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Abstract

Bundle adjustment is the common way to solve localiza-
tion and mapping. It is an iterative process in which a sys-
tem of non-linear equations is solved using two optimization
methods, weighted by a damping factor. In the classic ap-
proach, the latter is chosen heuristically by the Levenberg-
Marquardt algorithm on each iteration. This might take
many iterations, making the process computationally ex-
pensive, which might be harmful to real-time applications.
We propose to replace this heuristic by viewing the prob-
lem in a holistic manner, as a game, and formulating it as a
reinforcement-learning task. We set an environment which
solves the non-linear equations and train an agent to choose
the damping factor in a learned manner. We demonstrate
that our approach considerably reduces the number of it-
erations required to reach the bundle adjustment’s conver-
gence, on both synthetic and real-life scenarios. We show
that this reduction benefits the classic approach and can be
integrated with other bundle adjustment acceleration meth-
ods. Our code will be published upon acceptance.

1. Introduction
Simultaneous Localization And Mapping (SLAM) is suc-

cessfully used in numerous fields, including computer vi-
sion [23], augmented reality [1, 19, 26] and autonomous
driving [19, 26, 20]. Its input is a series of 2D images of
a scene taken by a single camera from different viewpoints,
from which a set of 2D matches are extracted. The goal is to
estimate the objects’ 3D locations, and the camera’s poses
(locations and angles) throughout the capturing according
to the 2D matches. See Fig.1 where the 3D locations appear
in black and the camera’s poses form the trajectory in red.
Structure From Motion (SFM) is a similar process where the
images are taken by several cameras [28, 27, 19, 6].

SLAM is commonly solved using the iterative Bundle
Adjustment (BA) process [7, 18]. In fact, BA occupies
roughly 60%–80% of the execution time needed for the
mapping [22]. On each iteration the 3D locations and cam-
era poses are first evaluated by a combination of two op-

Figure 1. Given a series of 2D images and taken by a camera from
different positions, the iterative Bundle Adjustment (BA) process
evaluates the 3D locations of the objects in the images (in black)
and the camera’s poses, as seen in the red trajectory. We propose a
method to accelerate the process by reducing the number iterations
required for the solving.

timization methods: Gradient descend (GD) and Gauss-
Newton (GN), which are weighted according to a damp-
ing factor, termed λ. Then, the evaluated locations are
projected into 2D according to the evaluated poses. The
stopping criterion (convergence) of this iterative process is
usually met when the difference between the evaluated 2D
projections and the initially extracted 2D matches (termed
projection error) is lower than a certain threshold. Due to
computational constraints, if convergence is not achieved
within a fixed number of iterations, the process is stopped.

Two main factors influence the execution time: (1) the
duration of a single iteration, which is mainly affected by
the Hessian’s calculation that GN entails; (2) the required
number of iterations to reach convergence, caused by ineffi-
cient choosing of λ. Some previous BA acceleration meth-
ods focus on the first factor and reduce the duration of each
iteration, by suggesting efficient ways to calculate and in-
vert the sparse Hessian [26, 10]. The focus of this paper is
on the second factor—decreasing the number of iterations.

In the classic approach, the value of λ is deter-
mined heuristically by the Levenberg-Marquardt (LM) al-
gorithm [18] on each iteration. It may change only by one
of two specific constant factors between consecutive itera-
tions. This limits the ability to efficiently change the opti-
mization scheme between GD and GN, even when it can be
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beneficial. We propose to address this problem differently.
Our key idea is to learn a dynamic value of λ. As the

choice of λ’s value on each iteration may influence the solv-
ing for several iterations, we propose to view the process
in a new light. Differently from previous approaches, we
view the BA process in a holistic manner as a game. We
show how a simple a Reinforcement Learning (RL) frame-
work suffices to achieve a solution that upholds a dynamic
and efficient weighting of GD and GN, which is determined
by λ. Briefly, RL tasks are defined by an environment and
an agent. The agent learns to preform actions according to
the environment’s response to these actions (at the form of
rewards). The agent aims to maximize the sum of the ex-
pected rewards, which is the key to handling delayed and
sparse rewards like the BA’s single and delayed conver-
gence. In our case, the environment solves the BA problem
and its step performs a single BA iteration. As we aim at a
learned λ, we chose to represent the value of λ as the agent’s
action. The reward is positive only on the iteration conver-
gence is achieved and is negative otherwise. Therefore, in
every iteration convergence is not achieved the agent gets a
negative reward as a ”fine”. Since the agent aims at max-
imizing the sum of the expected rewards, it is encouraged
to find a valid solution (reach convergence) within as few
iterations as possible.

Our method is shown to reduce the number of iterations
required to achieve the BA convergence by a factor of 3-5 on
both KITTI [8] and BAL [1] benchmarks. Furthermore, our
approach is likely to impact common real-life BA problems,
whose solving may require much time due to their large
size. In addition, we demonstrate that our agent could be
trained in a time-efficient manner on small synthetic scenes
of randomly chosen locations and camera’s poses, and still
accelerate the solving of real-life scenarios. Finally, our ap-
proach may be integrated and added to previous works that
focus on reducing the time of each iteration [26, 10].

Hence our work makes the following contributions:

1. We propose a general and unified approach that learns
the ideal value of λ. It can be integrated within other
BA acceleration methods.

2. We propose a network that utilizes this approach using
Reinforcement Learning. We show that it achieves a
significant reduction in the number of iterations and
running time. On the KITTI benchmark for instance,
a 1/5 of the iterations were required, which led to an
overall speedup of 3.

2. Related Work
Bundle Adjustment (BA). This is a known method to ad-
dress Simultaneous Localization And Mapping (SLAM) [1,
19, 23, 25, 26] problems. Given a set of 2D key-points
(matches), BA [7, 18] aims to solve a system of non-linear

equations to evaluate the 3D locations and camera poses ac-
cording to those matches. Due to the non-linear nature of
the equations BA is solved iteratively. On each iteration a
Reduced Camera System [11, 16] is solved by two optimiza-
tion methods that are weighted by a damping factor, λ. λ’s
value is determined by the Levenberg-Marquardt (LM) [18]
algorithm’s heuristic on each iteration as follows: λ is mul-
tiplied by 1/2 if the current iteration’s estimation error is
larger than that of the previous iteration, or by 2 otherwise.

Bundle Adjustment Acceleration. As BA is a fundamen-
tal problem in various fields and a main efficiency bottle-
neck for many real-time applications, several works that ac-
celerate it were introduced [10, 20, 22, 26, 4, 3]. Each
work faces the acceleration challenge differently. Tanaka
et al. [22] try to replace the BA process entirely by split-
ting the solving into smaller (”local”) parts, and solve each
local part using a Neural Network (NN). Oritz et al. [20] re-
place LM with Gaussian Belief Propagation (GBP) which
requires a separate damping factor for each key-point, and
use Intelligence Processing Unit (IPU) hardware to improve
parallelism capabilities. In [4, 3] Demmel et al. utilize
fixed point approximations to accelerate the solving. Other
methods focus on accelerating the time of a single iteration.
Zhou et al. [26], for instance, split the BA into smaller prob-
lems via clustering, and Huang et al. [10] use domain de-
composition to split the solving into smaller clusters and use
a NN to calculate the Jacobian matrix. Unlike past works,
we focus on reducing the sheer number of iterations of the
LM based BA solving. Our iteration reduction could there-
fore benefit previous approaches and be added to them.

Reinforcement Learning (RL). This is a growing field of
research in machine leaning that has been used for many
applications [15, 21, 24, 14, 17, 12, 19]. RL problems are
commonly represented by an agent and an environment.
Each time the agent preforms an action (a), the environment
responds by preforming a step according to that action and
returns an observation (state s) and a reward (r). RL prob-
lems are defined by their actions, states and rewards that can
be either discrete or continuous and of any dimension. The
agent chooses its actions according to a stochastic policy π,
which determines the probability to choose each action in
the action space. The state provides information about the
environment, like the estimation error in our case, while the
reward encourages the agent to reach convergence. Value
functions (v) evaluate the sum of expected future rewards,
and are evaluated according to a specific policy, i.e. vπ .

RL is used in various fields including games [21],
robotics [13], Natural Language Processing (NLP) [24]
and Computer Vision (CV) [14]. It is also used for hyper-
parameter tuning of both classic [17] and Deep Leaning
(DL) [12] optimization methods. This work is among the
first to utilize Deep Reinforcement Learning to choose λ’s
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value to accelerate the BA’s optimization problem solving.

Soft Actor Critic (SAC). This is a RL framework that aims
at augmenting the standard RL maximum reward objective
with an entropy maximization term, which leads to a sub-
stantial improvement in exploration [9, 2]. In their work,
Haarnoja et al. [9] show that SAC achieves fast and sta-
ble convergence on various RL tasks. We chose SAC as
our RL framework as it is stable and suites continuous state
and action spaces, like in our BA problem. Furthermore,
the large number of parameters that need to be updated and
estimated on each BA iteration results in many possible so-
lutions. Such a large and complex problem could greatly
benefit from SAC’s extensive and sophisticated exploration.

3. Method

Given a series of 2D images taken by a single camera, the
Bundle Adjustment (BA) iterative optimization process aims
at evaluating the camera’s poses and objects’ 3D locations.
Two optimization methods are used for the evaluation on
each iteration: Gradient Descend (GD) and Gauss-Newton
(GN), that are weighted by a damping factor, λ.

Although both GD and GN advance in the direction of
the gradient, they differ in nature. Generally speaking, the
GN takes a bigger step than the GD and is well suited to
explore parabolic functions. But, if the local function is not
parabolic in nature, the big GN step might divert the so-
lution away from the true minima. In such cases the GD
is more effective. But relying on the small GD step alone
could lead to a slow and inefficient solving. Therefore, ef-
ficient BA solving requires efficient weighing between GD
and GN, which is determined by λ. Recall that in the clas-
sic approach, λ’s value is set by the Levenberg-Marquardt
(LM) algorithm and may change by one of two constant fac-
tors between consecutive iterations. This may result in inef-
ficient weighting of GD and GN and consequently in a large
number of iterations until convergence is achieved.

Our key idea is therefore to learn a dynamic value of λ, to
dynamically weight the two optimization methods in an ef-
ficient manner. This is not straight-forward as the BA’s con-
vergence (or failure) is achieved only once at the very end
of the solving process, and since each choice of λ may af-
fect the solving for several iterations. Therefore, as we aim
to reduce the total number of iterations required to reach
convergence, the learning of the ideal value of λ requires
viewing the solving process as a whole.

Hence, differently from previous methods, we propose to
view the BA solving process in a new and holistic manner
as a game. We may draw an analogy to a chess game, where
victory (convergence) is achieved only once at the very end
of the game, while each turn (iteration) may go better or
worse (estimation error) and the choosing of λ’s value is
analogous to choosing a chess piece and moving it.

Figure 2. BA problem in RL terms. The SAC agent chooses λ’s
value as its action (a), and then the environment preforms a sin-
gle BA iteration (step), where GD and GN are weighted according
to λ. The environment responds with: 1. a state (s) which rep-
resents the estimation error of the BA’s iteration; 2. a reward (r)
that represents the iteration’s duration as a negative (in seconds),
except for the iteration convergence is met, where r serves as a
positive convergence bonus. As the agent aims at maximizing the
sum of expected rewards, it is encouraged to choose λ in a manner
that reduces the number of solving iterations.

Fortunately, Reinforcement Learning (RL) methods are
designed to handle continuous processes, such as the BA’s
convergence, while producing long-term decisions. This
is done by viewing each process in holistic manner, that
enables handling sparse and delayed rewards. Hence, RL
could be harnessed to learn the optimal value of λ. Thus, we
formulate the BA problem in RL terms by defining states,
actions and rewards. As our method is not limited by two
constant factors between iterations, it enables a dynamic
and efficient weighting of GD and GN along the solving.
This may reduce the number of iterations required for con-
vergence and result in a more time-efficient solving process.

We use the Soft Actor Critic (SAC) RL framework, as it
is stable and adjusted to continuous state and action spaces
like our problem entails, and for its extensive exploration
which is beneficial in our highly complex and multi-variable
problem [9]. Our method consists of two main parts. The
first is an environment which solves a single BA iteration
on each step and provides a state and a reward according to
it. The second is the SAC agent that predicts the value of λ
as its action; see Fig. 2. We elaborate on each part hereafter.

Environment. The environment solves a BA problem.
During its initialization, the environment gets a set of 2D
matches, representing the projections of the objects’ loca-
tions onto the images’ planes, achieved by some key-point
based matching process.

On each step (BA iteration), the environment receives λ
as an action and weighs the GD and GN according to it, as
is done in the classic LM scheme. It then estimates the 3D
locations of the objects and the camera poses, and projects
these locations into 2D according to the estimated poses.
The stopping criterion is met when the estimation error is

3
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smaller than a certain threshold.
The environment provides an observation (state s) and a

reward (r) on each iteration (step). Let zij be the ground
truth pixel (match) in which key-point j appeared in im-
age i. We model it as a noised projection of 3D-point
qj on camera ci with a w Gaussian projection noise, i.e
zij = Proj(ci, qj) + w. Let ĉi, q̂j be the current itera-
tion’s estimated poses of the camera i and location of 3D-
point j accordingly, and let ẑij be the respective projection
i.e ẑij = Proj(ĉi, q̂j). Let ∆zij be the difference between
the ground truth projection and the estimated projection, i.e.
∆zij = zij − ẑij . Let C,Q be all the estimated camera
poses and all the estimated 3D locations respectively. The
estimation error is set as the sum of ∆zij , as follows:

Estimation error = ΣC
ciΣ

Q
qj ||Σ

−1/2∆zij ||2

BAobjective = argminCQ[Estimation error],
(1)

where Σ is the covariance matrix, and the state (s) is set as
a vector of the 5 last consecutive errors, in order to enable
the agent to learn the influence of the choice of λ over a
few iterations. This forms the connection between the BA
solving and the estimation error.

The reward (r) is set as the negative of the duration of
each iteration (in seconds), apart from the convergence iter-
ation (terminal state) where the reward is set as positive. In
standard RL problems the agent is encouraged to maximize
the sum of expected rewards:

Eπ =

∞∑
t=0

rt

rt = −timeBAitert [seconds],

(2)

where rt is the reward at time step (iteration) t received ac-
cording to policy π. In our case, the agent is encouraged to
minimize the overall processing time by reaching conver-
gence, which indirectly minimizes the number of iterations.

Soft Actor Critic (SAC). Our SAC framework consists of
five networks that are updated according to the known actor-
critic iterative optimization scheme:

1. an actor policy network that learns the actions. As we
aim at a learned λ choosing, we chose the value of λ
as the one dimensional, real action;

2. two on-policy soft-critic networks, similar in structure,
which evaluate the value function and differ in a time-
delay;

3. an off-policy value network that evaluates the value
function;

4. a target network that converges the values predicted
by the on-policy and off-policy networks into a single
target value required for the actor-critic optimization.

Figure 3. Soft-critic networks and Value network architec-
ture. The networks are similar in structure: 3 Fully-Connected
(FC) layers with Relu as the activation function, following [5]’s
implementation. The value network receives the state vector (dim
5X1) as input, while both soft-critic networks networks receive
the state and the action vectors (dim 5X2) as input.

As the action represents the value of λ, it influences the
optimization process directly. Let x be all the estimated
camera’s poses and 3D locations in the BA problem, J be
the Jacobin, H be the Hessian, ∆z be a vector whose entries
are ∆zij defined before, Σ be the covariance matrix and λ
be the agent’s action (damping factor). The optimization
step taken on each iteration to update x is defined as:

∆x = − 1

λ
J(x)T Σ−1∆z

Optimizationgradient = −(H + λI)∆x.
(3)

This equation shows λ’s influence on the Jacobian J and on
the Hessian H , which impact the GD and GN, respectively.

Following [5]’s implementation, both soft-critic net-
works and value network have similar architecture: three
FC layers (dim 256), with Relu as the activation function,
as seen in Fig. 3. The value network gets only the state as in-
put, while the two soft-critic networks get both the state and
the action. The two differ in a τ iterations time difference
(delay) only, and if one of them reaches a sub-optimal eval-
uation the other is used instead on each iteration. The target
network gets the values (predictions) of the value network
and the chosen critic network and predicts a target (value)
according to both on each iteration, and has a similar struc-
ture to that shown in Fig. 3. The policy network consists of
four FC layers (dim 256) with Relu as the activation func-
tion, gets the state as input and predicts the next action. The
loss functions of all networks are set to MSE.

4. Experiments
Datasets. We ran our experiments on two real-life large
datasets: KITTI [8] and BAL [1], in which each scene
may include tens of thousands of points. While BAL pro-
vides both the camera poses and the 3D objects’ key-points,
KITTI provides only the camera poses with a series of im-
ages from which the key-points are extracted.

Results. We compare our results to those of the classic BA
approach with LM python implementation [18] and to two
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Method #Iterations avg. time
[26] 80 287.4 [240]
Ours + [26] 16 110.0
Classic 75 340.0
Ours + classic 14 100.2

Table 1. Average efficiency improvement - KITTI. Our ap-
proach accelerated the solving process by reducing number of iter-
ations of other methods by a factor of 5. The total time diminished
by a factor of 2.5-3.2. The time in the brackets is reported in [26],
whereas the time listed is for [26]’s implementation on our hard-
ware.

Method #Iterations avg. time
[10] 15 40.75 [25.2]
Ours + [10] 5 20.3
Classic 20 110.0
Ours + classic 4 62.04

Table 2. Average efficiency improvement - BAL. Our approach
accelerated solving process by reducing the number of iterations
of other methods by a factor of 3-5. The total time diminished by
a factor of 2. The time in the brackets is reported in [10], whereas
the time listed is for [10]’s implementation on our hardware.

recent BA acceleration methods [26, 10]. For each dataset
we compare the results to the works that ran on that specific
dataset. The stopping condition threshold was set to 1e−6
for all datasets. As common, if the problem is not solved
within 100 iterations, it is considered as a failure. We use
this definition to compare the success rate, but note that all
methods achieved 100% success rate on both KITTI [8] and
BAL [1]. All time measurements are reported in seconds.
Each of the reported times includes both the approach’s set-
up time and its BA solving time.

Table 1 compares our results on the KITTI dataset. Our
method required a 1/5 of the iterations to succeed in ap-
proximately a 1/3 of the time, with the same success rate.
Similar results are attained when comparing our results to
other approaches on the BAL dataset, as shown in Table 2.

We compared the MSE between the final estimations and
the ground truth on the BAL [1] dataset, when using [10]’s
method with our acceleration. We got similar results (differ-
ence < 0.003) to those reported by [10] on the same dataset.
This is not surprising as our method accelerates existing ap-
proaches and is not supposed to impact their accuracy.

Acceleration based on synthetic data. Both KITTI [8] and
BAL [1] contain large scenes, and the scenes sizes directly
affect the duration of each BA iteration. Generally speak-
ing, the bigger the scene the longer each iteration is. Hence,
utilizing either of these datasets for training requires a con-
siderable amount of time. We created a synthetic random

Method Train data Inference data #Iterations
Ours + [26] Synthetic KITTI 16

Ours + classic Synthetic KITTI 17

Ours + [10] Synthetic BAL 5

Ours + classic Synthetic BAL 5

Table 3. Average acceleration using synthetic data for training.
Our method is able to accelerate the solving of [26, 10] and of the
classic approach when trained on synthetic data. The acceleration
is similar to that achieved when using KITTI [8] and BAL [1] for
training (see Tables 1 and 2), and reduced the number of required
iterations by a factor of 3-5.

points dataset to simulate smaller scenes, where the dura-
tion of each iteration is shorter, which highly reduces the
overall training time. This dataset was created by randomly
selecting 3D locations (as points) and camera poses. We
created 10 different trajectories, where each trajectory con-
sisted of 10 camera poses and 10 locations, which differed
between the different trajectories. We used these trajecto-
ries to train our agent, which was then tested on KITTI [8]
and BAL [1].

Table 3 shows that using the synthetic data for train-
ing achieves similar acceleration to training on the original
datasets. Hence, our solution could be efficiently trained
(time wise) on small synthetic scenes, and still successfully
accelerate large real-life BA problems.

Implementation details. Following [5]’s PyTorch imple-
mentation, the SAC’s training starts from a series of ran-
domly chosen actions. We used 500 random choosings. For
the classic approach the initial value of λ was set to 1/4. We
used a continuous observation space that was set between
−∞ and 1000 and a continuous action space that was set
between 0 and ∞. The finish (convergence) bonus reward
was set to 10. The time delay (τ ) between the soft-critic
networks was set to 5 iterations. The Adam optimizer was
used for all networks. We used a single NVIDIA RTX 3090
GPU for all experiments.

5. Ablation Study
Comparison to a non-holistic learning scheme. Our key
idea is to view the BA solving process in a holistic manner
and to use RL to learn the ideal value of λ. We compared
our RL approach to a non-holistic learning scheme that tries
to learn the value of λ by minimizing the estimation error
received on each iteration. For fair comparison, we used a
network with three FC layers, each at the size of 1280, so
it would have a similar number of parameters to that of the
SAC framework. Its input was set as three vectors, repre-
senting the last 5 states, actions and rewards, so it would
get the same information as the SAC framework. We term
it Zero-net as it aims to minimize the estimation error.
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Method #Iterations
Classic 20
Zero-Net + classic 8
Ours (holistic) + classic 4

Table 4. Comparison to a non-holistic learning scheme on
BAL. Our holistic RL based acceleration method is better than
that of the non-holistic Zero-Net method.

Method Batch size #Iterations
Classic − 20
Ours + classic 1 7.5
Ours + classic 5 4
Ours + classic 10 4.5
Ours + classic 20 5

Table 5. Acceleration with different state sizes on BAL. The
classic approach is accelerated by our method using different state
sizes. 5 achieves the best results.

Method #Iterations Success rate
Classic 20 100%
Ours + classic 4 100%
Reversed + classic 10 70%

Table 6. Acceleration with opposite state and reward roles.
The classic approach is accelerated by our agent and by a ”re-
versed” agent, which gets each iteration’s duration as a state and
the estimation error as a reward. The ”reversed” agent accelerates
the solving less than our method and reaches a lower success rate.

We compared Zero-net and our method on the BAL
dataset [1]. Our method achieved superior results as seen
in Table 4, thus proving the importance of viewing the BA
process in a holistic manner.

State size effect. Each state represents 5 consecutive esti-
mation errors, to enable the agent to learn the influence λ’s
value has over a few iterations. To verify that 5 iterations are
sufficient, we trained our agent on the BAL dataset [1] with
different state sizes. The maximal size was set to 20, as that
is the number of iterations the classic approach required for
BAL’s solving. Table 5 verifies that 5 is the optimal state
size to enable the learning of λ’s value.

On the roles of the state and the reward. This work pro-
poses a method to reduce the overall time of the BA process,
whilst maintaining the high accuracy that previous methods
upheld. We chose to represent the state as the estimation
error and to represent the reward as the time. Could these
roles be reversed? Could we use the time to represent the
state and the estimation error to represent the reward? We
ran such an experiment, attempting to accelerate the solv-
ing of the classic approach on the BAL dataset [1], using

Method #Iterations
Classic 20
Our reward 4
Constant negative reward 5
Reward reduction 8

Table 7. Acceleration with different rewards on BAL. The clas-
sic approach is accelerated by our method using different rewards.
Using our reward produces better results than using a constant neg-
ative value as a reward and from using reward reduction.

the duration of each iteration (as a negative) as the state and
the estimation error as the reward (with the same finishing
bonus). Table 6 compares our acceleration of the classic
approach with that of the described ”reversed” environment
and agent. The ”reversed” agent accelerated the solving less
efficiently than our method, and achieved only 70% success
rate which is 30% lower than any other approach. This is
probably since the ”reversed” agent aims to minimize the
overall error even at the expense of the solving’s duration.

On the choice of the reward. Apart from the convergence
iteration (terminal state) where the reward is set as a posi-
tive convergence bonus, our reward was set as the duration
of each iteration as a negative, which slightly differs be-
tween iterations. This raises a question of whether using a
constant value as a negative reward (−1 in this experiment)
instead of the duration would also suffice. Another common
reward format in RL is reward reduction, where the reward
is set as 0 in all iterations (states) but convergence (terminal
state), and the positive finishing bonus is reduced (by 1%
of its value in this experiment) on every iteration. In both
cases, the longer it takes the agent to reach convergence, the
smaller the sum of its rewards would be. This encourages
the agent to reach convergence within as few iterations as
possible. Table 7 compares the acceleration results when
using all three types of rewards on the BAL dataset [1]. The
convergence bonus was set to 10 in all cases. All reward
options successfully accelerated the solving, but our reward
achieved the best results, probably due to the extra knowl-
edge about the iterations duration that our reward provides.

Comparison to a constant (non-dynamic) scheduler. As
discussed previously, λ weights between GD and GN,
which impacts the number of iterations required to reach
convergence. There seems to be a pattern to the chosen λ
values. In all the experiments descried in Tables 1 and 2,
two small (close to 0) values of λ were chosen, followed by
two bigger values.

This raises a question of whether the optimal solution re-
quires a dynamic value of λ, or would scheduling a series
of increasing and decreasing constant values of λ suffice to
reduce the number of iterations. We tried to use the classic
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Method #Iterations avg. time
Classic 20 110.0
Constant scheduler 12 80.1
Classic + ours 4 62.04

Table 8. Comparison to a constant scheduler (non-dynamic
method) on BAL. When comparing our method’s acceleration of
the classic approach to that of a constant scheduler on the BAL
dataset, our dynamic method achieves superior results. The time
is reported in seconds.

Figure 4. Chosen λ values. An example of the chosen λ values in
a single test case. The classic approach requires 30 iterations, the
scheduler requires 16 and our approach requires only 8. We zoom
into the last 10 iterations to demonstrate the decay of λ’s value to
nearly 0 by the classic approach.

approach with such a scheduler on the BAL dataset [1]. We
ran the classic approach accelerated by our method on BAL
and extracted a constant series of four λ values, that were
taken as the average of the test scenes ([1e − 15, 1e − 15,
0.194, 0.551]). This four long series was then used repeti-
tively, as a constant (non-dynamic) scheduler to the classic
approach. Table 8 shows that our approach needed only
a 1/5 of the iterations required by the classic approach to
reach convergence and only a 1/3 of the iterations required
by the constant scheduler. This proves the importance of
learning a dynamic value of λ which dynamically weights
GD and GN. Figure 4 shows an example of one of the de-
scribed runs, where the value of λ changed by a constant
factor by the classic approach. On the other hand, our dy-
namic method enabled λ’s value remain the same along
three consecutive iterations which would not have been pos-
sible if a non-dynamic approach was used.

Limitations. When considering small BA problems, which
are commonly solved in a few iterations by the classic ap-
proach, we cannot improve them to the same extent as big-
ger BA problems. For instance, when 5 random points

and 5 random camera poses are used, the classic approach
reaches convergence within 5 iterations on average while
our method required 4 iterations on average. Furthermore,
our method’s overall solving time was 1/2 a second longer
than that of the classic approach in this case, due to the
agent’s inference time. Therefore, when considering small
BA problems our method is less effective in comparison to
bigger problems, and may even perform slightly worse on
extremely small problems.

6. Conclusion
Localization and mapping are key problems in many real

time applications, that are commonly solved using the iter-
ative Bundle Adjustment (BA) process. On each BA itera-
tion, a system of non-linear equations is solved using two
optimization methods: Gradient Descend (GD) and Gauss-
Newton (GN), each better suited for different parts of the
solving. In the classic approach, these two methods are
weighted by a damping factor, λ, that may change by one
of two constant factors between consecutive iterations. This
may prevent the classic approach from efficiently weighting
between GD and GN which might result in many iterations.

Our key idea is therefore to learn a dynamic value of λ
in order to reduce the sheer number of iterations required
to reach convergence by efficiently weighting GD and GN.
This is not trivial as the solving needs to be considered as a
whole in order to learn from it. Hence, differently from past
approaches, we propose to view the BA process in a holistic
manner as a game. We use a Reinforcement Learning (RL)
based method to learn λ, as it can handle sparse and de-
layed rewards like the BA’s convergence and views the BA
process as a whole. We use the Soft Actor Critic (SAC) RL
framework as it is stable, well suited for continuous state
and action spaces, and for its extensive exploration.

We set an environment that solves the non-linear equa-
tions system, and an agent who’s action determines the
value of λ. The reward is set as negative in all itera-
tions, apart from the convergence iteration where the reward
serves as a positive convergence bonus. As the agent aims at
maximizing the sum of expected rewards, it is encouraged
to solve the problem within as few iterations as possible.
This is the key to our method’s time reduction.

Our RL based solving approach is shown to reduce the
number of iterations required to reach convergence by a fac-
tor of 3 − 5 on both known KITTI [8] and BAL [1] bench-
marks. Our reduction could be especially meaningful in real
life scenarios that may require much time to solve due to
their large size. Our agent may also be trained on small
synthetic scenes, which is highly time-efficient, and still
accelerate the solving of bigger real-life scenarios. More-
over, our approach may be added to previous acceleration
methods that focus on reducing the time of each iteration,
as demonstrated on two different methods.
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