respects:
our spatial information relies on an attention probability dis-
tribution over areas in the image. This component serves
as an important building block in our attended embedding,
which combines both the spatial and semantic information
of the image.

Target-driven visual navigation tasks have been proposed
to search for an object in visual scenes. Zhu et al. [37] ad-
dress target-driven navigation given a picture of the target,
while Mousavian et al. [22] augment the learner with se-
mantic segmentation and detection masks. Chaplot et al.
explores visual navigation given language instructions us-
ing gated attention [7] and semantic mapping [6]. In con-
trast to our work, they use an attention module to represent
their language modality, while we use attention probability
distribution over areas of the image to better understand the
spatial information. More broadly, Bayesian methods for
visual navigation with that relation graphs appear in [31, 1].

We validate our visual navigation approach on AI2-
THOR [37], which is an environment that consists of near
photo-realistic 3D indoor scenes [19]. We augment the
work on self-adaptive visual navigation (SAVN) of Worts-
man et al., [30] with attended observation that serves an
input to its model agnostic meta-learner (MAML) [11].
Other approaches for visual navigation were applied to AI2-
THOR, e.g., learning scene priors using graph convolu-
tional nets that are able capture the relationships between
objects in the scene [34]. Recently, Du et al. augmented the
AI2-THOR environment with detection information [10] al-
beit for different scenes.

Our work develops an embedded attention module that
combines both semantic and spatial information [29, 26].
The spatial information is encoded by an attention proba-
bility distribution over areas in the image and the semantic
information of these areas is encoded by a convolutional
net. Attention in visual tasks has mainly been deployed for
language augmented tasks [2, 15, 23, 32, 33, 35, 36, 4, 20].
Similar to our work, they construct an attention probability
distribution over areas of the image. However, these atten-
tion units typically summarize the convolutional net repre-
sentation by averaging with respect to the attention prob-
ability distribution. In contrast, we refrain from averag-
ing and preserve the spatial dimension of the convolutional
layer, which significantly improves its performance on nav-
igation tasks. Similar to our work, natural language atten-
tion models, and in particular multi-head attention [29], use
probability models to re-embed their preceding layer. How-
ever, they do not retain the spatial information of the image
and their attended embedding ignores this information.

3. Attended Navigation

Our navigation task τ ∈ T considers a scene S, a starting
point p and a target object o. The goal of a task τ = (S, p, o)
is to move an agent in a 3D indoor scene from the starting
position p to an instance of the target object class o with a
minimum number of steps.

The navigation is preformed by a mobile agent and is
learned by a policy. The agent’s policy is limited to six
actions: MoveAhead, RotateLeft/RotateRight,
LookDown/LookUp, Done. At each step the agent is
given an egocentric RGB image s ∈ S from the scene S
and a target object class o and it can act in one of two ways:
(1) choose one of the possible movement directions and
move accordingly or (2) issue the Done action, signalling
that the agent believes it has finished the task. The Done
action ends the trial of navigation, termed an episode.

An episode is finished successfully if the agent issued a
Done action and (1) The target object is sufficiently close
to the agent (1 meter in practice); (2) The target object is in
view; and (3) The agent did not pass the maximum number
of allowed steps.

Following the Self-Adaptive Visual Navigation (SAVN)
framework of Wortsman et al. [30], we learn a policy
πθ(·|s), which chooses an action a given an egocentric RGB
image s within a scene S. We use gradient decent (policy
gradient) to improve the policy’s parameters θ to navigate
in each episode. These parameters are learned in order to
maximize the expected reward E[Rτ ] on a sequence of ac-
tions in a given episode. In our experimental evaluation, we
use the SAVN navigation reward Rτnav that subtracts 0.01
for any step except Done and adds 5 for a successful nav-
igation. We also use the actor-critic family algorithms that
minimize its navigation loss Lτnav(θ, a), which consists of
the negative expected reward that serves the actor and a
learned value function that serves the critic.

3.1. Adaptive navigation

SAVN [30] relies on adaptive navigation, hence its policy
benefits from adapting to the relevant navigation subtask,
e.g., entering a hallway, approaching a refrigerator and so
on. To deal with such a complex task, SAVN applies model
agnostic meta-learning (MAML) that shifts the parameters
of the policy as the agent interacts with the scene. This shift
of parameters allows the agent to adapt to the scene while
interacting with it. SAVN achieves this behavior by using an
interaction loss Lτint(θ, α) that is being applied on a k̂-prefix
α of actions a, i.e., α = (a1, ..., ak̂). Thus the loss function
for learning a policy πθ(·|s) for a task τ for a sequence of
actions a and their prefix α is

min
θ

∑
τ∈Ttrain

Ea∼πθ
[
Lτnav

(
θ −∇θLτint(θ, α), a

)]
. (1)
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Figure 3. Architecture overview. The adaptive navigation unit, which is described in Section 3.1 follows Wortsman et al. [30]. The
attended embedding, described in Equation 2, encodes semantic information about observed objects using a convolutional net, as well as
spatial information about their place, using the fused attention probability distribution. The fused attention, described in Section 3.2.4
balances the target/action/memory attention distributions. The target attention, described in Section 3.2.1, combines the target word GloVe
embedding with the image information. In this example, the target word is ”toaster” and t = 22. One can verify that the inferred probability
distribution overlaps the area in the image that contains part of the toaster (the black rectangle to the right). The action attention, described
in Section 3.2.2, combines the last action of the actor with the image information. In this example, the action’s attention probability
distribution is focused on the area on the right of the image, and the agent is about to turn right to locate the toaster. The memory attention,
described in Section 3.2.3, summarizes the agent’s experience and aims to focus on sections of the image based on the information already
gathered in the episode. In this example, the memory attention probability distribution takes into account the refrigerator, as it was learned
to be a correlated to the toaster class in a kitchen.

We also learn parameters φ of the interaction loss, al-
though we omit this dependence for readability. This loss
essentially minimizes the navigation loss while encourag-
ing the gradient ∇θLτint(θ, α) to be similar to the gradient
∇θLτnav(θ, a). This allows to adjust the policy parameters
in test time, to reduce the navigation loss of a single trajec-
tory, i.e., to better adapt the policy to navigation subtasks.

We introduce spatial attention into the SAVN framework.
Intuitively, attention may improve navigation by orienting
the agent to the correct direction. We show that this is in-
deed the case and that we outperform SAVN using a spa-
tial attention mechanism that takes into account the target,
the agent’s actions, and the memory of images seen so far.
Hereafter, we present our novel attention mechanism, de-
signed particularly for efficient visual navigation in 3D, and
explain how we incorporated it into the architecture.

3.2. Spatial embedding using attention

Visual navigation requires not only semantic reasoning,
but also spatial reasoning. This is due to the fact that we
control an agent that interacts with a 3D environment. In our
work we learn a policy for navigating in the 3D space given
an egocentric RGB image. In the following we present an
approach that is able to encode semantic information about
observed objects using convolutional net, as well as spatial
information about their place, using an attention probability

model. Our approach is illustrated in Figure 3.

The navigation is preformed by a mobile agent and is
learned by a policy πθ(·|s0), which chooses an action given
an egocentric RGB image s0 at the beginning of the episode,
within a scene S. The policy samples its actions iteratively.
At time t the agent is given the egocentric image st and
chooses the action at.

We use convolutional nets to extract semantic informa-
tion about a given image in the scene, as they were proven
to be very effective in encoding mid-level and high-level
semantic information in the image. We encode the tth im-
age by the spatial locations of the topmost convolutional
layer, whose dimension is nv × nv × dv , of a standard con-
volutional net (ResNet18) that is pretrained on Imagenet.
The spatial location of each topmost convolutional neuron
is indexed by i, j = 1, ..., nv and its (i, j)th location corre-
sponds to an area in the observed image and is described by
the vector vti,j ∈ Rdv . In the following we refer to the area
that is represented by such (i, j)th neuron, namely vti,j , as
the (i, j)th sub-window in the image. We then emphasize
the spatial information of the objects in the relevant sub-
windows using an attention probability distribution.

At each time step of the agent, we construct an attention
probability distribution over the nv × nv sub-windows of
the input image. Intuitively, this probability distribution as-
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signs high probability to sub-windows that have relevant in-
formation in the image and assigns low-probability to sub-
windows that do not. By doing so, the attention probability
distribution introduces spatial information to the process.
Our attention probability distribution is composed of three
attention units: (i) target attention unit, which incorporates
the target information in the image; (ii) action attention unit,
which takes into account the agent’s last action; (iii) mem-
ory attention unit, which “remembers” relevant information
from previously-seen images in the scene. These three dis-
tributions over the nv × nv sub-windows are then fused
into a single attention probability distribution over the im-
age sub-windows. We denote by pt(i, j) the fused proba-
bility distribution at time t over the nv × nv sub-windows
i, j = 1, ..., nv .

The spatially attended embedding, v̂ti,j , of the tth im-
age combines both the semantic information in the image
as well as the spatial information about the location of the
different objects. The semantic information is represented
by the vectors vti,j ∈ Rdv , while the spatial information is
represented by the attention probability distribution pt(i, j).
We combine these two components using the pointwise
multiplication: v̂t = pt � vt, which is defined by

v̂ti,j = pt(i, j) · vti,j . (2)

The dimension of the attended embedding is the same di-
mension as the image embedding vti,j . Intuitively, the atten-
tion probability distribution pt(i, j) has high values for rel-
evant (i, j)th sub-windows of the image, i.e., sub-windows
that contain semantic information for the visual navigation
task. Equivalently pt(i, j) ≈ 0 for irrelevant sub-windows.
Hence, the attended embedding in Equation 2 consists of
the vector v̂ti,j ≈ 0 whenever pt(i, j) ≈ 0, i.e., for sub-
windows that are irrelevant for navigation in the tth step.
Equivalently, for semantically meaningful sub-windows the
attended embedding is similar to the original image embed-
ding, i.e., v̂ti,j ≈ vti,j . This embedding highlights the spatial
locations of the semantically meaningful sub-windows and
populates them with the respective semantic information of
the image. This embedding allows the agent to choose its
next step according to both the semantic and the spatial in-
formation of the image, as it is fed as the input to the navi-
gation policy; see Figure 3.

3.2.1 Target attention unit

This unit learns a probability distribution function over the
image. It gets as input the image at the tth step and the
target (given by a word) and aims to focus on target-relevant
information in the image, including the target and visual
clues for the target’s location. For example, if the target is a
soap bottle, which is invisible, the agent should focus on the
bathtub or the sink, since soap bottles are usually found next

to them. In other words, we want to learn the interaction of
each sub-window in the image with the target.

The target word is encoded by a vector of length dg; in
our system we used the GloVe embedding [24]. We de-
note by ug ∈ Rdg the GloVe embedding and by vti,j ∈ Rdv
the nv × nv image vectors at the tth time step, for i, j =
1, ..., nv . The interaction of the word vector ug with an im-
age sub-window embedding vti,j relies on the inner product
of these vectors, after embedding both representations in a
d-dimensional space.

Let Wv ∈ Rd×dv be trainable parameters that embed
a sub-window embedding vti,j in the d-dimensional space,
and let Wg ∈ Rd×dg be trainable parameters that embed
the target embedding ug in the same space. For every sub-
window index i, j ∈ {1, ..., nv}, the visual-target attention
potential φtg(·) at time t takes the form:

φtg(i, j) =

〈
Wvv

t
i,j

‖Wvvti,j‖
,
Wgug
‖Wgug‖

〉
. (3)

We apply `2-normalization before the multiplication, i.e.,
we use the cosine similarity to compute the potential inter-
action between the target ug and the image sub-window vti,j .
The corresponding attention probability distribution is at-
tained by applying the softmax operation:

ptg(i, j) =
eφ

t
g(i,j)∑nv

s,t=1 e
φtg(s,t)

. (4)

See Figure 3 for an example of the target attention prob-
ability distribution, ptg(·), for a target word “toaster”. One
can verify that the inferred probability distribution is fo-
cused on the area in the image that contains the toaster.

3.2.2 Action attention unit

This unit gets as input the image and the last step’s action
distribution. In practice, the action probability distribution
correlates with the agent’s movement. The actor’s actions
are sampled from the policy πθ(·|s) that chooses an actions,
given an egocentric RGB image s ∈ S. At time t = 1, ..., k,
the agent samples an action at from one of the six ac-
tions at ∈ {MoveAhead, RotateLeft,RotateRight,
LookDown, LookUp, Done}. At step t, the policy πθ(·|s)
utilizes the actions distribution at time t − 1, which we de-
note by u(t−1)a ∈ Rda .

Similarly to the target attention unit, each of the nv×nv
sub-windows of the image that is seen by the agent at time
t is encoded by a vector of length d, using the matrix Wv .
We also embed u(t−1)a to the d dimensional space by the
learned matrix Wa ∈ Rd×da . For every sub-window index
i, j ∈ {1, ..., nv}, the visual-action attention potential φta(·)
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at time t takes the form:

φta(i, j) =

〈
Wvv

t
i,j

‖Wvvti,j‖
,
Wau

(t−1)
a

‖Wau
(t−1)
a ‖

〉
. (5)

Importantly, the action potential function considers the ob-
served image at time t and the preceding action (at time
t− 1). The corresponding attention probability distribution
is attained by applying the softmax operation:

pta(i, j) =
eφ

t
a(i,j)∑nv

s,t=1 e
φta(s,t)

. (6)

An example of the action attention probability distribution
pta(·) appears in Figure 3.

3.2.3 Memory attention unit

The memory attention unit summarizes the agent’s experi-
ence and aims to focus on sections of the image based on
the information already gathered in the episode. For exam-
ple, the agent should avoid focusing its attention on irrele-
vant areas that were previously explored. This unit gets as
input the image and the agent’s gathered experience in the
episode up to the tth step, i.e., the actions, the observed im-
ages, and the internal state representations that appear in the
(t− 1)th prefix of the agent’s trajectory (a1, ..., at−1). This
experience is represented by the hidden state of an LSTM-
cell, whose input is the spatially attended observed image;
its output is fed into the actor-critic module.

As before, this unit learns a probability distribution func-
tion over the observed image at time t. The nv × nv sub-
windows are encoded by vectors of length d using the ma-
trix Wv . The memory is extracted from the hidden state
of an LSTM-cell at time t − 1. We denote this state by
u
(t−1)
m ∈ Rdm and embed it in the dth dimensional space by

the learned matrix Wm ∈ Rd×dm . For every sub-window
index i, j ∈ {1, ..., nv}, the visual-memory potential φtm(·)
at time t takes the form:

φtm(i, j) =

〈
Wvv

t
i,j

‖Wvvti,j‖
,
Wmu

(t−1)
m

‖Wmu
(t−1)
m ‖

〉
. (7)

The corresponding attention probability distribution is:

ptm(i, j) =
eφ

t
m(i,j)∑nv

s,t=1 e
φtm(s,t)

. (8)

The role of the memory attention probability distribution is
demonstrated in Figure 3.

3.2.4 Fused attention unit

The different attention units are constructed to capture dif-
ferent behaviors of the agent. However, these attention

maps should be fused to summarize the target, the action
and the memory attentions, which are represented by the
respective probability distributions over the image.

Naively, we can fuse these three probability distributions
by normalizing their product ptg(i, j) · pta(i, j) · ptm(i, j).
This allows to fuse the attention while accounting for
each probability in a symmetric manner. However, this
does not allow to learn the importance of each proba-
bility at time step t. Instead, we learn the importance
of each probability at time t by considering the hidden
state of the LSTM-cell at time t − 1, denoted by u(t−1)m .
Specifically, we learn the real-valued weight functions
βg(u

(t−1)
m ), βa(u

(t−1)
m ), βm(u

(t−1)
m ) to fuse the different at-

tention probability distributions at time t. We use the short
hand notation βg, βa, βm for these functions and attain the
fused attention probability distribution:

pt(i, j) ∝
(
ptg(i, j)

βgpta(i, j)
βaptm(i, j)βm

)
. (9)

The fused attention is able to combine all attention prob-
ability distribution to a coherent distribution, see Figure 3.

4. Experimental Validation

We follow Wortsman et al. [30] and train and evaluate
our models using the AI2-THOR [37] environment with
their scenes from the four room categories: kitchen, liv-
ing room, bedroom and bathroom. For each room type, we
use the same 20/5/5 split of train/validation/test for a total
of 120 scenes. The objects in their scenes, per room type
are: 1) Living room: pillow, laptop, television, garbage can,
box, and bowl. 2) Kitchen: toaster, microwave, refrigera-
tor, coffee maker, garbage can, box, and bowl. 3) Bedroom:
plant, lamp, book, and alarm clock. 4) Bathroom: sink,
toilet paper, soap bottle, and light switch. We also use the
reward function of [30], with reward of 5 for finding the
object and −0.01 for taking a step. We learn a policy for
this reward using actor-critic reinforcement learner with an
advantage function and 12 synchronous agents (A2C). The
scene, initial state of the agent and the target object were
chosen by [30] and for each training run we select the model
that performs best on the validation set in terms of success.

The agent moves with the MoveAhead action. The
RotateLeft and RotateRight actions occur in incre-
ments of 45◦, while the LookDown and LookUp actions
tilt the camera by 30◦. During training, the maximal trajec-
tory consists of 30 actions and during validation and test-
ing the maximal trajectory is limited to 200 actions to liv-
ing rooms and 100 actions to other room types. The agent
successfully completes a navigation task if it performs the
Done action when an instance from the target object class
is within 1 meter from the agent’s camera and within the
agent’s field of view.
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(a) Both reached the goal; (b) Reaching the goal thanks to (c) Reaching the goal despite (d) Reaching the goal while
our path is shorter semantic external clues target’s irregular position SAVN is too far from target

Figure 4. Qualitative results. This figure compares our agent’s trajectories to those of (SAVN) [30]. The starting position of the agent
is drawn as a black circle and the target as a red box; the path of our agent is in orange and SAVN’s path is in magenta; accordingly the
large orange/magenta points show the final locations of the respective agents. (a) While both agents reach the target (a garbage can), our
path is shorter, since our attention model enables our agent to gather information on the scene early on. This is also expressed in the SPL
evaluation in Table 1. (b) Our agent found the TV, whereas SAVN misses it, probably due to ignoring the spatial cues in the living room,
such as the carpet or the TV stand; (c) The alarm clock is situated in irregular position (near the dresser) and is very small. While our agent
is able to focus on a small region in the observation and locate the alarm clock, SAVN’s agent continues its search near the bed and misses
it. The lack of attention unit in SAVN results in more emphasis on object locations than on visual characteristics. (d) Our agent found a
sink, whereas SAVNs agent stopped too far, and yet declared it found the target; i.e. the distance estimation is wrong.

Architecture SPL Success SPL Success
L ≥ 5 L ≥ 5

Scene Prior [34] 15.47 35.13 11.37 22.25
SAVN [30] 16.15 40.86 13.91 28.70
Ours (A3C) 16.99 43.20 15.51 31.71
Ours (A2C) 17.88 46.20 15.94 32.63

Table 1. Quantitative results. Our best results are attained
for synchronous actor-critic learner (A2C). However, our asyn-
chronous learner (A3C) outperforms the asynchronous learner
of [30] as well.

The methods are evaluated using both Success Rate and
Success weighted by Path Length (SPL). Success is defined
as 1

N

∑N
i=1 Si where N = 1000 is the number of episodes

(250 episodes for each scene type in the test set) and Si is
a binary indicator of success in episode i. The SPL is de-
fined as 1

N

∑N
i=1 Si

Li
max(Pi,Li)

and it measures the quality
of the agent’s path when it succeeds in finding the object in
episode i, where Pi denotes path length and Li is the length
of the optimal trajectory to any instance of the target object
class in that scene. As the behavior of the agent’s policy is
different for short and long paths. we also refer to trajecto-
ries where the optimal path length is at least 5 and denote
this by L ≥ 5 (L refers to optimal trajectory length).

Table 1 compares our results to the state-of-the-art and
shows improvement over previous works in terms of both
success rate and path length (SPL), for short paths as well
as for long paths. During our experimental validation we
noticed that synchronization is important to get stable re-
sults over different platforms and GPUs. Empirically, our
best results are attained for synchronous actor-critic learner
(A2C) rather than asynchronous actor-critic learner (A3C).
Nevertheless, our asynchronous learner outperforms asyn-

chronous learner of SAVN [30].

Figure 4 shows different scenarios and compares the be-
havior of our agent to that of SAVN. It demonstrates how
the added spatial attention information allows our agent to
better navigate in the 3D Euclidean space. In particular,
in all these scenarios our agent reaches the goal efficiently
whereas SAVN’s agent (a) takes longer to find the target ob-
ject; (b) misses the target, as its non-optimal trajectory sets
it on a path for which the object is not in view; (c) misses
the target due to being small and situated in a irregular po-
sition; (d) stops too far. Our attention model enhances the
agent’s ability to notice and use visual clues. This is turn,
manifests in better object mapping and path planing.

Recall that our spatial attention is based on three atten-
tion probability distributions that are based on the target, the
agent’s previous action and the agent’s memory, which is
represented in its LSTM-cell. These three distributions are
fused to a single attention probability model, which weighs
the three factors according to the agent’s LSTM-cell. Fig-
ure 5 provides a quantitative assessment of the weights,
βg(u

t
m), βa(u

t
m), βm(utm), which control the fused distri-

bution in Equation 9. We also compared the aforementioned
fused module with a more expressive baseline that concate-
nates the three attended feature maps and use it as the hid-
den feature for the actor-critic module. While our system
requires less parameters (7.5M vs. 20.4M) it performs bet-
ter than the expressive baseline: our SPL is 31% better, Suc-
cess is 22% better, SPL L ≥ 5 is 41% better, and Success
L ≥ 5 is 30% better than the baseline.

We also tested our attention module in the densely anno-
tated setting of [10]. This setting use the simulator informa-
tion to extract detected objects which allows us to integrate
their information to the attention module. In this setting

7



Figure 5. The β weights. This graph shows how
βg(u

t
m), βa(u

t
m), βm(ut

m) of the target/action/memory attention
units change along the navigation. The y-axis is proportion of the
respective unit, e.g., |βg(ut

m)|/
∑

i∈g,a,m |βi(u
t
m)| and the tth

tick of the x-axis is the average of the respective proportion for
all test episodes in their tth step. We capped t by 37 as there are
negligible number of trajectories that have more than 37 steps.

we our attention module, built over the architecture of [10],
achieve an improvement of 9.2% in Success rate, 9.1% in
SPL, 13.7% in Success L ≥ 5, 13.2% in SPL L ≥ 5, when
measured over the 4000 test scenes. Also, since our atten-
tion adds spatial information to our agent, we note that the
number of test images in which we detected the target object
is 15.8% higher in our case than when using [10].

Ablation study. The aim of the ablation study is to verify
the validity of our attention unit and the importance of its
different components. Table 2 compares our attended em-
bedding with the state-of-the-art multi-head embedding of
the transformer [29] (MHA in the table)). The difference in
performance is related to the different embedding strategies
of the two methods. The transformer embeds the data us-
ing learned probability distributions (of key and query) and
learns representation (value). While this embedding is very
effective in language processing, its embedding ignores spa-
tial information in visual tasks.

Table 2 also shows how our fused attention model per-
forms when we take out its target/action/memory attention
components. One can verify that each of the components
is vital to gain good performance. The target attention unit
is the most important module, as we are focused on target-
driven visual navigation, while the contribution of the action
& memory units is comparable. We also see the importance
of changing the balance β of the various attention units, as
when we use a fixed β = 1 during learning and testing, the
results deteriorate.

Architecture SPL Success SPL
L ≥ 5

Success
L ≥ 5

SAVN [30] 16.15 40.86 13.91 28.7
Ours (MHA) 9.80 30.70 8.29 20.36
Ours w/o pg 9.41 29.60 7.93 19.01
Ours w/o pa 14.41 41.00 13.07 29.64
Ours w/o pm 15.39 45.6 14.07 33.08
Ours β = 1 13.88 38.80 11.30 26.35
Ours (A2C) 17.88 46.20 15.94 32.63

Table 2. Ablation study. The table presents the significance of
our attention module and its separate units. Replacing our atten-
tion unit with multi-head attention of [29] (MHA) decreases our
success rate by 8% for all paths and 7% for long paths (L ≥ 5).
Omitting the target attention unit decreases our success rate by
about half, while the contributions of the action and memory units
are comparable. Fixing the balance β of the various attention units
during a test episode decreases our success rate by more than 20%.

(a) erronous classification (b) hidden object
Figure 6. Limitations. (a) The bathtub is classified as a sink, due
to shape similarity. (b) The agent failed to find the partially-hidden
box under the table.

Limitations. Figure 6 shows two cases where our system
fails. In (a), the agent is looking for a sink and thinks it
found it despite of the fact that it actually found a bathtub.
We note that this specific bathtub is similar in shape to some
sinks in the training data. In (b), the agent is looking for a
box, which is partially hidden. The visible part of the box
is insufficient for our agent to conclude it found the object.

5. Conclusion
This work presented an end-to-end reinforcement learn-

ing for visual navigation. Our framework is based on a
novel attention probability model that suits visual naviga-
tion, as it encodes both semantic information about the ob-
served objects and spatial information about their place.
Specifically, the attention model consists of three compo-
nents: target, action and memory. The framework is shown
to achieve SOTA results on commonly-used scenarios.

Our results are achieved using only RGB images. In the
future, RGBD images can be utilized, as suggested by [6].
This has the potential to shorten the path, as the distance
requirement can be achieved more precisely and obstacles
may be more easily avoided.
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