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Figure 1. GraVoS for 3D object detection. Given a 3D point cloud (cyan) and its associated voxels, we propose a method that selects a
subset of network-dependent meaningful voxels (salmon). Our method selects most of the voxels of the challenging classes, those with
relatively few training instances (such as the Cyclists and Pedestrians), less from the prevalent classes (e.g. Cars) and very few from the
background. It is shown that considering only this subset improves the performance of numerous SoTA voxel-based detectors.

Abstract

3D object detection within large 3D scenes is challeng-
ing not only due to the sparsity and irregularity of 3D
point clouds, but also due to both the extreme foreground-
background scene imbalance and class imbalance. A com-
mon approach is to add ground-truth objects from other
scenes. Differently, we propose to modify the scenes by re-
moving elements (voxels), rather than adding ones. Our
approach selects the "meaningful" voxels, in a manner that
addresses both types of dataset imbalance. The approach
is general and can be applied to any voxel-based detector,
yet the meaningfulness of a voxel is network-dependent. Our
voxel selection is shown to improve the performance of sev-
eral prominent 3D detection methods.

1. Introduction

3D object detection has gained an increasing importance
in both industry and academia due to its wide range of appli-
cations, including autonomous driving and robotics [8, 33].
LiDAR sensors are the de-facto standard acquisition devices
for capturing 3D outdoor scenes (Fig. 1). They produce
sparse and irregular 3D point clouds, which are used in a
variety of scene perception and understanding tasks.

There are three prominent challenges in outdoor point
cloud datasets for detection. The first is the small size of
the datasets, in terms of the number of scenes. The second
is the large number of points in the scene vs. the small
number of points on the training examples (objects). A single
scene might contain hundreds of thousands, or even millions,
of points but only a handful of objects. The third is class
imbalance, where some classes might contain significantly



more instances than the other classes. This often results in
lower predictive accuracy for the infrequent classes [12, 18].

To handle the first challenge, it was proposed to enrich the
dataset during training with global operations, applied to the
whole point cloud, such as rotation along the Z-axis, random
flips along the X-axis, and coordinate scaling [35, 37, 45].
We note that most methods that solve the second and the
third challenges indirectly also solve this first challenge.

To solve the second challenge, it is suggested to augment
the scene by local operations, applied to points belonging to
individual objects [4, 5]. Local operations include random
point drop out, frustum drop out, additive noise added to the
object, intra-object mixing, and swapping regions between
different objects.

To solve the third challenge, as well as the second one,
[24–26, 35] propose to add ground-truth objects from dif-
ferent point-clouds to the scene, for training. This type of
augmentation indeed mitigates the imbalance. However, it
does not take into account the network architecture, though
Reuse et al. [23] show, through a series of experiments, that
both local and global data augmentation for 3D object detec-
tion strongly depends not only on the dataset, but also on the
network architecture. Thus, network-dependent augmenta-
tions are beneficial.

We present a novel network-dependent data modification
approach that addresses the latter two challenges. (We ad-
dress the first challenge indirectly, similarly to [24–26].) The
key idea is to learn a subset of elements of the scene, which
are meaningful for object detection. Inline with [23]’s ob-
servation, meaningfulness is defined in the context of the
network and not only of the scene. Considering only this
subset as input will allow us not only to decrease the num-
ber of elements in the scene, but also to increase the class
balance within a given scene.

To realize this idea, we focus on SoTA detection networks
that transform point clouds into voxels as a first step in their
pipeline. The main reason behind transferring the input to
voxels is reducing the size of the input, as only the occupied
voxels are then processed. This enables these systems to
work on extremely large scenes. Obviously, another benefit
of voxels is the ability to impose structure on the input.

Generally speaking, in this voxel-based setup, meaningful
voxels are those for which the model "struggles" to locate
the objects. Hence, the gradients play a major role in deter-
mining the meaningful voxels. Our approach is thus termed
Gradient-based Voxel Selection (GraVoS).

We show that when focusing only on the meaningful
voxels and removing the non-informative ones, most of the
discarded voxels belong to the scene background. Few of the
removed voxels are associated with the prevalent classes and
almost none are associated with the non-prevalent classes.
Our strategy may be contrasted with dropout augmenta-
tion techniques, which reduce the number of elements ran-

domly [4, 5].
Our distribution balancing is demonstrated in Fig. 1.

Given a point cloud (cyan), our selected subset of the mean-
ingful voxels (salmon) contains significantly few points from
the background (the points are voxel centers here), more
points on the objects that belong to the Car class (the most
prevalent class), and almost all the points on the objects that
belong the Pedestrian and the Cyclist classes.

Our method is general and may be applied to different
voxel-based networks. Furthermore, it comes at no addi-
tional inference time cost. We show results on four SoTA net-
works: SECOND [35], Part-A2 [26], Voxel R-CNN [6], and
CenterPoint [42] on the well-established KITTI dataset [7,8].
The performance of all networks improves, in particular
when considering the difficult categories of Pedestrian and
Cyclist. For instance, the performance of [26] on the bench-
mark’s moderate subset improves by 2.32% & 1.15% for the
non-prevalent classes (Cyclist and Pedestrian), which consti-
tutes an error reduction of 8.20% & 2.77%, respectively.

Hence, the main contributions of this paper are:

• A novel & generic "meaningful" voxel selection
method, called Gradient-based Voxel Selection.

• A training procedure that uses the selected voxels to
improve 3D detection without additional data. This
procedure combines information from different stages
of the model’s training.

• Demonstrating improved performance of four voxel-
based SoTA detection methods, successfully coping
both with the inherent class imbalance and with the
foreground-background imbalance.

2. Related Work
3D Object Detection. Object detection methods aim at
localizing objects in a given scene and classifying them. 3D
detection methods can be categorized into grid-based [3,6,14,
26,35–37,41–45] and point-based methods [24,25,27,38,40].
See [11] for an excellent survey on deep learning for point
clouds in general and for detection in particular.

Grid-based methods first transform the given point cloud
into a regular representation, either voxels [3, 6, 14, 26, 35,
41–45] or a 2D Bird-Eye View (BEV) [36, 37]. This enables
processing using 3D or 2D CNNs, respectively. The resulting
voxels, however, have a very sparse spatial distribution [35].
To handle sparsity, sparse convolutions [9, 10] have been
proposed. Modifications of the sparse convolution were
proposed by [35] for efficient feature extraction and by [6,
24, 26] for efficiently generating box proposals. These grid-
based approaches provide efficient and accurate solutions,
but are limited when the data is imbalanced.

For point-based approaches, point set abstractions are
learned directly from the raw point cloud, by utilizing
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Figure 2. Training with GraVoS. An input point cloud (cyan) is voxelized and fed into a pre-trained voxel-based detector at two different
training stages, early and late (with frozen weights). These detectors’ losses are computed and are the input of GraVoS, which performs
voxel selection. The selected voxels (salmon) are then fed into the late detector, initializing its weights where it left off (θl) and continuing
training using the selected voxels exclusively. Here, f(·) is a voxel-based network.

PointNet-like architectures [20, 21]. For instance, PointR-
CNN [25] uses the PointNet backbone to generate propos-
als directly from the point cloud for a refinement stage.
STD [40] further improves the refinement stage by densify-
ing the sparse proposal. A fusion sampling strategy of [38]
takes into account the distances between the points in both
coordinate and feature spaces. While point-based methods
are quantization-free and have flexible receptive fields, they
suffer from GPU memory limitations and from a high com-
putation time when processing large point clouds.

Augmentation methods for 3D detection. Since the size of
the available training data is limited, most SoTA 3D detec-
tion methods use a data augmentation protocol to alleviate
the overfitting problem [3, 6, 24–26, 35, 38, 41, 45]. Gener-
ally speaking, global operations are applied to the whole
point cloud scene, including random coordinate scaling, ran-
dom flips along the X-axis, and random rotations around
the Z-axis. Despite their benefits, these augmentations do
not address the challenges of data imbalance. In [35] it is
proposed to randomly insert cropped ground-truth objects
from different scenes of the training data, while avoiding
overlapping objects.

Recent works suggest to augment the training scenes also
by local operations on individual objects. These operations
can be subdivided into two categories: subtractive and ad-
ditive. For the subtractive operations, it is suggested in [4]
to apply random points or frustum drop out. For the addi-
tive operations, it is proposed in [4] to add noise to objects’
points and in [5] to also apply mixing or swapping parts
between different objects in the same class.

Alternative methods including bootstrapping, or hard nega-
tive mining, have been used to handle data imbalance [17,
22, 28, 31]. The key idea is to gradually add examples to
the training set, for which the detector classifier gets false
positives. This is usually done iteratively, where the detector
is first trained on the whole training set and then the training
set is updated based on the detector’s new false positives.
Differently from these approaches, our training set is not
explicitly updated using the ground truth information.

3. Gradient-based Voxel Selection (GraVoS)

We proposes a novel subtractive approach, which pro-
vides a further boost in performance to voxel-based 3D detec-
tion methods. We focus on two properties that make typical
scenes challenging for detection systems: (1) foreground-
background imbalance and (2) class imbalance.

Given an input point-cloud of an outdoor scene, 3D de-
tectors aim to localize objects and classify them. We con-
centrate on voxel-based detectors, since they are beneficial
in handling scenes with a very large number of points. Typ-
ically, these detectors start by converting the cloud into a
voxel grid. Then, non-occupied voxels are removed and the
points in every occupied voxel are grouped. To address the
varying number of points in the voxels, random sampling
of points is applied to each voxel. These voxels are then
fed into a detection network, which is usually a sparse 3D
CNN, followed by a region proposal network (RPN). The
detector outputs both bounding box proposals and class pre-
dictions. While this approach exhibits good performance for
the prevalent classes, it might deteriorate for other classes.

Training with GraVoS. We propose to add a selection com-
ponent to the above general approach. The goal is to select
the "meaningful" voxels and to remove the less meaningful
ones from the scene, in a manner that addresses the two
imbalance challenges discussed above. Meaningfulness is
indicated by the magnitude of the gradients, as the gradients
encapsulate information regarding the detector’s success. Se-
lecting the voxels with high magnitudes puts more emphasis
on the voxels that determine the locations of the objects.

Fig. 2 illustrates the training of an existing 3D voxel-
based detector with our Gradient-based Voxel Selection
(GraVoS) module. First, a voxel detector f(·) is trained
on the dataset without any modification. Its parameters are
stored at two different training stages – early stage and late
stage, θe and θl, respectively. Then, the voxels are fed into
these pre-trained detectors, f(V ; θe), f(V ; θl), separately.
Each detector’s location loss is fed into our GraVoS module,
along with the computational graph and the voxelized scene.
Within the GraVoS module, the meaningful voxels of the
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Figure 3. GraVoS Module. The voxelized point cloud is fed into the GraVoS module and the pre-trained detector (at two training stages).
The detectors’ losses are computed and fed into the GraVoS module. These losses are used to compute the gradient magnitude at each voxel.
For each detector stage the voxels are selected based on their gradients’ magnitude. The selected voxels (highlighted in salmon) from the
two stages are then merged to form the final selected subset of voxels, Smf .

voxelized scene are found. These become the input to a
new copy of the late stage detector f(V ; θ), which is further
trained using only this refined subset.

We use two different training stages since they provide
complementary information regarding voxel meaningfulness.
The late stage detector assigns higher values to meaningful
and unique voxels and lower values to meaningful voxels
in repetitive and easy to learn features. Conversely, in the
early stage detector, these "easy" features still maintain a
high gradient magnitude. Though learned early on, they are
essential for recognizing the objects. Hence, merging the
two sets is beneficial, as shown in the ablation study.
GraVoS Module. GraVoS aims at selecting the meaningful
voxels and discarding the less informative ones. Its structure
is illustrated in Fig. 3. A voxelized grid of the point cloud
scene (cyan) and the detector location losses from the early
and the late stages, as well as the computational graphs, are
fed into GraVoS. Then, for each detector’s loss, the gradients’
magnitude are calculated and the meaningful voxels are
found (salmon). Finally, the voxels that pass the threshold
for each detector’s stage are merged, to create the selected
voxel set. We elaborate on the selection process hereafter.

The magnitudes of the gradients of the losses w.r.t. each
input point (each voxel contains its points) is computed.
These are then aggregated for all the points in the voxel, to
get a scalar value per voxel. This value will be later used as
an informativeness measure. Formally, let Le, Ll denote the
computed location losses for the early and the late stages,
respectively. (These losses are associated with the specific
detector and are defined accordingly; see the supplementary
for the exact definitions.) The gradient magnitude per voxel,
vi, is computed as:

Ge
vi =

1

ni

∑
pi
j∈vi

∥∥∥∥∥∂Le

∂pij

∥∥∥∥∥ , Gl
vi =

1

ni

∑
pi
j∈vi

∥∥∥∥∥∂Ll

∂pij

∥∥∥∥∥ , (1)

where ni is the number of points, pij , in voxel vi.

For each detector stage, early and late, we use the gradient
magnitude to create a subset of meaningful voxels Se and
Sl, respectively. For the late stage detector we assign the
voxels with the top-k magnitude values Gl

vi
to Sl. For the

early stage detector we assign voxels with magnitude values
Ge

vi larger than the mean Ge
vi to Se. The different threshold

mechanisms are due to the fact that at the early stages the
high gradients are noisy, thus we should not consider only
the largest gradients. We show the benefit of the different
mechanisms in the ablation study. Formally, the subsets are
defined in Equations (2) to (3):

Se = {vi | Ge
vi ≥ Ge

vi}, (2)

Sl = {vi | Gl
vi

∈ top-k(Gl
vi)}. (3)

The parameter k gives control over the percentage of
voxels that are considered meaningful. It is selected based
on two variables, (1) nvs, the number of meaningful voxels
in the final selected set (Smf ) and (2) νidr, the intra-detector
ratio between the late and the early detectors. It is calculated
as k = νidr · nvs. Both nvs and νidr are hyper parameters.
(In practice, they are set to 80% of the number of input
voxels and to 50/80, respectively).

Next, we merge the subsets above by a union operator, to
form the final meaningful voxels subset:

Smf = Sl ∪ Se. (4)

Finally, the selected voxels of Smf are fed into the pre-
trained detector f(V ; θ), which is fine tuned for several
epochs using the detector’s original losses. Note that GraVoS
does not affect the inference time, since it is only applied at
training.

Fig. 4 depicts the gradient magnitudes and the resulting
Smf for a pre-trained detector (Voxel R-CNN [6]) for the
three object classes of KITTI’s benchmarks: Car, Cyclist,
and Pedestrian. The background voxels have low gradient
magnitudes (b), making them less likely than foreground
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(a) Input (GT objects are in rectangles) (b) Gradinent magnitudes (c) Final subset Smf

Figure 4. Gradient-based voxel selection. Given an input point cloud (a), the magnitudes of the gradients are computed (b), and the selected
voxel subset is computed (c). The magnitude of the gradients is depicted as a colormap from blue to red (low to high values). Evidently, the
gradients on the background voxels are lower and are therefore less likely to be selected than foreground pixels. The objects’ voxels have
high gradients and therefore most of their voxels are retained in the final subset. However, there are differences between the classes: The less
prominent classes, Cyclist (middle) and Pedestrian (bottom) retain relatively more points than the prominent class Car (top).

voxels to be selected for training the detector (c). Conversely,
many more points on the objects are maintained thanks to
their high gradient magnitude. Almost all the voxels of the
Cyclist and Pedestrian objects have high gradients, and are
therefore selected to the final subset, compared to the Car
objects, with a somewhat smaller subset.

GraVoS for two-stage detectors. Generally speaking, 3D
object detectors can be grouped by the number of stages in
their detection pipeline, into single-stage [14, 35–38, 42, 45]
or two-stage detectors [2, 3, 6, 13, 15, 19, 24–26, 34, 39, 40].
Single-stage approaches are fast since they usually have a
single feed-forward network to predict the bounding boxes
and classes. However, their main drawback is accuracy, since
there is no component that specializes and fine tunes the box
orientations. The two-stage approaches have an additional
refinement module. This makes them slower and heavier in
memory, but their accuracy is improved.

GraVoS is general in the sense that it can be used for
both single-stage and two-stage voxel-based detectors. How-
ever, the refinement stage (second stage) requires local in-
formation from the original input (point/voxels), which is
not available after the selection process. As illustrated in
Fig. 5, in this case, we apply GraVoS only on the first stage

and transfer the missing local information (from the late
stage detector) to the refinement stage. In our experiments
(Section 4), we show the benefits of GraVoS for both single
stage [35, 42] and two stage [6, 26] approaches.

4. Experiments

To evaluate the performance of our method, in Section 4.1
we compare SoTA 3D object detection methods on the well
established KITTI dataset [8], with and without our GraVoS
module and training procedure. In addition, in Section 4.2
we explore several design choices for GraVoS.

KITTI dataset. KITTI [8] is the most widely-used 3D
object detection dataset for autonomous driving. Its training
set contains 7481 examples that are divided into a training
subset, with 3712 examples, and a validation subset, with
3769 examples [1]. The test set contains 7518 examples. We
report results for all three classes in KITTI’s benchmarks,
Car, Pedestrian and Cyclist, which contain 28742, 4487, and
1627 object instances, respectively.

Evaluation metrics. We report our results using the cor-
rected average precision (AP ) metric of Equation 5, which
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Figure 5. Incorporating GraVoS into two-stage detectors. Voxel selection is performed during the first stage, as before. Since in two-stage
architectures, the detector consists of a proposal generator and a refinement module, we use the detector without the refinement component
in the first stage. The last refinement stage (in the second stage) gets the output of the proposal generator (the green arrow), as well as the
required local data that is bypassed through GraVoS.

Pedestrian Cyclist Car Average
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Ped. Cyc. Car All
Voxel R-CNN [6] 66.94 59.88 54.95 89.83 72.49 68.87 92.62 85.13 82.73 60.59 77.06 86.83 74.83
[6]+Ours 68.52 61.63 56.71 91.97 72.98 68.37 92.40 85.41 82.84 62.29 77.77 86.88 75.65
SECOND [35] 54.90 49.84 45.15 81.85 65.42 61.26 90.79 81.87 78.75 49.96 69.51 83.80 67.76
[35]+Ours 57.75 51.99 47.54 84.36 66.41 62.61 89.53 81.06 78.07 52.43 71.13 82.89 68.81
Part-A2 [26] 65.37 58.43 53.62 89.45 71.71 67.74 91.88 82.64 80.21 59.14 76.30 84.91 73.45
[26]+Ours 65.82 59.58 54.55 90.64 74.03 69.64 91.68 82.58 81.67 59.98 78.10 85.31 74.47
CenterPoint [42] 56.85 53.17 49.73 80.27 62.85 60.13 89.58 82.09 79.58 53.25 67.75 83.75 68.25
[42]+Ours 58.02 54.64 50.94 83.40 64.81 61.42 88.74 81.74 79.53 53.53 69.88 83.34 69.25

Table 1. Performance on the 3D detection benchmark. Each method’s performance is compared with and without our voxel selection.
Results are reported for the Easy, Moderate (Mod.) and Hard categories on the three classes. Evidently, GraVoS always improves the average
performance. Furthermore, it improves the performance of the methods for the non-prevalent classes, while it might slightly degrade the
performance for the prevalent class.

is the standard for evaluating 3D detection [29]:

AP |R=
1

|R|
∑
r∈R

max
r′:r′≥r

ρ(r′). (5)

Here, ρ(r) is the precision at recall r, R =
[1/40, 2/40, . . . , 1] and |R| = 40. For precision and
recall we use the standard IoU thresholds of 0.7, 0.5, 0.5 for
the Car, Pedestrian, and Cyclist classes, respectively.

The evaluation on KITTI is divided into three difficulty
categories: Easy, Moderate and Hard, based on the occlu-
sion, the truncation and the object’s distance from the scan-
ner. The more distant and more occluded an object is, the
harder it is to be detected.

4.1. Results

To demonstrate the generality and the effectiveness of our
method, we show that continuing to train four prominent 3D
voxel-based object detectors with GraVoS selection yields
improved performance on the challenging classes. The four
detectors are SECOND [35], Voxel R-CNN [6], Part-A2 [26]
and CenterPoint [42]. For each of these methods, we use its
own protocol of augmentation.

Table 1 reports the results for the 3D detection bench-
mark and Table 2 reports the results for the Bird-Eye View

(BEV) detection benchmark. GraVoS improves the overall
performance of all the detectors. Furthermore, GraVoS is
especially beneficial for the non-prevalent classes i.e., Cy-
clist and Pedestrian, but might slightly degrade the results
of the prevalent class Car. This is attributed to the selection
process, which prefers the non-prevalent classes.

4.2. Ablation Study

This section studies alternatives to GraVoS choices. In
the following experiments, SECOND [35] is used as the
baseline 3D object detector.
Voxel-selection alternatives. Fig. 6 shows that GraVoS sig-
nificantly outperforms three alternatives: Dropout, BgSam-
pling and InvFreqSampling. Dropout randomly selects a
subset of the input voxels [4, 5, 30]. It was shown to avoid
over-fitting and to improve the performance for many tasks.
However, in our particular case, where the number of object
voxels is significantly smaller than the total number of scene
voxels, the benefit of Dropout is limited. This is so since
too few voxels that belong to object classes remain when
sampling randomly. See supplemental for additional results.

Interestingly, we further show that our performance is
even better than sampling when the ground-truth voxel
classes are known (which contradicts our assumption). We
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Pedestrian Cyclist Car Average
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Ped. Cyc. Car All
Voxel R-CNN [6] 69.97 63.60 59.04 93.63 76.09 72.58 95.96 91.43 90.70 64.20 80.77 92.70 79.22
[6]+Ours 72.37 66.24 60.31 94.47 76.32 71.60 95.96 91.96 89.49 66.31 80.80 92.47 79.86
SECOND [35] 60.94 55.73 51.56 87.87 70.91 66.57 92.30 89.68 87.51 56.08 75.12 89.83 73.67
[35]+Ours 62.23 56.78 52.63 89.02 70.88 66.77 92.86 89.62 87.26 57.21 75.56 89.91 74.23
Part-A2 [26] 68.31 61.70 57.33 91.19 75.42 70.97 92.89 90.14 88.17 62.45 79.19 90.40 77.35
[26]+Ours 68.51 62.40 58.04 93.13 75.91 72.68 92.85 90.07 88.13 62.98 80.57 90.35 77.97
CenterPoint [42] 61.26 58.08 54.83 83.84 66.40 63.05 92.26 89.30 88.10 58.06 71.10 89.89 73.01
[42]+Ours 62.32 59.19 55.80 85.68 68.22 64.51 91.91 88.90 88.00 59.10 72.80 89.60 73.84

Table 2. Performance on the Bird-Eye View (BEV) detection benchmark. As in Table 1, our method is beneficial for all four methods.

Figure 6. Comparison to alternative approaches. GraVoS is com-
pared to Dropout, BgSampling and InvFreqSampling for different
voxel selection ratios. The baseline is the constant performance of
the detector (all voxels). When too few voxels are used (< 0.7),
the detector misses objects, as expected. For ratios larger than 0.7,
GraVoS outperforms other approaches significantly. This is due to
the fact that we use the meaningful voxels.

utilized two classical class sampling techniques, in order
to sample more voxels from the foreground (and from less
prevalent classes) and less from the background. In BgSam-
pling voxels are randomly removed from the background
until a threshold is met; in InvFreqSampling, sampling is
based on the inverse of the class frequencies in a given scene.
Class-level voxel balancing with GraVoS. We analyze
GraVoS’s effectiveness by inspecting its influence on the
average number of voxels for each object category. Fig. 7
shows that while GraVoS reduces the number of voxels in
each object class, not all classes exhibit the same reduction.
The background voxels are reduced by 24.1%, the Car cat-
egory by 13.37%, while Cyclist and Pedestrian are hardly
affected with only a 4.64% and 2.33% reduction, respec-
tively. Essentially, GraVoS discards relatively more voxels
from the background points than from objects, addressing
the foreground-background imbalance challenge. This inher-
ently differs from the naive Dropout, where the reduction is
uniform across the whole scene (20%). This indicates that
GraVoS has an object-level data balancing effect.

(a) background & foreground (b) foreground zoom in

Figure 7. GraVoS as a data balancer. This figure shows the aver-
age number of voxels with and w/o GraVoS. (a) The background
has significantly more voxels than the foreground and accordingly,
significantly higher voxel reduction. (b) Zooming into the fore-
ground, the Car category receives most of the voxel reduction.
Thus, GraVoS effectiveness may be attributed to data balancing.

Voxel selection ratio. What shall be the number of selected
voxels during training, nvs? Since this parameter inherently
depends on the number of input voxels, nv, we explore the
selection ratio νvs =

nvs

nv
. Fig. 6 shows that, as expected, it is

beneficial to take a high ratio of voxels and that the best ratio
is 0.8. This can be explained by the fact that uninformative
voxels are discarded from the training process, allowing
the network to focus on more informative voxels. However,
smaller ratios will cause a large gap between the distributions
of the train and the test sets, which would result in an under
performance of the detector.

Intra-detector ratio. We study the number of voxels that
should be taken from each stage (early and late) of the pre-
trained detector. For that, we use the intra-detector ratio
νidr, which quantifies the fraction of voxels from the late
stage detector w.r.t. the total number of selected voxels nvs.
Recall that when all the voxels are taken from the early-stage
detector then νidr = 0, and when all the voxels are taken
from the late-stage detector then νidr = 1. We start by set-
ting νidr = 30/80 and get class average accuracy of 67.58%.
Then, we increase the intra-detector ratio νidr by increments
of 10/80, taking more voxels from the late-stage than from
the early-stage, up to νidr = 1, which yields accuracy of
68.48%. The best result is achieved for νidr = 50/80, with
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Epoch 1 5 10 20 30 40
mAP3D 68.81 68.59 68.59 68.58 68.34 68.27

Table 3. Training duration for the early-stage detector. mAP3D

is the average precision over all the classes and difficulty levels for
different early-stage detectors. The best result is achieved after a
single epoch. This may be attributed to the fact that the gradient
magnitudes of easy-to-learn features are still non-negligible.

detection accuracy of 68.81%. (For this experiment we use
a fixed voxel selection ratio νvs = 0.8.)

This study shows that selecting voxels mostly from the
early-stage does not suffice for fine tuning the original de-
tector (late-stage). Moreover, it shows that the early-stage
indeed provides additional information that the late-stage
lacks, when a proper ratio is used.
Early-stage detector’s training duration. In our frame-
work, we consider the fully trained detector as the late-stage
detector. Therefore, we only have to choose for how long
the detector needs to be trained in the early-stage. To this
end, we tested different epoch choices for the early-stage.
Table 3 shows that the performance is in favor of earlier
epochs, where the first epoch achieves the best result. This
is expected since after the first epoch, the magnitude of the
gradients at meaningful voxels with features that are easy to
learn had not yet vanished. However, even for higher epochs
using the early-stage is beneficial and achieves better results
on average than the original detector (67.76%). (For this
ablation study we used νvs = 0.8 and νidr = 50/80.)
Early and late detector mechanism choices. We tested
three different choices for the early and the late detectors:
mean, median, and top-k. For the mean and the median
strategies, the voxels selected are those with gradients’ mag-
nitude higher than the mean or the median. For the top-k
strategy, we consider two choices for the intra-detector ratio,
νidr = 50/80 and νidr = 30/80, where 80% of the total
voxels were sampled in this experiment.

Table 4 shows that most of the different choices improve
the baseline detector [35]. Selecting the top-k with νidr =
50/80 for the late detector is the most beneficial, especially
with the mean mechanism for the early detector.
Implementation details. We use the 3D detector implemen-
tations available in the OpenPCDet toolbox [32]. For a fair
comparison, we use the default configurations for all detec-
tors. We set the voxel dimensions to be (0.05, 0.05, 0.1), as
provided in the toolbox. For fine-tuning with GraVoS, we
continue to train for 60 epochs, 40 epochs using the original
detector’s optimizer and 20 epochs using stochastic gradient
decent (SGD) and a step decay optimizer. Note that we use
the same settings for all methods [6, 26, 35, 42] after tuning
for [35] in our ablation study. In the supplemental, we pro-
vide additional results that show that the performance boost
is not attributed to longer training or to further scheduler

Early mechanism Late mechanism mAP3D

Baseline [35] 67.76
mean mean 68.25
mean median 68.01
mean top-k (νidr = 50/80) 68.81

median mean 67.80
median median 68.37
median top-k (νidr = 50/80) 68.25

top-k (νidr = 50/80) mean 67.33
top-k (νidr = 50/80) median 68.07
top-k (νidr = 50/80) top-k (νidr = 30/80) 67.99
top-k (νidr = 30/80) top-k (νidr = 50/80) 68.28

Table 4. Different mechanism choices for the detectors. Most
selection choices for the early and late detectors improve the base-
line detector. The best selection combination is the top-k with
νidr = 50/80 for the late detector and the mean selection for the
early detector. In this experiment 80% of the total voxels were
sampled, inline with Fig. 6.

hyper-parameter details. All experiments were done on a
single NVIDIA A100 GPU.
Limitations. The main drawback of GraVoS is the need
of further training, which means longer training times than
those of the original detectors. Furthermore, during training,
the memory and the computational requirements are higher,
due to the additional voxel selection stage. These limitations
apply only for the training stage. At inference, the memory
and the time are the same as in the original detector.

5. Conclusion
This paper has presented a novel and generic voxel se-

lection method—Gradient-based Voxel Selection (GraVoS).
The key idea is to select voxels based on their meaning-
fulness to the detector. GraVoS was shown to address two
fundamental challenges in 3D detection datasets, class-level
data imbalance and foreground-background imbalance.

This paper has also proposed a training procedure that
uses GraVoS to improve 3D detection without additional data.
This is done by utilizing the selected voxels exclusively for
fine tuning the detector.

We have demonstrated that training four SoTA voxel-
based detectors using our training approach and selected
voxels yields a boost in performance. The results are espe-
cially good when considering the challenging classes that
have relatively few occurrences, regardless of difficulty.

An interesting future direction is to explore similar ideas
of element selection on the raw cloud points. This will boost
performance of detectors that do not use voxelization.
Acknowledgement. This work was supported by Ad-
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Sklodowska-Curie 893465, Israel Science Foundation
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6. Supplementary Material
In this paper we presented GraVoS - Gradient-based Voxel

Selection, a novel and generic voxel selection method for
voxel-based 3D object detection. To demonstrate the effec-
tiveness of our approach we conduct a comprehensive study
of various SoTA 3D detectors in Section 6.1. We also pro-
vide additional ablation studies in Section 6.2 and specific
implementation details for each SoTA model in Section 6.3.

6.1. Additional SoTA Results

In the main paper we provided results of SoTA methods
with and without our proposed data modification method.
Here, we provide additional results for these methods.

Table 7 reports the results for the 3D detection benchmark
and Table 8 reports the results for the Bird-Eye View (BEV)
detection benchmark. The main additional result here is
the error-reduction metric for each method on the different
classes and difficulties. The error-reduction is specified by:

Error reduction =
APours −APoriginal

100−APoriginal
∗ 100,

where APours represents our average-precision and
APoriginal represents the original method’s average-
precision. We note that all the models were pre-trained using
the original configuration [32] with batch size as mentioned
in Section 6.3, to generate two training stage detectors: early
f(V ; θe) and late f(V ; θl). The former was trained for only
1 epoch, while the latter was fully trained for 80 epochs.

Fig. 9 depicts some qualitative results of our proposed
approach, for different object classes. It shows the gradients’
magnitude for each voxel, as a color-map from blue to red,
representing low to high values respectively, along with the
final selected voxel subset. As can be seen, most of the
objects’ voxels have high gradient’s magnitude value and
therefore maintain theirs voxels after the selection stage.
The background’s voxels, however, usually do not have high
gradient magnitude. Hence, less likely to be retained after
the selection process.

Similar to the popular Dropout [30] augmentation, our
data modification approach is general and can be applied to
any voxel-based detection architecture. We showed that it
is effective and can be used to improve multiple SoTA 3D
detectors.

Table 9 provides comparison for the 3D detection bench-
mark. It shows comparison between the original detector,
additional epochs training , and our voxel selection approach,
for SECOND [35], Voxel R-CNN [6], and Part-A2 [26] (con-
figuration detailed in Section 6.3). Note that comparisons for
CenterPoint [42] are not provided due to inconsistent results.
We believe the inconsistencies are due to the fact that [42]
was not originally designed and optimized for the KITTI

dataset. Redesigning and optimizing detectors of previous
works is beyond the scope of this work. The results show
that in cases where a fully optimized detector is provided,
GraVoS provides an improved detector.

6.2. Additional ablation studies

Interaction with different augmentations. We tested how
our method interacts with different augmentations. Table 5
shows different augmentations protocols of [35] with and
without our method. Table 5 shows that our method’s gain
is even higher when removing some augmentations such as
GT sampling and Global augmentations i.e., rotation, flip,
and scaling. Interestingly, when removing GT sampling and
adding ours we achieve on-par performance as the baseline
with GT sampling. This result further demonstrates the
effectiveness of our approach, since GT sampling requires
explicit GT annotations, whereas ours does not.

Aug. Average performance
Method Global GT Ped. Cyc. Car All
[35] x x 49.96 69.51 83.80 67.76
+ Ours x x 52.43 71.13 82.89 68.81
[35] x - 46.42 51.92 80.34 59.56
+ Ours x - 48.87 69.11 83.46 67.15
[35] - - 33.37 37.33 69.02 46.57
+ Ours - - 35.50 42.33 70.02 49.28

Table 5. Without other augmentation, our method is even more
beneficial. This is especially evident as it requires no GT labeling.

Deeper architecture. We compared our method with a
deeper backbone of [35]. We duplicated layers in the back-
bone 2,4 and 8 times. Table 6 shows that our method pro-
vides performance gains over the original detector while a
modified deeper architecture worsens the performance a bit.
The degraded performance can be explained by overfitting.
This shows that the benefit of our method is not attributed to
a more complicated and deeper network.

Average performance
Method Ped. Cyc. Car All
[35] 49.96 69.51 83.80 67.76
[35] + Ours 52.43 71.13 82.89 68.81
[35] (x2) 50.11 68.23 83.17 67.17
[35] (x4) 50.00 69.82 82.80 67.54
[35] (x8) 48.14 65.97 82.71 65.61

Table 6. Our approach demonstrates improved performance over
modified deeper architectures.

Voxel-selection alternatives. Align with Fig. 6 that shows
alternative voxel selection methods on [35], we additionally
provide results on [6]. Fig. 8 shows that while other alterna-
tives barely improve the baseline, GraVoS greatly improve
the baseline.
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Car Cyclist Pedestrian Average
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Car Cyc. Ped. All
SECOND [35] 90.79 81.87 78.75 81.85 65.42 61.26 54.90 49.84 45.15 83.80 69.51 49.96 67.76
Ours 89.53 81.06 78.07 84.36 66.41 62.61 57.75 51.99 47.54 82.89 71.13 52.43 68.81
Error reduction -13.68 -4.47 -3.20 13.83 2.86 3.48 6.32 4.29 4.36 -5.62 5.31 4.94 3.26
Voxel R-CNN [6] 92.62 85.13 82.73 89.83 72.49 68.87 66.94 59.88 54.95 86.83 77.06 60.59 74.83
Ours 92.40 85.41 82.84 91.97 72.98 68.37 68.52 61.63 56.71 86.88 77.77 62.29 75.65
Error reduction -2.98 1.88 0.64 21.04 1.78 -1.61 4.78 4.36 3.91 0.38 3.10 4.31 3.26
Part-A2 [26] 91.88 82.64 80.21 89.45 71.71 67.74 65.37 58.43 53.62 84.91 76.30 59.14 73.45
Ours 91.68 82.58 81.67 90.64 74.03 69.64 65.82 59.58 54.55 85.31 78.10 59.98 74.47
Error reduction -2.46 -0.35 7.38 11.28 8.20 5.89 1.30 2.77 2.01 2.65 7.59 2.06 3.84
CenterPoint [42] 89.58 82.09 79.58 80.27 62.85 60.13 56.85 53.17 49.73 83.75 67.75 53.25 68.25
Ours 88.74 81.74 79.53 83.40 64.81 61.42 58.02 54.64 50.94 83.34 69.88 53.53 69.25
Error reduction -8.06 -1.95 -0.24 15.86 5.28 3.24 2.71 3.14 2.41 -2.52 6.60 0.60 3.15

Table 7. Performance on the 3D detection benchmark. Each method’s performance is compared with and without our voxel selection.
Results are reported for the Easy, Moderate (Mod.) and Hard categories on the three classes. Evidently, GraVoS improves the performance
of all the methods for the non-prevalent classes, while it might slightly degrade the performance for the prevalent class. The average
performance is always improved.

Car Cyclist Pedestrian Average
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Car Cyc. Ped. All
SECOND [35] 92.30 89.68 87.51 87.87 70.91 66.57 60.94 55.73 51.56 89.83 75.12 56.08 73.67
Ours 92.86 89.62 87.26 89.02 70.88 66.77 62.23 56.78 52.63 89.91 75.56 57.21 74.23
Error reduction 7.27 -0.58 -2.00 9.48 -0.10 0.60 3.30 2.37 2.21 0.79 1.77 2.57 2.13
Voxel R-CNN [6] 95.96 91.43 90.70 93.63 76.09 72.58 69.97 63.60 59.04 92.70 80.77 64.20 79.22
Ours 95.96 91.96 89.49 94.47 76.32 71.60 72.37 66.24 60.31 92.47 80.80 66.31 79.86
Error reduction 0 6.18 -13.01 13.19 0.96 -3.57 7.99 7.25 3.10 -3.15 0.16 5.89 3.08
Part-A2 [26] 92.89 90.14 88.17 91.19 75.42 70.97 68.31 61.70 57.33 90.40 79.19 62.45 77.35
Ours 92.85 90.07 88.13 93.13 75.91 72.68 68.51 62.40 58.04 90.35 80.57 62.98 77.97
Error reduction -0.56 -0.71 -0.34 22.02 1.99 5.89 0.63 1.83 1.66 -0.52 6.63 1.41 2.74
CenterPoint [42] 92.26 89.30 88.10 83.84 66.40 63.05 61.26 58.08 54.83 89.89 71.10 58.06 73.01
Ours 91.91 88.90 88.00 85.68 68.22 64.51 62.32 59.19 55.80 89.60 72.80 59.10 73.84
Error reduction -4.52 -3.74 -0.84 11.39 5.42 3.95 2.74 2.65 2.15 -2.87 5.88 2.48 3.08

Table 8. Performance on the Bird Eye View (BEV) detection benchmark. Similarly to Table 1, our method is beneficial for all four
detectors.

6.3. Implementation details

This work was done using our reproduction of the pre-
trained models provided by the publicly available Open-
PCDet toolbox [32]. For a fair comparison, the default
configurations for all the detectors were used for this repro-
duction. During fine-tuning with our voxel selection stage
(GraVoS), the detectors were trained for additional epochs.
When fine-tuning a deep neural networks it is usually re-
quired to change the Learning rate (LR) and Weight Decay
(WD). The optimizer may also have effect on the fine-tuned
network. Recent work [16] has shown that while Adam
optimizer known to converge faster than Stochastic Gradi-
ent Decent (SGD), it may have generalization degradation.
This degradation may be caused by extreme learning rates
that are usually used in the end of training. Hence, a new
configuration for the optimizer is required.

To realize this idea, we subdivide the fine-tuning process
into two steps. In the first step we fine-tune each detector
for E1 epochs using its original optimizer – Adam-onecycle.
While for the second step we train for E2 epochs using
SGD with a step decay scheduler. This way we get the
convergence speed from the first step while maintaining
good generalization at the second step (end of training).

Specifically, the Adam-onecycle used in the first step is an
Adam optimizer wrapped with Cosine-annealing scheduler
that rises for part of the period and then declines. We set
the rising time to be 30% of the optimizer total number
of epochs E1. In practice we chose E1 = 40. The SGD
optimizer, in the second step, includes a step decay scheduler.
We set 2 steps for the step decay scheduler, S1 and S2. These
steps, S1 and S2, have been chosen based on E2, where at
each step we reduced the learning rate by a factor of 10. In
practice, we chose S1 = 7 and S2 = 13 for the steps and
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Car Cyclist Pedestrian Average
Method Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Car Cyc. Ped. All
SECOND [35] 90.79 81.87 78.75 81.85 65.42 61.26 54.90 49.84 45.15 83.80 69.51 49.96 67.76
SECOND† 90.05 81.50 78.55 81.52 65.47 61.65 54.74 49.44 44.57 83.37 69.55 49.58 67.50
Ours 89.53 81.06 78.07 84.36 66.41 62.61 57.75 51.99 47.54 82.89 71.13 52.43 68.81
Voxel R-CNN [6] 92.62 85.13 82.73 89.83 72.49 68.87 66.94 59.88 54.95 86.83 77.06 60.59 74.83
Voxel R-CNN† 92.69 85.25 82.85 90.55 73.06 69.62 65.64 59.58 54.75 86.93 77.74 59.99 74.89
Ours 92.40 85.41 82.84 91.97 72.98 68.37 68.52 61.63 56.71 86.88 77.77 62.29 75.65
Part-A2 [26] 91.88 82.64 80.21 89.45 71.71 67.74 65.37 58.43 53.62 84.91 76.30 59.14 73.45
Part-A2† 92.06 82.71 81.78 88.86 72.86 68.53 66.00 58.71 53.86 85.52 76.75 59.52 73.93
Ours 91.68 82.58 81.67 90.64 74.03 69.64 65.82 59.58 54.55 85.31 78.10 59.98 74.47

Table 9. Training scheme comparison on the 3D detection benchmark. Each detector with † represents the detector after continuing to
train with the same number of epochs, learning rate, and scheduler as in our method but without our voxel selection module.

Figure 8. Comparison to alternative approaches. GraVoS is com-
pared to Dropout, BgSampling and InvFreqSampling for different
voxel selection ratios. All experiments were conducted on [6]. The
baseline is the constant performance of the detector (all voxels).
GraVoS outperforms other approaches significantly.

E2 = 20 for the SGD optimizer total number of epochs.
For each detector, the LR and WD were usually chosen

to be about half of the original values. The specific configu-
ration for each detector is given hereafter, where the voxel
dimension are set to be (0.05, 0.05, 0.1) for all detectors.
SECOND [35]. For SECOND we set the batch size to be 4.
The LR and WD of the first step are set to 0.005, whereas
for the second step we changed the LR and WD to 0.003.
Within our voxel selection stage (GraVoS), the location loss
rpn_loss_loc was used.
Voxel R-CNN [6]. For Voxel R-CNN we set the batch size
to be 4. The LR and Weight Decay (WD) of the first step
are set to 0.005, whereas for the second step we changed
the LR and WD to 0.003. Within our voxel selection stage
(GraVoS), the location loss rpn_loss_loc was used.
Part-A2 [26]. For Part-A2 we set the batch size to be 4. The
LR and WD of the first step are set to 0.005, whereas for the
second step we changed the LR and WD to 0.003. For the
voxel selection used in this detector, we chose the rpn_loss

loss which composed of the box regression and the classifier
losses.
CenterPoint [42]. For CenterPoint we set the batch size to
be 4. The LR was set for the first and second steps to 0.002.
The WD of the first step was set to 0.005, whereas for the
second step we decreased it to 0.003. For the voxel selection
used in this detector, we chose the hm_loss_head_0 loss
which corresponds to the center heatmap head presented in
the original paper [42]. This loss is essentially equivalent to
the location loss in other methods.
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(a) Gradinent magnitudes (b) Final subset Smf (a) Gradinent magnitudes (b) Final subset Smf

Figure 9. Gradient-based voxel selection visualization. In each row we have two pairs of images (left pair and right pair). Each pair
represents the gradient magnitude (a) along with the final choice subset gradient magnitudes (b). The top row depicts the Cyclist class, where
in the second and third rows we have the Car and Pedestrian classes respectively. At the bottom row we have two sub-scenes with multiple
classes. The magnitude of the gradients is depicted as a color-map from blue to red representing low to high values.
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