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Abstract—High-Performance Computing (HPC) Clusters and
Data Center Networks often rely on fat-tree topologies. However,
fat trees and their known variants are not designed for concurrent
small jobs. As a result, in recent years, HPC designers have
introduced ad-hoc topologies to offer better performance for these
concurrent small jobs.

In this paper, we present and formally define these topologies,
which we call Quasi Fat Trees (QFTs). Specifically, we formulate
the graph structure of these new topologies, and show that they
perform better for concurrent small jobs. Furthermore, we derive
a closed-form and fault-resilient contention-free routing algorithm
for all global shift permutations. This routing optimizes the run-
time of large computing jobs that utilize MPI collectives. Finally,
we verify the algorithm by running its implementation as an
OpenSM routing engine on various sizes of QFT topologies, and
show that it exhibits good performance.

I. INTRODUCTION

A. Outline

High Performance Computing (HPC) clusters are built to
conduct large-scale computations. While they used to be a scarce
resource, they have evolved to become a standard utility for
researchers and engineers. In the cloud era, HPC Clouds are
built to concurrently run many distributed jobs. They often rely
on a fat-tree topology (or some fat-tree variant), because of its
good path-diversity and scalability properties.

Traditionally, fat trees were designed to provide the best
performance for the most critical large jobs running on the
entire cluster. Furthermore, routing algorithms were written to
provide the optimal network performance to these jobs. As a
result, many past works deal with the problem of maximizing
the performance of a single job, and in particular attempt to
optimize the topology, routing, traffic patterns and communica-
tion algorithms - known as collectives. New interconnection net-
works, transports and protocols were invented for that end [1]–
[6].

However, in recent years, significant new problems have
emerged from the sharing of these clusters by multiple jobs.
Unfortunately, to our knowledge, no work in the literature on
fat trees has suggested a new topology to deal with many
concurrent small jobs. A few recent studies have considered
the extra runtime that multiple concurrent jobs impose on each
other due to network contention [7]. In particular, utilizing
different buffering resources to reduce this impact has been
proposed in [8]. However, fat-tree topology considerations have
surprisingly been absent from the literature.

On the other hand, to offer better performance for these con-
current small jobs, state-of-the-art HPC clusters and Data Center
Networks (DCNs) have increasingly adopted an emerging ad-
hoc fat-tree variant topology. It has become a dominant network
topology in the industry, yet has not yet been documented in
the literature and does not even have a formal name and general
definition. For instance, the National Center for Atmospheric
Research (NCAR) Yellowstone [9] and NCAP Tide [10] are two
clusters built in 2013 that rely on this topology. This topology
has a reduced effective network diameter for smaller jobs and
may also increase separation between jobs. Note that this benefit
is achieved without any increase in the number of cables or
switches.

Unfortunately, not only this new topology lacks a formal def-
inition, but more significantly, there are no known contention-
free routing algorithms for this topology. This is especially
significant in the cases where it carries the traffic of full-cluster-
size MPI (Message Passing Interface) collectives [11]. Hence,
while small concurrent jobs achieve better performance running
on this topology, the performance of single large jobs may be
degraded.

In this paper, we formally define this emerging fat-tree-like
topology, which we denote as Quasi Fat Tree (QFT). We also
formulate a closed-form contention-free routing for all global
shift permutations. Furthermore, we present a fault-tolerant
version of the routing algorithm, which can also extend to fat
trees. Finally, we show that QFT with contention-free routing for
global collectives outperforms other fat-tree topologies, because
it improves the performance for many small jobs, without
degrading the performance of a single large job.

B. Fat-tree topologies

The fat-tree topology is a well-defined graph structure that
was formulated in [12] and extended in [13]. The latter for-
mulation, denoted as fat tree in this paper, is more flexible to
describe topologies of more sizes, as it allows each level of the
tree to have a different number of connections to upper and
lower levels.

In order to reduce system cost, most fat-tree implementations
are built from many instances of the switch device that provides
the best cost/performance trade-off at the time of cluster im-
plementation. To reduce the number of switches, the topology
should also utilize all the available switch ports. Therefore,
the fat-tree formulation, which requires each switch port to
connect to a different switch, can only describe a single maximal
topology if all switches have the same number of ports. On the
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Fig. 1. Fat-tree, PGFT and QFT topologies with 64 hosts and 40 switches of
8 ports. (a) A non-maximal fat tree, thus leaving 2 unused ports in middle-
and lower-level switches (b) PGFT utilizing the free ports by adding parallel
links between the low and middle level switches; (c) QFT where the leaf
switches connect the unused ports to different switches. As a result, the size of
host groups that are within a 3-switch distance is doubled (as denoted by the
shadowed hosts).

contrary, as illustrated in Figure 1(a), in a non-maximal fat-tree
topology, some switches necessarily have unused ports.

To fully use all the switch ports in clusters that are smaller
than the maximum, it is possible to rely on a generalized
family of fat trees, called Parallel Ports Generalized Fat Trees
(PGFTs) [11]. While at most one link can connect two switches
in the original fat trees, multiple parallel links can connect a pair
of switches in PGFTs. As a result, PGFTs enable many possible
topologies of diverse sizes, and they are used in many HPC
cluster installations. Figure 1(b) illustrates a PGFT topology
with 64 hosts connected using 8-port switches. We can see how
each of the 16 bottom switches uses four ports to connect to
four hosts, and four ports to connect to two middle switches,
i.e. two parallel ports per middle switch.

QFT is a different modification of fat tree which connects
the extra links, available on non-maximal topologies, to as many
switches as possible. Intuitively, by branching out, QFT attempts
to maximize the number of hosts that can communicate at full
link bandwidth within a short distance (a formal definition
is given in Section III). Figure 1(c) shows an example of
QFT topology, given the same parameters as the above PGFT

Fig. 2. Number of hosts in a 3-hop group versus cluster size. While the PGFT
group size is proportional to the cluster size, the QFT group size depends only
on the number of ports in a switch.

topology. We can see how each of the 16 bottom switches now
connects to 4 middle-switches instead of 2. As a result, we
observe that in this QFT topology, the number of hosts that are
within 3 switches of a given host (denoted as its 3-hops group) is
twice the number in the PGFT topology, i.e., 16 versus 8 hosts.
In fact, unlike the fat tree, the QFT is not a graph that can be
represented as a collection of trees, because of the additional
connections.

Thus, QFT reduces the effective network diameter for
smaller jobs that fit within the 3-hops groups (which is a well-
known figure of merit for a network topology [14], [15]). For
real-world practical cluster sizes, the ratio of hosts in 3-hops
groups in QFT over PGFT is commonly 2x, but may be as
large as 6x when using 36-port switches, or even reach 12x for
48-port switches.

C. QFT Advantages

Before delving into the QFT formulation, let’s first build
some intuition for why cluster designers implement QFT when
dealing with many concurrent jobs.

The improved performance of QFT for many concurrent jobs
stems from the reduced effective job diameter and the reduced
probability of contention with traffic from other jobs. Figure 2
illustrates the number of hosts in 3-hops groups as a function
of the total cluster size for 3-level fat trees made of 36-port
switches. We can see how the QFT group size is independent
of the cluster size, and is at least double the PGFT 3-hops
group size for topologies that are smaller than the maximal
possible cluster using those switches. The PGFT group size
is proportional to the cluster size. Ideally, jobs that fit within
a single 3-hops group could be placed within such a network
partition, and their traffic only needs to traverse the links within
that sub-tree. However, job schedulers have to trade off between
contiguous job placement and cluster utilization. High cluster
utilization is known to fragment jobs into multiple contiguous
placement ranges [16].

Figure 3 compares the performance of PGFT and QFT. In
order to compare the job performance under a realistic job place-
ment, jobs are randomly placed on simulated QFT and PGFT
clusters of 4536 hosts. To simulate the effect of job-placement
fragmentation, the jobs are placed on multiple contiguous-host
ranges (fragments) of sizes that follow a normal distribution of
36 hosts on average, and a standard deviation of 10 (restricted
of course to positive sizes). The average job size is 300 hosts.
The jobs perform MPI collectives, thus a random set of shift-
permutation traffic is simulated (see the evaluation section for



Fig. 3. Simulation results showing latency vs. throughput curves, parameterized
by offered load, for PGFT and QFT. The simulated cluster has 4536 hosts and
runs 12 concurrent jobs. Jobs are placed in contiguous-placement fragments of
sizes distributed as a truncated Normal(36,10).

more details about the simulator). Figure 3 plots the latency-
versus-throughput curves of PGFT and QFT. Specifically, it
plots both the average-throughput/average-latency as well as the
max-latency/min-bandwidth curves; the former is important to
asynchronous and the latter to synchronous MPI communication
schemes. As can be observed in both cases, the QFT throughput
saturation value is higher.

D. Contention-free routing

While the above example shows why QFT can be efficient
for many concurrent jobs, QFT also needs to efficiently handle
a single large full-network job, like other fat-tree architectures.

Network contention is defined as the case where two or
more data flows are forwarded through the same network link.
Such network contention results in excessive network delays;
therefore, a network contention-less routing scheme significantly
reduces run-time for MPI applications [2]. Hence it is de-
sirable to avoid contention caused by MPI jobs traffic. Many
researchers have worked on optimizing the collective algorithms
and adapting them to the topology [3]–[6]. In particular, we are
interested in contention freedom for shift permutation patterns.
These shift traffic patterns are created by most MPI communi-
cation library APIs (known as collectives) and thus govern the
traffic of many HPC applications [11]. Other routing schemes,
which improve the network performance of random-permutation
traffic, were proposed by [17]. However, in these algorithms the
output port depends on both the source and the destination, thus
require routing-table resources that are much higher than those
required by destination-based routing.

A closed-form destination-based routing algorithm (where
the output port is defined by an algebraic function of the
destination) is already known in basic fat trees for switches with
a number of ports that is a power of two [18], [19], and for an
arbitrary number of ports [11]. This routing, known as d-mod-
k, carries shift permutations1 without any network contention.
With d-mod-k routing, a single large job can be run on the entire
cluster with absolutely zero network contention as long as its
traffic utilizes MPI collectives. However, since QFT breaks some
of the basic properties of fat trees, a different routing algorithm
is required for contention-free traffic.

1Of a specific set of job sizes

Note that a closed-form routing scheme has lower compu-
tational complexity compared to other routing algorithms that
require graph traversal (e.g. BFS [2] or DFS [1]). Moreover,
with a closed-form routing, the forwarding tables can be directly
computed in parallel. In this paper, we will look for a closed-
form contention-free routing for QFT.

The rest of the paper is organized as follows: The model
for the fat-tree topology is defined in Section II and for QFT
in Section III. QFT contention-free routing is presented in
Section IV and the fault resilient extension in Section V. Finally
QFT routing is evaluated in Section VI.

II. FAT-TREE FORMULATION AND PROPERTIES

To define a closed-form routing in a topology, we first need
to formally describe it and characterize its properties. This
section describes the well-known formulation and properties of
fat-tree topologies. They are then extended in the next section
to support QFT topologies as well.

There are several ways to define fat trees [20], [21].
It is useful to start with an extended generalized fat-tree
definition, which is simply denoted as fat tree in this pa-
per. As illustrated in Figure 1(a), we follow the notation
FT (h;m1,m2..,mh;w1, w2.., wh) of [13]. In this notation, h
represents the number of switch levels of the tree. Tree levels are
numbered from 0 at the bottom, where hosts are connected, to
h at the top. The ml coefficients define the number of children
a switch at level l has, and wl denote the number of parent-
switches a switch at level l − 1 has. For instance, w1 defines
the number of parents of each host.

As an example, in Figure 1(a), the topology is
FT (3; 4, 2, 8; 1, 2, 8). The sequence m1,m2,m3 = 4, 2, 8
represents the number of children each switch at levels 1, 2 and
3 has. Similarly the sequence w1, w2, w3 = 1, 2, 8 represents
the respective number of parents of the hosts, the switches at
level 1, and the switches at level 2.

Based on the above notation, the following properties of fat
trees were defined by [13]. The number of switches or hosts at
level l is: (

l∏
i=1

wi

)(
h∏

i=l+1

mi

)
(1)

We further denote each node S in the tree using the tuple
(ls, sh, ..., s2, s1). The tuple includes the tree level ls of the
node (i.e., switch or host), and a set of h digits sh, ..., s2, s1
that represent a multi-radix number [22] describing the relative
order of switches or hosts within that level. This number is also
termed the index of the node within its level.

Tuple meaning: For a switch at level l the digits sh, . . . , sl+1

represent the shortest path from the top of the tree to that node:

∀i ∈ {l + 1, . . . , h} : si ∈ {0, . . . ,mi − 1} (2)

The rest of the digits sl, ..., s1 represent the shortest path from
the bottom of the tree to that node.

∀i ∈ {1, . . . , l} : si ∈ {0, . . . , wi − 1} (3)

The index d of a host with tuple (0, sh, ..., s2, s1) is calcu-
lated as a multi-radix number; each digit represents a value that



Fig. 4. Tuple assignment of fat tree (for clarity, only half of the tree is
shown). The most significant digits are assigned by the top-to-bottom sub-tree
they belong to. These digits are bolded in the drawing. The least significant digits
(represented in gray) are assigned according to the bottom-to-top “flipped” trees.

equals the product of the radix of all previous digits:

d =
h∑

l=1

(
sl

l−1∏
i=1

mi

)
(4)

For example, consider the host tuples on the fat tree of
Figure 4. The radix (i.e., the number of different digits) is 2
for s1 (m1 = 2) and 2 for s2 (m2 = 2). Thus the index of the
host (0; 2, 0, 1) can be calculated as 1 + 0 · 2 + 2 · (2 · 2) = 9.

Tree construction: Based on the above notation a fat tree may
be constructed by first instantiating all the tree nodes, assigning
them unique tuples, and then connecting them according to
the following fat-tree connection rule: node S(ls, sh, ..., s2, s1)
connects via a bi-directional link to node Q(lq, qh, ..., q2, q1) iff:

ls = lq + 1 ∧ ∀i ∈ {1...h} : i 6= ls =⇒ si = qi (5)

This connection rule leads to some of the key properties of fat
trees:

Sub-Tree Rule: If two nodes are within the same sub-tree
of height h′ they must share the same h − h′ most significant
digits. This is true since the lth digit may change only on links
connecting level l to level l−1. This also means that considering
just the paths from top to bottom, the topology is a collection
of such trees (since no merging of branches is possible).

Flipped-Sub-Tree Rule: By “flipped”, we mean that we are
considering the fat tree from bottom to top. If two nodes are
within the same sub-tree, of height k they must share the same
k least significant digits. This also means that no merging of
the flipped-sub-trees is possible.

Level Orthogonality in Path Selection [23]: Consider a path
from one host to another. Then, for each level of the tree,
selecting the up-going port on a switch on the way up, defines
the up-port through which the path will go back down through
a switch on the same level.

III. QUASI FAT TREES

The QFT topology is defined by the notation
QFT (h;m1,m2...,mh;w1, w2..., wh; p1, p2..., ph). The h,
mi and wi have the same meaning as in a fat tree. The pi
represents the number of cross-connections, including both the
original cross-connections and those that were added to the

Fig. 5. The extension of switch object with its connected ports. wl+1pl+1

up-ports and mlpl down-ports connecting to upper and lower tree levels,
respectively.

fat tree. They connect switches of levels i and i − 1 that are
adjacent but belong to different sub-trees. The total number of
switches and hosts is exactly the same as in a fat tree, and thus
a similar construction procedure can be performed to create
and assign tuples to all nodes. The new connection rule defines
these extra pi connections.

While the above formulation supports multiple levels of
cross connections, all the known QFT clusters in the industry
are only cross-connected at the lowest level (i.e., p2 > 1 and
pi>2 = 1). This configuration is the one that maximizes the
3-hop host groups—the main motivation behind this topology.
As a result, in this paper, we assume for simplicity that the
QFT topologies have a single level l where pl > 1, and we also
require that wl+2 be divisible by pl. This condition is met by
all QFT topologies maintaining cross-bisectional bandwidth and
built from switches of the same number of ports.

In order to formulate a closed-form routing, i.e. a routing
where we can define a function F that provides an output port
as a function of the destination, we had to extend the tree
formulation with a new type of object: the port object. This
object enables us to define the exact port number that connects
a switch to its adjacent switch.

Figure 5 illustrates the switch ports. As can be observed,
there are mlpl down-ports, connecting the switch of level l to
switches at level l − 1. Similarly there are wl+1pl+1 up-ports,
connecting the switch of level l to switches at level l+ 1. We
can define the following new QFT connection rule: a switch
S = (l, sh, ..., s2, s1) down-port f connects to switch Q = (l−
1, qh, ..., q2, q1) up-port g iff:

(∀i ∈ {1, . . . , l − 1} ∪ {l + 2, . . . , h} : si = qi) ∧⌊
sl+1

pl

⌋
=
⌊
ql+1

pl

⌋
l < h

(∀i ∈ {1, . . . , h− 2} : si = qi) ∧⌊
sh−1

ph

⌋
=
⌊
qh−1

ph

⌋
l = h

(6)

The connected port numbers are set accordingly as:

f =

{
ql +ml (ql+1 mod pl) l < h

ql +ml (ql−1 mod pl) l = h
(7)

g =

{
sl + wl (sl+1 mod pl) l < h

sl + wl (sl−1 mod pl) l = h
(8)

Figure 6 illustrates the above connection rules. The em-
phasized connections are the new cross-connections. For this
example, p2 = 2, so there are 2 cross-connections.



Fig. 6. Example of QFT connection rule, given a subset of a QFT in levels 1
and 2(< h). The extra cross-connections that do not appear in the fat tree are
drawn using wider lines. For instance, there are p2 = 2 cross-connections from
level-2 switch to level-1 switches, in addition to the 2 regular connections.

IV. QFT ROUTING

We recognize the following algorithmic steps as the building
blocks for QFT closed-form routing:
(i) Descendant criteria: a predicate that allows to test if a
destination host is located within the sub-tree rooted by a
specific switch.
(ii) Up Routing: the formula by which an up-port is assigned to
a given non-descendant destination.
(iii) Down Routing: the formula by which a down-port is
assigned to a given descendant destination.

As QFT extends the connections of the fat tree, known
routing algorithms could also be used for it, but they would
fail to utilize the added connections in QFT, and thus would
suffer from contention among flows under full-permutation
traffic. Therefore, we need to present new closed-form routing
algorithms. In this section, we present these algorithms without
proofs, as the proofs are quite long. The detailed proofs and the
tuple assignment algorithm are presented in an online technical
report [24].

A. Descendant Criteria

We start by defining the following fat-tree descendant
criteria, which return true if for a given pair of nodes
Q(lq, qh, . . . , q2, q1) and S(ls, sh, . . . , s+2, s1), Q is a descen-
dant of S: (a) the level of S must be higher, (b) Q must be in
the sub-tree of S, and (c) S must be in the flipped-sub-tree of
Q. Formally, Q is a descendant of S iff:

(ls > lq) ∧ (9a)
(∀i ∈ {ls + 1, . . . , h} : si = qi) ∧ (9b)
(∀j ∈ {1, . . . , lq} : sj = qj) (9c)

Note that if Q is a host and S is a switch, the descendant criteria
in Equation (9) reduce to the second-line term.

In QFT, since we route from host to host, we now want
to define a QFT descendant criterion when the descendant is a
given host. In particular, consider a switch S(ls, sh, ..., s2, s1)
and a host Q(0, qh, ..., q2, q1). We find that the criterion is
very similar to that of fat tree, as provided in Equation (9),
except that we now need to take into account the number pls of
cross-connections of switch S at the level ls. Specifically, the
descendant criteria in QFT for hosts is that host Q is descendant
of switch S iff:

∀i ∈ {ls + 2..h} : si = qi ∧⌊
sls+1

pls

⌋
=

⌊
qls+1

pls

⌋
(10)

For example, in Figure 6, host 500 in level 1 is a descendant
of switch 410 of level 2, since ls = 2, p2 = 2 and

⌊
4
2

⌋
=
⌊
5
2

⌋
.

B. Routing Up

We now need to define the up-routing that is a switch-
specific function mapping each non-descendant destination to
one of the switch’s up-going ports. The up-routing function for
fat trees (and their parallel-ports flavor PGFT) has been defined
in [11]. It was proved to result in contention-free routing for
global shift permutations. That proof shows first that for fat
trees the set of destinations passing through a switch at level l
is an arithmetic sequence (wrapping up modulo the total number
of hosts) with a step of:

Rl =

l∏
i=1

wi (11)

It then shows that during a global-shift permutation, the set
of destinations passing through a switch is a contiguous sub-
range of that sequence and thus can be mapped using a modulo
operator to a disjoint set of up-ports.

In order to route without contention global-shift permutation
for QFT, we use a similar approach of spreading up-going traffic
through all the up-going ports.

We denote as lc (standing for cross connections) the first
level l where pl > 1. Below level lc − 1, QFT and fat tree
are identical and thus can use same routing. However, for the
level l = lc − 1 there are more up-going ports to choose
from (wlpl instead of wl). So the resulting set of destinations
passing through each switch in levels l ≤ lc makes an arithmetic
sequence of fixed step size of

R′l =

l∏
i=1

wipi
pi−2

(12)

Furthermore up-port g, routing for QFT levels l ≤ lc, is defined
as:

g =

⌊
d

R′l

⌋
mod (wl+1pl+1) (13)

At level l = lc + 1, one level above lc, flows that were
spread over all up-going ports two levels below (producing
arithmetic sequences) are now merged back to produce a set
of destinations that is not an arithmetic sequence, and therefore
cannot be routed by Equation (13) without contention. Based
on the QFT connection rule, there are exactly pl−1 such cross-
connections. Each such connection delivers destinations that
form an arithmetic sequence of distance R′l. The key for provid-
ing shift permutation traffic with no contention is to spread the
merged traffic, originating from the same switch 2 levels below,
to different up-ports. So the algorithm first calculates for each
destination the index u of the cross-connected parent that the
destination was routed through 2 levels below the merge level:

u =

⌊
d

R′
l−2

⌋
mod (wl−1pl−1)

wl−1
(14)



Intuitively, the division by wl−1 yields the index of the output
port within the pl−1 cross-connection groups.

At this stage, the up-port can be calculated by placing
the merged destinations on continuous ports (multiplying the⌊

d
R′

l−2

⌋
by pl−1), and sequencing them by the calculated u. So

the up-port routing for levels where pl−1 > 1 is:

g =

(⌊
d

R′l

⌋
pl−1 + u

)
mod (wl+1pl+1) (15)

We finally can establish our main result: Equation (15),
which is a generalization of Equation (13), provides a
contention-free routing.

Theorem 1. The up-going routing provided by Equation (15)
yields contention freedom for global shift permutations on
constant bi-sectional bandwidth QFT.

C. Routing Down

To our knowledge, the PGFT down-routing has not been
previously formally defined in the literature. Before we present
QFT down-routing, we first introduce a simple PGFT down-
routing formula, which we later extend for QFT.

Assume we want to send a packet from level l to level l−1 in
a PGFT. As consecutive destinations passing through a switch
are separated by Rl, and since they are located below ports
dl+jml, the down-port f for switch Q(l, qh, ..., q2, q1) to route
to a destination (0, dh, ..., d2, d1) can be given by:

f = dl +ml

(⌊
d

Rl

⌋
mod pl

)
(16)

In QFT, a special care should be given to the level where
different cross-connections are merged, i.e., where pl−1 > 1.
Only at this level a switch may have more than one path, through
different switches, towards its descendants. So the question is
how to spread these destinations over the multiple paths? We
use the following idea: Since shift permutation flows are spread
by the up-routing with no contention on the way up, sending
the down-going traffic through the same switches they traverse
on the way up guarantees no contention on the way down. Note
that we calculated in Equation (14) the index u that the flows to
destination d use within the cross-connected parents. Since the
down-ports connecting to cross-connected lower-level switches
are contiguous, the down-port should be the first port of that
group plus u:

f =

⌊
dl

pl−1

⌋
pl−1 + u (17)

Furthermore, the down-routing for levels that are not merge
levels simply follows the QFT connection rule of Equations (9)
and (10), which defines the port number connecting towards a
destination:

f =


dl 1 = pl
dl +ml (dl−1 mod pl) 1 < pl ∩ l = h

dl +ml (dl+1 mod pl) 1 < pl ∩ l < h

(18)

Therefore, we obtain the following result, which establishes
that our down-routing is contention-free as well. Together with

Theorem 1, we obtain that we have a contention-free up- and
down-routing.

Theorem 2. Equation (18) yields a contention-free down-
routing for all full shift permutations on constant bi-sectional
bandwidth.

Corollary 3. Equations (10), (15) and (18) form a closed-form,
contention-free routing for constant bi-sectional bandwidth QFT
for all full shift permutations.

V. FAULT-TOLERANT ROUTING

We have provided formula-based routing algorithms for
QFT. While these formulas are fast and efficient when the
topology is complete, they can quickly break down when some
links or switches are missing from the network. Indeed, there
is no way to provide contention freedom for full permuta-
tions if some links are lost and the network does not meet
the rearrangeable-non-blocking condition anymore. However,
a good routing engine should still preserve connectivity and
provide rudimentary load-balancing. Hence, the goal of this
section is to offer a fast algorithm to deal with link failures
in QFT. Note that to our knowledge, even in fat trees, there
are no such algorithms today. So we also offer the first such
algorithm for fat trees.

Our algorithm is based on the new idea that faults impact
only the relevant switches at the specific level, thus making
a novel use of the property of level-orthogonality in path
selection, which was presented at the end of Section II. Note
that [19] describes a framework for dealing with fault-tolerance
in simple k-ary n-trees. However, it does not deal with non-
maximal trees such as QFT. Furthermore, that paper describes a
specific hardware implementation instead of providing a general
algorithm.

A. Fat-Tree Fault-Tolerant Routing

We start by providing a fat-tree algorithm, and later extend
it to QFTs. In a fat tree, consider a missing link between switch
S at level l and switch Q at level l − 1. We denote this link
as (l, sh, ..., s2, s1, f) ⇔ (l − 1, qh, ..., q2, q1, g). Based on the
level-orthogonality property, it is required to redirect all flows
going up on port g and program all other switches on level
l − 1 that may be forwarding traffic through the missing link.
Although the above idea could yield an algorithm that treats
each failure separately, it is actually required to first calculate
and maintain the list of unavailable up-ports for each switch.
This is required to avoid migrating traffic to an unavailable link.
(We present the full algorithm details in [24].)

B. QFT Fault-Tolerant Routing

QFTs extend fat trees with some extra links. This means
that the fault-tolerant routing algorithm of fat trees is sufficient
to recover routing in QFT, and therefore we could stop here.
However, the additional cross-connections of QFT also provide
an opportunity (not available for fat trees) to route around a
missing down-link fault. The fault-tolerant routing for QFT is
presented in Algorithm 1. The main deviation from the fat-tree
algorithm is the section dealing with levels where multiple paths
to descendants are provided by the cross-connections.



Fig. 7. A QFT sub-graph around a failing link between switches S and Q. Most
of the tuple digits are related by the connection rule. So an alternate switch T
can be found given the remaining available ports on the destination switch Q.

Algorithm 1 QFT fault-tolerant routing
Get2LevelsDownDescendantSwitch(R,d)
find the switch Q by the following tuple:

(l , dh, ..dl−1, rl−2, ..r1) when l = lr

ReRouteQFTOnFaults()
collect missing up-ports on each switch into port-mask
for each source switch R in level l and destination d
if d is a QFT descendant of R
if pl−1 > 1 (R is on a merge level)

Q = Get2LevelsDownDescendantSwitch(R,d)
Qmask = MissingPortMask(Q)
Rmask = TranslateLowerMask(Qmask)
select an existing port out of Rmask

else
nothing can be done, no alternate paths down

else
if (pl+1 = 1 or

destination is child to same l + 1 parent)
Q = SameLevelAccessibleBySParentOfD(R,d)
N-port-mask = Q-port-mask & R-port-mask

else
N-port-mask = R-port-mask

select a random port of N-port-mask

Figure 7 illustrates the use of alternate paths in a given sub-
graph of QFT. To resolve faults by utilizing alternate paths on a
merge level l+1, Algorithm 1 relies on obtaining the switch at
level l−1 that is on the way to the destination (using the function
Get2LevelsDownDescendantSwitch of Algorithm 1). The figure
shows a missing link and one of its alternate links. As can be
observed, most of the tuple digits of the involved switches are
inter-related by the QFT connection rule. Since the destination
d is a descendant of Q, the QFT descendant criterion applies.
Moreover, since Q is below the level with cross-connections,
the criterion just requires all digits of Q above level l to be
identical to those of d. As described in Figure 7, the relations
between R and Q show that the lower digits of Q are the same
as those of R. Therefore:

Q = dh, ..., dlr−1, rlr−2, ...r1 (19)

VI. EVALUATION

We now want to evaluate the correctness and performance of
our suggested algorithms. To do so, we encode the QFT (as well
as PGFT) algorithms described in this paper in a new routing
engine named pqft, in the de-facto standard InfiniBand subnet
manager OpenSM. In InfiniBand networks, the subnet manager
is somewhat similar to an SDN (Software-Defined Networking)
controller, and is in charge of configuring the forwarding tables
on all network switches.

TABLE I. ROUTING ALGORITHMS RUNTIME

Topology Routing (sec)
Definition Hosts ftree qft
PGFT(3;18,9,36;1,9,18;1,2,1) 5832 4 1
QFT(3;18,9,36;1,9,18;1,2,1) 5832 NA 1
PGFT(4;18,3,18,36;1,3,18,18;1,6,1,1) 34992 478 18
QFT(4;18,3,18,36;1,3,18,18;1,6,1,1) 34992 NA 17

Correctness: We start by testing the correctness of the
implementation on many different 3- and 4-level PGFT and QFT
topologies. Given a single job spanning the entire network, our
tests verify that without faults, there is no contention for all shift
permutations. In addition, we later remove links and switches
to test fault-tolerance. Again, we verify that the connectivity
between all hosts is maintained by the routing engine. We have
run this verification on 20 different sizes of 3- and 4-level QFTs
with cluster sizes from 32 nodes to 11664 nodes.

Runtime: Next, we evaluate the complexity of our routing
algorithms. Specifically, we compare the runtime of the exist-
ing ftree [2] algorithm to our new algorithm implementation,
denoted pqft. Table 1 illustrates the results for two cluster
sizes, both for PGFT and QFT. We can see that our algorithm
implementation runs faster.

Performance: We further compare the different rout-
ing algorithms by inspecting the latency-versus-throughput
curves, which are drawn by changing the offered load from
each host. We perform this comparison by simulating a
QFT (3; 18, 9, 28; 1, 9, 18; 1, 2, 1) of 4536 hosts. The simulation
platform is an OMNeT++ [25] based flit-level model of Infini-
Band networks, including credit propagation times and switch-
ing based on virtual-output-queues [26]. This publicly-available
simulation model was already used for example in [11], [27],
[28]. Two types of traffic patterns are evaluated: a random
sequence of shift permutation patterns, and a uniform-random
destination. These traffic patterns were generated to represent
the two different cluster usage models: a single job spanning the
entire cluster, or multiple jobs randomly placed (in contiguous
fragments). The compared routing algorithms are those available
in OpenSM: ftree, updn + scatter, and our new qft. The
ftree algorithm follows [11], which fails to avoid congestion
for the global shift traffic over the QFT. The updn [29] routing
applies strict up down turn limitation rules and avoids traffic-
polarization effects by applying port-ordering randomization.
The simulation uses a switch model utilizing 50KB of input
buffer per port, an ability to concurrently send 3 packets from
each input port, and an output arbitration model that is similar
to iSLIP [30] (with a single match per device clock cycle).

Figure 8 depicts the results for the single job case. As can
be seen, the throughput saturates first for the updn algorithm
at 2620MB/s, then for the ftree at 4400MB/s. Note how due to
the lossless-network congestion spread, the average throughput
is reduced as the network reaches saturation. The full bandwidth
of 5.6GB/s is maintained by our new algorithm.

Figure 9 illustrates the performance of these three routing
algorithms for many concurrent jobs, by applying a random-
destination traffic pattern. As can be observed, both the ftree
and qft algorithms reach the same saturation throughput of
2740MB/s, with a slightly smaller latency at that point for
ftree. Therefore, our evaluation shows that the new qft algo-
rithm results in superior performance for the single job running



Fig. 8. Latency-versus-Throughput curve for a single job executing random
shift permutations on a QFT of 4536 hosts with 56Gbps InfiniBand links.
The routing algorithms updn + scatter, ftree and qft show saturation at
2620MB/s, 4400MB/s, and the full link bandwidth 5700MB/s respectively.

Fig. 9. Latency-versus-Throughput curve for multiple jobs placed randomly
on a QFT of 4536 hosts with 56Gbps InfiniBand links. The routing algorithms
updn+ scatter, ftree and qft show saturation at 2480MB/s, 2740MB/s and
2740MB/s respectively.

MPI collectives, and comparable performance for many jobs
placed randomly.

VII. CONCLUSION

In this paper, we formally defined QFT, a commonly-
used cluster topology that provides advantages over PGFT for
many concurrent jobs. We further introduced a formula for
contention-free routing for all global shift permutations. Given
our introduced closed-form QFT routing and fault-tolerance, it
appears that there is no advantage to using PGFT instead of
QFT when supporting a single large job. Hence, QFT should be
preferred over PGFT for fat-tree computing clusters.
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