
Drum/SAH – Drum with Silent Attack Hindering �� �
��

Silent Attack Hindering in Drum
Gal Badishi1 Aran Bergman2 Nadav Lavi3 Isask'har Walter4

Electrical Engineering Department, Technion – Israel Institute of Technology

Abstract
Gossip based multicast is a scalable and reliable protocol for dissemination of
information within a group of interconnected users.
Upon receiving or producing a message the process sends (pushes) it to a small
constant subset of processes which is randomly selected out of the group of
members. Some implementations of gossip based multicasts poll a small subset
of processes for new information, effectively pulling, instead of pushing it. In
this manner, each message is eventually delivered to every process, with a high
degree of probability [�1].
An intrusion-tolerant version of a gossip-based multicast algorithm, developed by
G. Badishi, I. Keidar and A. Sasson [�2], employs several schemes in order to
minimize the effect of DoS attacks on a member.
One possible attack on this protocol is one in which a malicious (or a
malfunctioning) process acts normally, but actually does not forward any useful
messages, and replies to pull requests with null entries, thus affecting the
performance of the protocol. In this project we suggest a failure detector for such
a malfunction or attack and a way to overcome it.

Introduction
����������	
���� 	�� �
���� ������������� ����� ��	
����� 	
�� ����

�������� ���������� �	�� �����	���� ����� �	��������	�� ��� ��� ���

���� ��� ��	����� ���� ����� ����� ���� ����� ��� �������� ��� ���
��������

� �����������	
����������������� �����

Gossip-Based Multicast Algorithms
As described in [1], gossip-based multicast protocols are a class of epidemiologic
protocols, which have been introduced as an alternative to the "traditional" reliable
multicast protocols. The main motivation is to trade the reliability guarantees offered by
costly deterministic protocols against probabilistic reliability guarantees, but in return
obtain very good scalability and fault-tolerance properties. The reliability of gossip-
based protocols suffers lightly as more processes fail. Furthermore, these algorithms are
adaptable, meaning that they support dynamic addition and removal of group members
and are also relatively easy to implement and deploy.
Decentralization is the key concept underlying the scalability properties of gossip-based
broadcast protocols. In contrast to sender-reliable protocols or receiver-reliable
protocols, gossip-based multicast protocols are part of the class of peer-to-peer
protocols. While retransmission requests in traditional algorithms can be handled by any
process but lead to the re-broadcasting of a message, gossip-based protocols rely on
interaction between peers.
In typical gossip-based algorithms, messages are disseminated by having every process
periodically exchange information with a randomly chosen subset of processes inside
the system (view). In each gossip-round, a process may send messages to the processes
in its view (push-based protocols) and may also request messages from processes in the

1
�badishi@techunix.technion.ac.il

2
�aranb@techunix.technion.ac.il

3
�nadavl@techunix.technion.ac.il

4
�zigi@techunix.technion.ac.il

Drum/SAH – Drum with Silent Attack Hindering �� �
��

view (pull-based protocols). Each message is gossiped for a number of rounds. These
gossip rounds are initiated locally by every process and no global synchronization is
required.
A possible reliability characteristic of gossip-based multicast protocols is the probability
that a message reaches a randomly chosen process within n rounds. The redundancy in
sending messages to multiple processes increases the reliability in the face of message
loss and process crash failures. In this manner, gossip algorithms may achieve high
probability of spreading the message to the entire multicast group.
In order to maintain a set of active processes that can be chosen as gossip partners,
gossip protocols are often complemented by membership protocols. These protocols
may be a part of the gossip protocol, or implemented separately.

Drum
Basic gossip-based multicast protocols are vulnerable to attacks on the system.
Messages can be forged, senders impersonated, and processes may be flooded with pull
and push requests. The Drum system, presented in [�2], offers improved immunity by
deploying several attack hindering schemes.
Digital signatures are used in order to authenticate the integrity of messages and the
identity of senders. However, due to the complexity of generating and verifying
signatures, further measures should be taken in order to prevent attackers from easily
launching a denial of service (DoS) attack by forcing processes to exhaust their CPU
while generating and verifying signatures of useless messages.
Since every process has a limited amount of available resources (buffers,
communication bandwidth) in each round, a group of attackers might choose to
overload the push or pull mechanisms of one or more victim processes, thus causing
them to malfunction. Therefore, Drum uses a combination of pull and push operation in
order to disseminate messages. Moreover, Drum limits the amount of resources a
process utilizes in each round: Only a certain amount of resources is dedicated to
sending messages in a push operation and another amount is dedicated to sending
messages in reply to pull requests. Similarly, the amount of resources used by a process
to receive and process messages pushed by other processes, or to receive messages that
were sent in response to pull requests is limited.
Drum also makes use of randomly chosen communication ports in order to increase the
complexity of possible attacks. Further discussion of this issue is available in [�2].

Silent Attack
One possible attack on this protocol is one in which a group of malicious (or
malfunctioning) processes act "normally" (i.e., a crash failure detector will consider
then correct), but actually do not forward any new messages and reply to pull requests
with null entries. Since any other process cannot distinguish between these processes
and correct ones using only Drum operations, the performance of the protocol might be
affected. In this work we quantify the degradation of Drum's performance due to such
attacks using measurements of a real system. We suggest a failure detector for such a
scenario and ways to mitigate the effects of such a behavior on the system. We operate
under the strong assumption that an attacker knows our failure detector's inner
workings.

Assumptions
• All of the assumptions presented in [2] hold for this algorithm.
• The workings of the failure detector are well known, so that the attacker can

exploit them to maximize the attack's effect.

Drum/SAH – Drum with Silent Attack Hindering �� �
��

• There can be more than one attacking process. All the attacking processes can

share information and coordinate their attack.
• Each process has a crash failure detector.

Proposed Algorithm
Insuring delivery using the push mechanism seems hard or impossible. The reason is
that in order to identify a process which does not comply with Drum we need to gather
information from all of the processes in the system. We need to ask each process which
processes delivered messages to it using push operations. After we gather enough
information for a long period of time, we can perform statistical calculations and reach a
conclusion as to which process is, statistically, not following the protocol. This is highly
inefficient, depends on the message generation rate in the system and is very slow.
Moreover, an incorrect process can cause correct processes to suspect other correct
processes, by falsely reporting incorrect statistics.
The problem of detecting a process that does not perform its pull requests according to
Drum is equivalent to the problem of detecting a process that does not perform its push-
offers, described above.
Due to the above reasons, we propose a failure detector for the correct behavior of the
pull-reply mechanism.

SAH – Silent Attack Hindering
The main assumptions and characteristics with regards to the SAH mechanism are:

• Each process holds a list of suspected processes. The objective of the attacker is
not to be included in any of these lists, so as to maximize its effect.

• If possible, the attacker will try and cause a correct process to add correct
processes to its suspects list.

• The proposed algorithm insures correct delivery of messages using the pull
mechanism. The list of suspected processes is, therefore, a list of processes that
do not perform the pull-reply operation as the Drum protocol stipulates. This
may be due to a malicious attack, or as a malfunction of the process. Either way
– When a process randomly selects its viewpull (the view for the pull operations)
it excludes the suspected processes, since it is highly probable that the suspected
processes will not deliver any new messages in their pull-reply.

• The push operation of the suspecting process does not change due to the list of
suspects. The only thing that is affected is the pull operation. This is due to the
fact that the failure detector gathers information only about the correct behavior
of the pull-reply mechanism for each process. It cannot know anything about the
behavior of the push mechanism of the process. The suspected process might be
a malfunctioning one, but not necessarily an attacking process, thus we need to
propagate information to that process as well. The only mechanism that can
achieve that is the push mechanism. Moreover – since the probability of false
detection is not zero, we need to examine the behavior of suspected processes,
so that we can remove them from the suspects list if, indeed, they are not
malfunctioning.

Overview
The algorithm is based on sharing information regarding the messages that a process
holds and then cross-checking the process' behavior. After the initiating process p
completes its push-operation to the processes in its viewpush (the view used for the push
operation), it asks one of these processes q for a list of the messages that it holds. Since
p just delivered a set of messages to q, it knows what messages q should have at the

Drum/SAH – Drum with Silent Attack Hindering �� �
��

very least (if it does not hold these messages, process p might suspect q). It then
forwards this information as is (including q's signature) to a randomly chosen set of
processes. Consider one of these processes, denoted w. This process, in turn, performs a
regular pull-request on q. It includes a list of the messages that w holds, as would a
regular request. The only difference is that w omits a message which it knows q holds,
so that q will be forced to respond to the pull-request with at least one message.
Otherwise, w will suspect that q is a silent attacker. The message flow is illustrated in
Figure 1.

Looking at the algorithm from the attacker's point of view, it cannot distinguish between
a regular pull-request and one that is aimed at detecting silent attackers, thus it is forced
to react the same way to all pull-request messages. Furthermore, the attacker does not
know which of the messages it holds is the one the requesting process expects. Since
one of the goals of the attacker is not to be suspected by any of the processes, it has to
respond to any pull-request as a regular process would.

An attacking process cannot forcefully create a scenario in which a correct process, w,
adds another correct process, q, to w's suspects list. If q is a correct process, then the list
of the messages it holds will be a correct one. The attacking process cannot change the
message containing that list, since it is signed by q. Nor can he fabricate a list of its
own, for the same reason.

q

w
p

p
u
l
l
-
r
e
q
u
e
s
t

qu
er
y

forwardedquery-response

qu
er
y-
re
sp
on
se

p
u
l
l
-
r
e
q
u
e
s
t

Figure 1 – The messages in the Drum/SAH algorithm

Detailed Description
The algorithm description makes use of the following notations:
Members - The set of all processes in the system.

pCrashSuspect - The set of the processes that process p suspects of crashing.
This list is maintained by the crash failure detector of each
process.

pAttackSuspect - The set of processes that process p suspects of being silent
attackers.

pMsgs - The messages that process p holds in its buffer.

qprMsg - The set of messages that process q delivered during the pull-
reply.

Drum/SAH – Drum with Silent Attack Hindering �� �
��

SEND(src,dest,msg) - A primitive that sends a message msg with src = source port

and dest = destination port
qport - A well-known port of each process on which it listens for

queries.
qfport - A well-known port of each process on which it listens for

forwarded query-responses.
digest(Msgs) A list containing the IDs (sequence number and source ID) of

the messages in Msgs.

Every process p performs the following algorithm:

Task 1:
Every once in a while, after completing a push operation do
 src <- choose a random port number
 SEND(src, qport ,"query"p) message to a randomly chosen

process q ∈ viewpush
 Wait for "query-response"q on port src OR q ∈ CrashSuspectp
 If q ∈ CrashSuspectp then exit

Forward the message as is to the qfport of a set of R randomly

chosen processes from (Members \(CrashSuspectp ∪
AttackSuspectp))

Task 2:
Upon receiving a "query-response"q on qfport do

 m <- randomly chosen message from (Msgsp ∩ Msgsq)
 Msgs <- Msgsp \ m
 Send a pull-request to q with digest(Msgs)
 Upon receipt of "pull-reply"q(prMsgsq) do

 If m ∉ prMsgsq then
 Discredit(q)

The function of discrediting a process can mean many things. Some of the proposed
methods for discrediting a process:

1. Add it to the list of suspected processes, so that the process will never be chosen
for the pullview in the suspecting process.

2. Decrement a confidence indicator that is attached to each of the process IDs in
the set. When this confidence indicator is less than a configurable threshold, the
process associated with that confidence indicator will not be chosen as a
member of the pullview .

3. Decrement a confidence indicator that is attached to each of the process IDs in
the set. The members of pullview and pushview chosen in a random method which

ensures that processes with lower confidence indicator will have less of a chance
to be included in the view.

4. Exponential Backoff – similar to the former method, each of the process IDs in
the set has a confidence indicator (CI) attached to it. When a process is detected
as a silent attacker, the CI attached to the ID of that process is incremented by 1
and the process will not participate in pull operations for the next 2CI rounds.

The discrediting function should be complemented by a function that updates the credit
of a process that performed a pull-reply correctly. Otherwise, once a process is
identified as an attacker, it will stay in the suspects list forever. Since there are falsely
suspected processes, especially in an erroneous network, and since processes might

Drum/SAH – Drum with Silent Attack Hindering �� �
��

malfunction for a limited period of time, this is not acceptable. Gaining back credit
could be achieved by a timeout mechanism, i.e. once a process is suspected, its credit
will be increased after a timeout, the length of which could be determined by the
number of times the process was suspected in the past. Another method is to keep
checking the behavior of suspected processes. If they were falsely suspected, and are
behaving correctly later, their credit will be updated accordingly.

Possible Attacks
One possible attack that can be employed is one in which the attacking process, g, wants
to "frame" other correct processes. In order to do so g collects digests from a number of
processes it want to "frame", using query messages, and holds the query-responses for a
period of time that insures that all the messages in those digests are supposed to be
flushed out of the MsgBuf of all the processes due to the TTL parameter (see [�2]). Then
it forwards these digests to as many processes as it whishes. Since the messages in these
digests are no longer in the MsgBuf of these processes, they will be suspected of being
silent attackers.

Another attack is one in which an attacking process, g, would like to refrain from
performing correct pull-replies (i.e. sending back new messages), but does not want to
be discredited for it. It can do so by faking the progress of its own round counter or
timer. Since each message is supposed to be stored by a process for a limited time, the
attacker can abuse this behavior. When g receives a pull-request, it acts as if its round
counter or timer advanced far beyond the number of rounds that the messages are
supposed to be saved. That way, to any process querying g, this would seem a
legitimate reason not to forward any messages.

The attacker could use the following tactics: on pull-requests it does not return any
message (thereby, having a negative effect on the dissemination of information). To
keep from being detected as a silent attacker, each time the attacking process needs to
send a digest (e.g., as a response for a push-offer), it acts as if for every sender in the
system (we assume that the number and identity of the senders is known to the attacker)
it already received all of the sender's messages, and already discarded them from its
buffer.

Code Overview
In this and the following sections, the terms below were used:
snitch message - Forwarded query-response.
snitch operation -
"check" - The pull-request that is initiated upon receiving a snitch.

Drum Code Overview
As explained, the Drum protocol belongs to the family of gossip protocols. The aim of
Drum is to reliably deliver messages between processes over the network.
In order to deliver the messages between processes Drum uses pull and push methods.
Each process listens on two different ports to pull-requests and push-offers.
The Drum code is composed of 15 files:

Drum/SAH – Drum with Silent Attack Hindering �� �
��

FRAG.java The main class of the Drum protocol.

Creates threads to perform the protocol.
The name is FRAG for historical reasons �

Gossiper.java Activate and manage the puller and pusher.
Activate buffer management routines every round.

Puller.java One of the two classes that do the actual gossiping.
This class is in charge of the pulling procedure.

Pusher.java The second class that does the actual gossiping.
This class is in charge of the pushing procedure.

PullWaiter.java In charge of receiving a response on a recently sent
pull-request.

PushWaiter.java In charge of receiving a response on a recently sent
push-offer.

PullReceiver.java In charge of receiving pull requests and sending back
responses.

PushReceiver.java In charge of receiving push offers and sending back
responses.

MsgBuf.java Hold and manage the buffer of stored messages
recently received.

MsgGaps.java Hold and manage the buffer of information on
messages in MsgBuf.

FRAGMsg.java The Drum messages. (The name FRAG is for
historical reasons).

RoundThread.java Counts the rounds.
Certificate.java The process certificate.
AsyncSender.java The thread that sends the Drum messages.
Configuration.java All the parameters needed for Drum protocol.

Focusing on Drum main methods pull and push, the Puller and Pusher send several pull-
requests and push-offers with random views in each round	
Upon sending those offers and requests, a PullWaiter or a PushWaiter is spawned,
according to the sending operation, for a short and limited lifetime (which is
configurable). The Gossiper initiates the Puller and Pusher which send the pull-request
and push-offer messages (types of FRAGMsg) using the AsyncSender.�
In order to receive the pull-requests and push-offers the PullReceiver and PushReceiver
listen on the pull and push ports respectively	
Upon receiving a valid push-offer, the digest of the stored messages is sent back to the
offering process and a PullWaiter is spawned	
Upon receiving a valid pull-request, PullWaiter checks to see if MsgBuf holds messages
that are not contained in the received digest, and chooses a random subset of these
messages. This subset is sent to the requesting process	

Code Modifications and Additions
To implement SAH using the Drum source code, several classes and methods were
added to the code. The main structure of the Drum was preserved and the modifications
were done according to it.

The credit mechanism implemented in our code is as follows:
A counter value (scale) is associated with each of the processes in the set. The counter is
initialized to 50 at the beginning of the experiment. Each time a "check" fails for a
process, its counter value is decremented, and each time a "check" succeeds, the counter

Drum/SAH – Drum with Silent Attack Hindering
� �
��

value is incremented. When the counter values falls below a threshold, the process is
declared as a silent attacker. If a process is suspected as a silent attacker, its counter
value should exceed a different, higher, threshold, to be considered a correct process.

Another mechanism implemented in the code is a crash failure detector. This failure
detector is similar to the credits used for the silent attacker failure detector. Again, a
counter (scale) is associated with each process in the set. When a process fails to
respond to messages sent to it (such as pull-request and push-offer), its counter value is
decremented. If the response comes in a timely fashion or a message is initiated by that
process, the counter value is incremented. There are two threshold values for this
mechanism. If the counter value falls below the lower threshold, the process is
considered to be inactive (crash failure). Once a process is suspected of being inactive,
its counter should exceed the upper threshold to be considered active.

Below is a summary of the changes made to the Drum code:

Additions to the Drum code
1. Add a snitch port to the existing ports.
2. Add a set of parameters necessary for SAH implementation and operation.

Nsnitch Number of digests to send to each
snitch recipient.

Nsnitchrecipients Number of snitch recipients.
Nacceptsnitch Number of snitch messages to accept in

a single round.
Rroundsbetweensnitch Number of rounds between snitch

operations.
Rwaitsnitchreply Number of rounds to wait for a

snitching procedure.
Naceptsnitchreply Number of pull-response messages to

accept after as part of a "check".
Rroundsbetweensameattacker Minimum number of rounds between

consecutive "checks" to the same
process.

AtckHighTH Attacker’s upper threshold.
AtckLowTH Attacker’s lower threshold.
LiveHighTH Liveliness upper threshold.
LiveLowTH Liveliness lower threshold.

3. The ability to send a snitch to other processes was added to the Gossiper.
4. A buffer was added to hold digests received from other processes.
5. Every Rroundsbetweensnitch rounds the Gossiper randomly selects Nsnitch

snitch messages from the digest buffer, and sends every message to a random
Nsnitchrecipients processes selected from the current view.

6. A SnitchReceiver class was added to deal with snitching messages.
7. The SnitchReceiver accepts Nacceptsnitch snitch messages at most in each

round.
8. Upon receiving and accepting a snitch message, the digest is extracted from the

message and a pull-request message addressed to the checked process is created
with a special digest according to the local digest and the extracted one. This
message is sent using the AsyncSender. In addition a SnitchWaiter thread is
spawned.

Drum/SAH – Drum with Silent Attack Hindering �� �
��

9. The checked process is recognized according to the certificate in the snitch

message.
10. A SnitchWaiter class that analyzes the respond of the attacker to the pull-request

was added. The snitch on the attacker will be confirmed if the attacker doesn't
cooperate, meaning the attacker does not send back the messages that were in its
digest and were deleted from the special digest sent to him

11. adjustDigest method creates the special digests according to the checked
process' digest received from the snitching process and the local digest.

12. A database (hash table) that holds the history of the checking procedure was
added.

13. A method that manages the scales of every process in the system according to
results of the snitching procedure.

14. A database (hash table) that holds the scales of the processes in the system.
15. The Puller was modified to support the use of the scale database.

Changes in the existing Drum code
1. In Configuaration.java:

a. Add a snitch port, PORT_OFFSET_SNITCH_RECEIVER.
b. Add snitch parameters: Nsnitch, Nsnitchrecipients, Nacceptsnitch,

Rroundsbetweensnitch, Rwaitsnitchreply, Naceptsnitchreply and
Rroundsbetweensameattacker.

c. Add scale parameters: AtckHighTH, AtckLowTH, LiveHighTH and
LiveLowTH.

2. In Gossiper.java:
a. Add a method SendSnitch(RecipientView,AttackerView, rawData)
b. Add to run() method the activation of SendSnitch method in every

Nroundsbetweensnitch.
c. The Gossiper will activate SendSnitch every Nroundsbetweensnitch

rounds. The SendSnitch will send a snitch on each attacker included in
AttackerView to Nsnitchrecipients of the processes in RecipientView.

3. In MsgGaps.java:
a. Add a new method findSameMessages(Vector checkedSerials)

The findSameMessages method is activated on a local gap vector to
create a new gap vector that will hold all messages located in both the
local vector and the checkedSerials vector.

4. In FRAG.java:
a. Add an AttackerScale database.

New Classes
SnitchReceiver.java

This class is responsible for receiving snitch messages. Upon receiving a snitch
message (maximum of Nacceptsnitch messages per round) the handleSnitch
method is called. This method validates the message and creates a pull-request
to be sent to the checked process with a special digest created using the
adjustDigest method.Before sending the special pull-request a SnitchWaiter is
spawned.

SnitchReceiver.java Variables

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

Hashtable attackersChecked

Hash table which holds for each process that was checked the round
number of the last "check". This data is used in the validation processes
in handleSnitch method. A process will be checked only if more than
Rroundsbetweensameattacker elapsed from the last checking procedure.

SnitchReceiver.java Methods
handleSnitch(FRAGMsg msg)

Validate the message.
Check if Rroundsbetweensameattacker rounds passed.
Update attackersChecked database.
Create a special digest using adjustDigest method.
Send the digest to the checked process using the sendPullRequest method.

sendPullRequest(attacker,digest,rawData)
This method is adopted from the pullReceiver class.
Send a pull-request to the checked process with the special digest.
Spawn a SnitchWaiter on the selected port.

adjustDigest (AttackerDigest)
Adjust the local digest according to the checked process' digest.
This method will return a new and special digest.
The operation of this method can be described as:

\ (())one ofL L A∩
Here L is the local set of messages and A is the checked process' set of
messages.
The special digest hold the messages that are located in both the local set and
the alleged attacker set. From this intersection one message is randomly
selected and deleted. The selection algorithm is composed of three phases,
the first random selection of the source process, the second phase a gap is
selected and in the third phase one message from the selected gap is deleted.
In order to be consistent with previous pull-request operations all messages
located only in the local database are added to the digest, this way the
attacker will have more difficulties to know when the message is a real a
pull-request or one triggered by a snitching operation. If L A∩ = ∅ the
snitch is canceled.

snitchWaiter.java

This class waits for a certain process to respond with a certain message on the
pull-request sent due to a snitch. After receiving Naceptsnitchreply messages or
Rwaitsnitchreply rounds elapsed, it checks whether the expected message is
located in the buffer. Thus it decides whether the checked process' scale should
be decremented or not. The snitchWaiter runs for a short and limited time.

SnitchWaiter.java Methods
SnitchWaiter(Drum,port,Certificate,Rounds,messages,exp
ectedMessages)

This method listens to the given port for a given number of rounds and
expects to receive from the process with the given certificate a certain
expected message. If it doesn’t receive the expected message during its
lifetime, the process' scale is decremented. The checking procedure is done

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

by the handleSnitchReply method. According to the result of this method the
scale of the checked process is adjusted.

handleSnitchReply(Vector msgsOfAttacker)
This method checks whether the deleted message was received, if the
message wasn’t received the interrogated process is declared as an attacker,
if it was received the process is declared as normal.

Snitcher.java

The Snitcher class implements the basic snitch elements and various operations
that are related to logging and debugging. Its methods were separated from the
Drum’s implementation in order to enable easy integration when a new Drum
version is released.
If Rroundsbetweensnitch rounds have elapsed since the last snitch operation, the
sendSnitches method is called for each host in the snitch view (a randomly group
of chosen hosts). This method sends Nsnitch messages (that are actually
previously stored push reply messages) to each of the hosts. The messages are
sent unchanged, since there is no need to validate the signatures or to sign it
again.

Snitcher.java Variables

Hashtable pushReplyTable
This hash table stores the digests that were received from other hosts in reply to
push offers. This digests are later sent as snitch messages.

Snitcher.java Methods

snitch(Vector viewSnitch)
This method checks whether Rroundsbetweensnitch round have passed since the
last snitch operation. If so, it uses the getRandomDigests method to randomly
select Nsnitch digests, and calls the sendSnitches method to send each digest to
every host in viewSnitch.

sendSnitches(Certificate cert, Vector snitchs)
This method uses the asyncSender object to send each snitch message in the
Snitchs vector to the host that owns the certificate cert.

addDigest(String senderID, FRAGMsg msg)
This method adds the push reply message msg to the hash table that stores push
reply messages (pushReplyTable).

getRandomDigests(int numDigest)
Returns a vector of numDigest randomly chosen digests from pushReplyTable. If
the table holds less than numDigest digest, all available digest are returned.

The following methods are used for logging and debugging, and may be omitted
without damaging the snitching capabilities:

initLogs(String filename)
Initializes both log files (.exp and .log) by writing a message to the files
indicating the host’s own ID.

gapsToString(Vector gap)

 Converts the gap vector to a string for logging purposes.

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

digestToString(Hashtable digest)
Converts each digest in the hash table digest to a string for logging purposes.

writeToLog(StringBuffer text, int verboseLevel)
Writes the text to the host’s .log file, if the verbose level is higher (numerically
equal or lower) than Configuration.VerboseLevel. The text is also written to the
screen if the screen verbose level is numerically equal or lower than
VerboseLevel.

writeToExpLog(StringBuffer text)
Writes the text to the host’s .exp file, if the verbose level is higher (numerically
equal or lower) than Configuration.VerboseLevel.

writeToLogRound(StringBuffer text, int verboseLevel)
Similar to writeToLog, but adds the current round number and the host’s ID to
the printed text.

getOwnDigest()
Returns the host’s own digest table, which holds the message gaps for each
known sender in the system.

TTLsToString(Vector TTLs)
Returns a string that corresponds to the vector TTLs, which indicates the TTL
value of each message of a particular sender that is currently stored.

TTLsTableToString(Hashtable MsgBufTable)
Converts the hash table MsgBufTable to string, for logging purposes.

attackerScaleToString(Hashtable scaleTable)
Converts the hash table scaleTable to string, for logging purposes.

sendersToString(Hashtable sendersTable)
Converts the hash table sendersTable to string, for logging purposes.

attackerScale.java
The AttackerScale class manages two values a host keeps for each of the other
hosts. The first value indicates the liveliness of the host. This value is incremented
when a host communicates with another host, and is decremented when the other
host fails to reply. If the value is equal or less than Configuration.LiveLowTH the
host is considered dead. The host will be considered alive again when the value
equals Configuration.LiveHighTH. The second value reflects how much the other
host is suspected to be an attacker. It is updated whenever a host is tested using the
"snitch" mechanism. The value is increased if the host replies with the message that
was artificially removed and decremented otherwise. If the value is equal or less
than Configuration.AtckLowTH the host is considered an attacker. The host will be
considered correct again when the value equals Configuration.AtckHighTH. Each of
the counters also stores the last round number in which the counter was updated and
whether that update was an increase or decrease operation. These parameters enable
employing complex strategies to determine which hosts are dead or attackers.

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

SnitchReceiver.java Variables
Hashtable SendersScale

 A hash table that stores the two scales of each of the other hosts.

Hashtable attackersView
A hash table that stores the Ids of each of the hosts that are considered to be
attackers.

Hashtable deadSenders
A hash table that stores the Ids of each of the hosts that are considered dead.

attackerScale.java Methods

updateSnitchScale(String senderID, boolean isOK)

Increases the attacker scale of the host senderID if isOK is true, decreases it
otherwise. This method also stores the current round number and the direction of
the update in order to facilitate future improvement in the mechanism that
distinguishes between a correct process and an attacker. If the scale falls below
Configuration.AtckLowTH, the host senderID is considered an attacker. If the
scale is equal to or grater than Configuration.AtckHighTH the host is considered
correct.

updateLivelinessScale(String senderID, boolean isOK)
This method is identical to the updateSnitchScale method, but it updates the
liveliness scale and uses Configuration.LiveLowTH and
Configuration.LiveHighTH as thresholds. Using these thresholds the method
decides whether the host is dead or alive and updates attackersView accordingly.

Hashtable getAttacker()

Returns a hash table that holds the Ids of the processes that are currently
considered to be attackers.

Hashtable getDead()

Returns a hash table that holds the Ids of the processes that are currently
considered to be dead.

Hashtable getAttackerScale()

Returns a hash table that holds the scales of each of the other hosts.

New Packages
SilentAttacker

The package SilentAttacker implements a silent attacker. It is almost identical to
the Drum’s implementation, but some minor modifications and additions were
necessary to enable the required attacker’s behavior. The most notable
modification is to the PullReceiver.java class: Instead of replying to a pull
request as a correct host would, the attacker calls the method
sAttacker.deliverMessage for each of the messages that should be sent. This

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

method decides whether to send the message or to drop it, thus implementing a
silent attack.

SAttacker.java

In addition to Drum's classes, SAtacker.java implements some of the silent
attacker's behavior. It holds the list of the attacked processes and controls the
attacking probability.

SAttacker.java Variables
Hashtable attackedTable
A hash table that stores the Ids of the hosts that should be attacked.

SAttacker.java Methods
addVictim(String ID)
Adds host ID to the list of processes that should be attacked.

isVictim(String ID)
Returns true if host ID is attacked, false otherwise.

deliverMessage(String sourceID,String destID)
This method decides whether to send a message created by host sourceID as part
of a push reply to host destID. The decision can be based upon any of the
parameters available in the Drum code. In the current implementation, this
method always returns false, which implements a simple silent attacker that
never responds to a pull request.

Implementation Issues
• Response to a pull-request even if there are no messages

A problem that we discovered during our implementation is that a process that
doesn’t have new messages to send upon reception of pull-request will be
detected as a dead process and thus its scale will be decreased. A way to solve
this is to add a special message that indicates that the process has no new
messages. This solution was implemented in the Drum code during our
implementation of SAH.

• Gaps
During the implementation of SAH on the Drum code, we detected a possible
problem with the implementation of the digests sent through the pull and push
operations. Due to the fact that messages are deleted from the buffer using age
based purging, these deleted messages no longer exist in the buffer but they need
to be included in the digests. Therefore, virtual gaps are created and inserted into
these messages. We discovered that these virtual gaps can influence our decision
algorithm. This happen when the adjustDigest method opts to discard a message
from the virtual gap, thus the interrogated process can’t send the necessary
message back and it is declared as an attacker even when it is a correct process.
To correct this problem the digest presentation was changed and instead of a
virtual gap we have added the minAcceptableSerial parameter.

• Scale for attackers
In our implementation we used a linear scale, meaning that when a process is
declared an attacker or a correct process its scale is decreased or increased by
one respectively. Another scale that can be implemented is an exponential scale

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

in which when a process is declared an attacker its scale changed exponentially
and when the process is declared normal its scale is changed linearly. This kind
of implementation is well known from Van-Jacobson AIMD (additive increase
multiplicative decrease) strategy used in TCP window algorithms.
The implemented linear scale is much more forgiving, compared with the AIMD
scale, to false declarations that can occur due to network problems or overload in
the pullReceiver method. But on the other hand its reaction to detection is slow,
and an attacker will be discarded from the normal view only after several
detections. Another improvement that can be made is to give priority to
processes already declared as attackers, this way these processes would be
checked more often and their scale would be changed more aggressively.

• The detection algorithm and scales
Another option to improve the detection algorithm is by discarding more than a
single message. This way the scale can be modified by the percentage of
messages return by the checked process.

• Threshold
Obviously the thresholds can affect the performance of the SAH
implementation. According to the thresholds processes are discarded from and
added to the normal view. Future work must include several experiments on the
affects of the threshold on the SAH performances.

• Smart coordinated attack by two processes.
Two attackers, a and b, that coordinate their attack can overcome our detection
algorithm and influence the Drum/SAH performance. This attack is possible if
both attackers are sources and create their own, bogus, messages. The processes
update each other on the new messages created locally. In addition both of the
processes do not cooperate during the other push and pull operation triggered by
normal processes, that is to say, they discard messages created by other
processes. However, they do respond to pull-request, and can even initiate push-
offers. This way both of the attackers hold the messages created locally and the
messages of the second attacker. When a wants to increase b's credit in the scale
of a correct processes, p, it forwards b's digest to p. p, in turn, will perform a
"check" on a, and receive a response which is correct. This kind of attack needs
further investigation.

• TTL
An option to attack the system using the new feature of minAcceptableSerial is
by using this parameter and adjusting it in the attacker’s digest to show that all
messages were deleted from the buffer. A countermeasure is to implement the
use of TTL, counting the rounds passed since the message was created, this way
an attacker won’t be able to use the minAcceptableSerial and impersonate as a
normal process. This method must be investigated in the future.

Experiments
The main goal of the analysis is to check the impact of various network parameters and
processes' parameters.
The experiment parameters that can affect the operation of the algorithm include the
total number of processes, the ratio between the number of attackers and the total
number of processes and the influence of our suggested algorithm parameters such as
thresholds and the decision algorithm. In addition, the packet loss rate of the network is

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

an important parameter that can affect not only the communication between processes
but can also make the distinguishing between attackers to other normal processes
harder.
Using specific fixed network architecture we will first evaluate how these parameters
affect the performance of the non-modified algorithm (Drum) then we will compare the
results to our suggested algorithm.
Using the results of this comparison we will be able to evaluate the impact of the
parameters on our suggested algorithm and continue the tests on several modified
versions of the algorithm.

Emulation Results
To measure the performance of our algorithm we used the Emulab TestBed [3].
We performed all our experiments using the following parameters and conditions
(unless otherwise noted):

• All links are error-free links (0ε =)
• The push fanout is 3
• Practically, there is no bound on the number of messages that a process sends

another process in a push or a pull operation.
• The number of rounds between consecutive messages is 5
• The length of the simulation is 1000 rounds (200 messages for each source)

In all experiments where the SAH mechanism was active, the following parameters
were used:

• The initiating process forwards the digest to only 1 other process (1R =)
• The number of accepted snitch message at each process is 1
• Snitching is performed every round
• The number of digests sent is 1

The snitching mechanism is used by the "checking" process to gather information it
does not have from the process it is checking. Therefore, performing a "check" on a
process is somewhat identical to performing a pull operation. To compare the
performance of a system with attackers using the SAH algorithm and the same system
without using the SAH, we used the following parameters:

• When using the SAH mechanism, the fanout of the pull operation is 2
• When the experiment did not include activating the SAH mechanism, the fanout

is 3
To verify that, indeed, the comparison between a system with a pull fanout of 3 is
identical to a similar system with the SAH activated, and a pull fanout of 2, we
performed some experiments to compare the two configurations. The following graph
shows the average number of processes that received a message vs. the number of
rounds from the creation of the message. In this graph, a single source was used.
Experiments with different number of sources and different number of processes show
the same results, and are presented in Annex A.

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Comparing Fanouts

Round Number

A
ve

ra
ge

 N
um

be
r

of
 R

ec
ei

ve
rs

SAH with pull FO = 2
DRUM with pull FO = 3

Figure 2 - Fanout Comparison

We can conclude from the above comparison, and the graphs that are presented in
Annex A, that we are performing a fair comparison using the above fanout
configuration, regardless of the number of processes and number of sources in the
experiment. However, this conclusion is only viable when there are no attackers in the
system. The effect of the SAH mechanism on the information propagation rate when
there are attackers in the system is investigated in the section describing the silent attack
effect.
When there are no attackers in the system, all the processes participate in the snitching
mechanism. This means that every process sends a digest of some other process (chosen
randomly and uniformly) to one process, chosen randomly and uniformly from the set
of participating processes. If each process received all the digests and performed checks
upon receiving each of them, the average number of "checks" that would be performed
by each process would be 1. Since each "check" is the same as performing a pull-
operation, we get that the performance of a system with a pull fanout of 3 closely
resembles the performance of the same system with a pull fanout of 2 but with the SAH
mechanism active.
The graph is only slightly lower when using the SAH mechanism, since the average
number of "checks" that each process performs in each round is slightly less than 1.
This is due to the fact that the number of "checks" that a process performs in each round
is bounded by 1. Since there is a probability that no snitch message will reach a given
process in a given round, the average must be lower than 1. Another reason is that the
received digest ("snitch") is the digest of a process that was chosen to be polled in the
pull-operation in the same round. In that case, no new information is available to the
checking process.

Silent Attack Effect
To inspect the effect of silent attackers on a system we performed several experiments
with different number of sources. The results of the experiments with a single source are
presented in Figure 3.

Drum/SAH – Drum with Silent Attack Hindering �
� �

��

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80
Silent Attack Effect - 80 Correct Processes

Round Number

N
um

be
r

of
 C

or
re

ct
 R

ec
ei

ve
rs

 (
A

ve
ra

ge
)

No attackers
20 attackers

0 1 2 3 4 5

5

10

15

20

25

30

35

40

45

50
Silent Attack Effect - 50 Correct Processes

Round Number

N
um

be
r

of
 C

or
re

ct
 R

ec
ei

ve
rs

 (
A

ve
ra

ge
)

No attackers
50 attackers

Figure 3 - Silent Attack Effect

The results of the experiments with 20 and 50 sources appear in Annex A.
It is clear that the effect of a small percentage of attacking processes is negligible. Even
when 20% of the total number of processes are silent attackers, only a mild effect can be
noticed. When this number increases to 50%, the effect is clearly evident. Experiments
with different number of sources show the same results.

The following graphs show the same effect but with a different total number of
processes. The results are normalized to the total number of processes.

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Silent Attack Effect - 20% Attackers

Round Number

P
re

ce
nt

ag
e

of
 C

or
re

ct
 R

ec
ei

ve
rs

 (
A

ve
ra

ge
)

No Attackers - 80 procs
20/100 Attackers
No Attackers - 40 procs
10/50 Attackers

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100
Silent Attack Effect - 50% Attackers

Round Number

P
re

ce
nt

ag
e

of
 C

or
re

ct
 R

ec
ei

ve
rs

 (
A

ve
ra

ge
)

No Attackers - 50 procs
50/100 attackers
No Attackers - 25 procs
25/50 Attackers

Figure 4 - Silent Attack Effect with 100 and 50 Processes

To inspect the effect of the silent attack on information propagation when the SAH
mechanism is active, but while no attackers are suspected, we ran experiments with
thresholds set to 0. During the experiment the counter associated with each suspected
processes do not reach 0, so none of the attacking processes are actually declared as
such. Figure 5 shows the information propagation rate with 20 and 50 attackers, when
the SAH is active, but with thresholds set so that it is ineffective.

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

0 1 2 3 4 5

5

10

15

20

25

30

35

40

45

50

Information Propagation - 50 Attackers

Number of Rounds

A
ve

ra
ge

 N
um

be
r

of
 R

ec
ei

vi
ng

 P
ro

ce
ss

es

No attackers
w/o Snitch
Snitch w/Low TH

0 1 2 3 4 5

10

20

30

40

50

60

70

80
Information Propagation - 20 Attackers

Number of Rounds

A
ve

ra
ge

 N
um

be
r

of
 R

ec
ei

vi
ng

 P
ro

ce
ss

es

No attackers
w/o Snitch
Snitch w/Low TH

Figure 5 - Silent Attack Effect with SAH enabled

As seen in the above graphs, the performance of a system with the SAH mechanism
active is slightly poorer than the performance of a system with no snitching. This stems
from the fact that the comparison is made using different values of pull fanouts. In the
system with no snitching, the pull fanout is 3, while the other system uses a pull fanout
of 2. The results do not follow those presented in Figure 2, Figure 12, Figure 13 and
Figure 14 since the attacking processes do not participate in the SAH mechanism. For
the case of a system with 50 attackers, this means that only 50 processes send digests.
Each of those processes sends one digest ("snitches") to one other process chosen
randomly from the list of unsuspected processes. In this experiment none of the
processes is suspected, so the digest is sent to one of the processes in the system. On
average, this means that each process receives 0.5 digests ("snitches") every round. The
outcome of this analysis is that the effective pull fanout when the SAH is active is about
2.5, which is lower than the pull fanout of the same system without the SAH, resulting
in poorer performance.

Detection Rate
Figure 6 depicts the detection rate of the SAH mechanism. The graph shows the average
percentage of attackers detected vs. the round number of the experiment. The average is
over the correct processes, and the experiment begins with all the processes initialized
with a counter value of 50.

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100
Detection Rate

Round Number

P
re

ce
nt

ag
e

of
 D

et
ec

te
d

A
tt

ac
ke

rs
 (

A
ve

ra
ge

)

20 attackers
50 attackers

Figure 6 - Detection Rate

Similar graphs were produced with different number of sources. They are presented in
Annex A. All show that the number of sources does not influence the rate at which
attackers are identified.

We also investigated the influence of the total number of processes on the behavior of
our failure detector. The following figure demonstrates the results:

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100
Detection Rate - Different Number of Processes

Round Number

P
re

ce
nt

ag
e

of
 D

et
ec

te
d

A
tt

ac
ke

rs
 (

A
ve

ra
ge

)

20/100 Attackers
50/100 Attackers
10/50 Attackers
25/50 Attackers

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

40

45

50
Detection Rate - Different Number of Processes

Round Number

N
um

be
r

of
 D

et
ec

te
d

A
tt

ac
ke

rs
 (

A
ve

ra
ge

)

20/100 Attackers
50/100 Attackers
10/50 Attackers
25/50 Attackers

Figure 7 - Detection Rate with Different Number of Processes

As can be seen, when the total number of processes is lower, the rate at which attackers
are detected is higher. We can see that the percentage of attackers is not the only
parameter that influences the detection rate. Actually, looking at graph that depicts the
number of detected attackers, rather than the graph that depicts the percentage of
detected attackers, we can see that more attackers are detected in the beginning of the
experiment in a system with a smaller number of processes when compared with a

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

system with the same percentage of attackers, but twice as many processes. To explain
this phenomenon, a more precise analysis should be made.

The graphs do not reach the maximum detection of 100% for the following reasons: In
the experiment with 100 total processes, the experiment's duration was not enough to
reach the maximum average number of detected attackers. In the experiments with a
total of 50 processes, the maximum average number of detected attackers is limited,
since the source cannot detect any attackers. This is because the source cannot send a
modified digest to a suspected process without the other processes identifying the
modified digest (it cannot omit its own message). For that reason, the maximum average
number of detected attackers in experiments with a single source is given by the
following formula:

#Correct Processes -1

#Attackers
#Correct Processes

⋅

In the above experiments this number is presented in the following table:

Total number
of processes

Number of
Attackers

Max. average % of
detected attackers

Max. average
number of detected

attackers
50 10 97.5% 9.75

50 25 96% 24

100 20 98.75% 19.75

100 50 98% 49

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

The influence of transmission errors was investigated only when a single source is used
and the total number of processes is 100.

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100
Detection Rate - Different Error Rate

Round Number

P
re

ce
nt

ag
e

of
 D

et
ec

te
d

A
tt

ac
ke

rs
 (

A
ve

ra
ge

)

20 Attackers
50 Attackers
20 Attackers, BER 0.01
50 Attackers, BER 0.01
20 Attackers, BER 0.05
50 Attackers, BER 0.05

Figure 8 - Detection Rate vs. BER

The results show that the effect of reasonable error rates on the detection rate is
minimal. We also notice that as the error rate increases, the percentage of detected
attackers in each round is somewhat decreased. This is the results of lost "snitches". If
"snitches" were not lost, the detection rate would be the same as the detection rate in a
system with no errors.

False Detection
Several experiments were performed to investigate the false detection of the failure
detector. The following graphs show the results of the experiments with different BER
and different number of attackers. The total number of processes in the experiments is
100.

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4
False Detection - Different Error Rate

Round Number

N
um

be
r

of
 F

al
se

ly
 D

et
ec

te
d

C
or

re
ct

 P
ro

ce
ss

es
 (

A
ve

ra
ge

)

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
False Detection - Different Error Rate

Round Number

P
re

ce
nt

ag
e

of
 F

al
se

ly
 D

et
ec

te
d

C
or

re
ct

 P
ro

ce
ss

es
 (

A
ve

ra
ge

)

20 Attack
50 Attack
20 Attack, BER 0.01
50 Attack, BER 0.01
20 Attack, BER 0.05
50 Attack, BER 0.05

Figure 9 - False Detection with BERs

The number of correct processes falsely suspected of being silent attackers is bigger
when the BER increases, which is to be expected. We also see that the number of
processes falsely detected is bigger when the number of attackers is smaller. There are
two things that contribute to this behavior. First, when there are fewer attackers, there
are more correct processes that are checked by the SAH mechanism. Assuming that the
probability of falsely detecting any process is identical, this results in a higher average.
Second, when there are more correct processes, there is a higher rate of "checks" that
are performed in the system. This also contributes to the higher average.
We see that for all cases investigated, the average number of correct processes, even
when the BER is 0.05, stays under the reasonable value of 1.2

Failure Detector Performance
The following graphs depict the information propagation rate when the failure detector
is active and compare it with the performance of a system without a failure detector.
The information propagation is also compare to an ideal system, in which only the
correct processes exist.
The information propagation is sampled 3 times during the simulation: at the start of the
simulation, where the failure detector still does not affect the performance, at the middle
of the experiment and at the end of it. The graphs shown are averages of 50 messages at
the beginning, middle and end of the experiment.
Figure 10 shows the outcome of running an experiment with 50 attackers.

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

5

10

15

20

25

30

35

40

45

50

Information Propagation - 50 Attackers

Number of Rounds

A
ve

ra
ge

 N
um

be
r

of
 C

or
re

ct
 R

ec
ei

vi
ng

 P
ro

ce
ss

es

No attackers
No Snitch
Snitch w/Low TH
Start
Middle
End

Figure 10 - 50 Attackers, 50 Correct Processes

As can be seen above, the information propagation rate is improved as the experiment
advances. At the beginning of the experiment, the rate is identical to the experiment
with a low threshold for detecting an attacker. This is expected, since at the beginning
of the experiment no attacker, or a very small number of attackers, is detected. We can
see that the performance at the end of the experiment is improved. However, the
performance is not identical to the performance of a system with 50 correct processes
and no attackers. This is also expected, as the push mechanism is not affected by the
SAH mechanism. In addition, on average, half of the "check" operations are performed
on attackers, which do not contribute to the propagation of information in the system.
Figure 11 depicts the results when running the experiment with 20 attackers.

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

Information Propagation - 20 Attackers

Number of Rounds

A
ve

ra
ge

 N
um

be
r

of
 C

or
re

ct
 R

ec
ei

vi
ng

 P
ro

ce
ss

es

No attackers
No Snitch
Snitch w/Low TH
Start
Middle
End

Figure 11 - 20 Attackers, 80 Correct Processes

Further Improvements
In Drum/SAH we have implemented new detectors for gossip based protocol. These
detectors will find both dead processes (processes that do not function at all) and
silent attackers, which smartly exhaust the system resources by misleading normal
processes and keeping its attacks stealth. We analyzed Drum/SAH performances
and saw the differences between Drum with no snitching mechanism and
Drum/SAH. Although Drum/SAH improves the system performances the snitch and
detection mechanisms can be extended to support detection of more intelligent silent
attacks. We will conclude with several improvements issues:
• Different Thresholds

Examining the effect of the thresholds is important and explained in the
implementation section. Further tests and analysis will help to understand the
best way to adjust these parameters to a gossip based system.

• Scale function
In our implementation we used a simple linear scale function. Other scale
functions such as exponential functions or hybrid functions such as AIMD
should be implemented and analyzed.

• Improvements and adjustments to the detection mechanism
As explained in the implementation sections there are many ways to improve the
performance of the detection mechanism which will result in a better overall
system performance. Several ways to do that are: improving the digest
adjustment function to discard several messages; adjusting the scale according to
the cooperation of the checked process; implementing a priority mechanism for
snitching on known attackers.

• Different attacker strategies

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

An important issue that must be further investigated is the ability of the
implemented detection mechanism to detect other attacks, not tested in our
work, and extend the detection mechanism to support the detection of the attacks
that are invisible to the implemented detector.

• Crash failure performance and effects
The performance of the crash failure detector should be investigated.

• Dynamically change the number of pull Fanout
As seen in the experiments we performed, when there are attackers in the
system, the performance of a system with a pull fanout of 3 is not identical to a
system with SAH mechanism and a pull fanout of 2, since the average number
of snitches per correct processes is less than 1. An improvement to our algorithm
could be to change the pull fanout dynamically, to accommodate the "missing"
pull-requests.

Conclusions and Summary
In our work we measured the effect of silent attack under various circumstances. We
saw that the effect of silent attacks on Drum protocol is minor unless the percentage of
the attacker is relatively high. In those cases we show that implementing our algorithm
for detecting silent attackers indeed improves the message propagation latency over
time. Future work on the subject might include implementing the improvements we
suggest in this paper, and further experiment with systems whose properties change
over time. As an example, one might consider a system with 20 attackers for the first
hour of operation and 50 attackers for the second hour.

References
1. P. Eugster, S. Handurukande, R. Guerraoui, A. M. Kermarrec, and P. Kouznetsov

"Lightweight probabilistic broadcast". In Proceedings of The International
Conference on Dependable Systems and Networks (DSN 2001), July 2001.

2. G. Badishi, I.Keidar and A.Sasson, "Exposing and eliminating vulnerabilities to
denial of service attacks in secure gossip-based multicast", submitted for
publication.

3. B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,
C. Barb, and A. Joglekar, "An Integrated Experimental Environment for Distributed
Systems and Networks", appeared at OSDI 2002, December 2002	

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

Annex A

Fanout Comparison
The following graphs show the comparison between the information dissemination rates
of the two pull fanouts (2 with the failure detector active, and 3 when it is not) used in
the simulations:

0 1 2 3 4 5

10

20

30

40

50

60

70

80
Comparing Fanouts - 80 Processes, 1 Source

Round Number

A
ve

ra
ge

 N
um

be
r

of
 R

ec
ei

ve
rs

SAH with pull FO = 2
DRUM with pull FO = 3

0 1 2 3 4 5

5

10

15

20

25

30

35

40

45

50
Comparing Fanouts - 50 Processes, 1 Source

Round Number
A

ve
ra

ge
 N

um
be

r
of

 R
ec

ei
ve

rs

SAH with pull FO = 2
DRUM with pull FO = 3

Figure 12 - Comparing Fanouts with a Single Source

Figure 12 and Figure 2, presented above in page 17, cover all the experiments we ran
using a single source, with different number of processes in the experiment. Figure 13
depicts the results when there are 20 sources in the system.

0 1 2 3 4 5

20

40

60

80

100
Comparing Fanouts - 100 Processes, 20 Source

Round Number

A
ve

ra
ge

 N
um

be
r

of
 R

ec
ei

ve
rs

SAH with pull FO = 2
DRUM with pull FO = 3

0 1 2 3 4 5

10

20

30

40

50

60

70

80
Comparing Fanouts - 80 Processes, 20 Source

Round Number

A
ve

ra
ge

 N
um

be
r

of
 R

ec
ei

ve
rs

SAH with pull FO = 2
DRUM with pull FO = 3

0 1 2 3 4 5

10

20

30

40

50
Comparing Fanouts - 50 Processes, 20 Source

Round Number

A
ve

ra
ge

 N
um

be
r

of
 R

ec
ei

ve
rs

SAH with pull FO = 2
DRUM with pull FO = 3

Figure 13 - Comparing Fanouts using 20 sources

The same results can be observed when 50 sources are used:

Drum/SAH – Drum with Silent Attack Hindering �
� �

��

0 1 2 3 4 5

20

40

60

80

100
Comparing Fanouts - 100 Processes, 50 Source

Round Number

A
ve

ra
ge

 N
um

be
r

of
 R

ec
ei

ve
rs

SAH with pull FO = 2
DRUM with pull FO = 3

0 1 2 3 4 5

10

20

30

40

50

60

70

80
Comparing Fanouts - 80 Processes, 50 Source

Round Number

A
ve

ra
ge

 N
um

be
r

of
 R

ec
ei

ve
rs

SAH with pull FO = 2
DRUM with pull FO = 3

0 1 2 3 4 5

10

20

30

40

50
Comparing Fanouts - 50 Processes, 50 Source

Round Number

A
ve

ra
ge

 N
um

be
r

of
 R

ec
ei

ve
rs

SAH with pull FO = 2
DRUM with pull FO = 3

Figure 14 - Comparing Fanouts using 50 sources

Silent Attack Effect
The following graphs display the effect of the silent attack on the information
dissemination rate. Several experiments were run with 20 and 50 attackers and with 20
and 50 sources. In all the experiments, the total number of processes is 100. This
includes the attacking processes as well as the correct processes.

0 1 2 3 4 5

10

20

30

40

50

60

70

80
Silent Attack Effect - 80 Correct Processes, 20 Sources

Round Number

N
um

be
r

of
 C

or
re

ct
 R

ec
ei

ve
rs

 (
A

ve
ra

ge
)

No attackers
20 attackers

0 1 2 3 4 5

10

20

30

40

50
Silent Attack Effect - 50 Correct Processes, 20 Sources

Round Number

N
um

be
r

of
 C

or
re

ct
 R

ec
ei

ve
rs

 (
A

ve
ra

ge
)

No attackers
50 attackers

0 1 2 3 4 5

10

20

30

40

50

60

70

80
Silent Attack Effect - 80 Correct Processes, 50 Sources

Round Number

N
um

be
r

of
 C

or
re

ct
 R

ec
ei

ve
rs

 (
A

ve
ra

ge
)

No attackers
20 attackers

0 1 2 3 4 5

10

20

30

40

50
Silent Attack Effect - 50 Correct Processes, 50 Sources

Round Number

N
um

be
r

of
 C

or
re

ct
 R

ec
ei

ve
rs

 (
A

ve
ra

ge
)

No attackers
50 attackers

Detection Rate
Figure 15 presents the results of the experiment run with 20 and 50 sources. The total
number of processes in all experiments is 100.

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100
Detection Rate - Different Sources

Round Number

P
re

ce
nt

ag
e

of
 D

et
ec

te
d

A
tt

ac
ke

rs
 (

A
ve

ra
ge

)

20 attackers, 20 Srcs
50 attackers, 20 Srcs
20 attackers, 50 Srcs
50 attackers, 50 Srcs

Figure 15 - Detection Rate with 20 and 50 Sources

Drum/SAH – Drum with Silent Attack Hindering ��� �

��

Annex B
The results with a different number of processes (50 instead of 100), produced false
detection figures that were too small to analyze. The maximum average number of
processes detected was 0.1, in an experiment with a total of 50 processes, 10 of which
were silent attackers.

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
False Detection - Different Sources

Round Number

N
um

be
r

of
 F

al
se

ly
 D

et
ec

te
d

C
or

re
ct

 P
ro

ce
ss

es
 (

A
ve

ra
ge

)

20 attackers, 20 Srcs
50 attackers, 20 Srcs
20 attackers, 50 Srcs
50 attackers, 50 Srcs

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

3.5

4
False Detection - Different Sources

Round Number

P
re

ce
nt

ag
e

of
 F

al
se

ly
 D

et
ec

te
d

C
or

re
ct

 P
ro

ce
ss

es
 (

A
ve

ra
ge

)

20 attackers, 20 Srcs
50 attackers, 20 Srcs
20 attackers, 50 Srcs
50 attackers, 50 Srcs

Figure 16 - False Detection with Different Number of Sources

As can be seen from the above graphs - the false detection is higher when the number of
sources increases.

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

0.25
False Detection - Different Number of Processes

Round Number

P
re

ce
nt

ag
e

of
 F

al
se

ly
 D

et
ec

te
d

C
or

re
ct

 P
ro

ce
ss

es
 (

A
ve

ra
ge

)

20/100 Attackers
50/100 Attackers
10/50 Attackers
25/50 Attackers

0 200 400 600 800 1000 1200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
False Detection - Different Number of Processes

Round Number

N
um

be
r

of
 F

al
se

ly
 D

et
ec

te
d

C
or

re
ct

 P
ro

ce
ss

es
 (

A
ve

ra
ge

)

20/100 Attackers
50/100 Attackers
10/50 Attackers
25/50 Attackers

