
Providing Performance Guarantees in
Multipass Network Processors

Isaac Keslassy
Department of Electrical Engineering

Technion
Haifa 32000, Israel

isaac@ee.techion.ac.il

Kirill Kogan†
Cisco Systems

South Netanya 42504, Israel
kkogan@cisco.com

Gabriel Scalosub Michael Segal
Department of Communication Systems Engineering

Ben-Gurion University of the Negev
Beer-Sheva 84105, Israel

{sgabriel,segal}@bgu.ac.il

Abstract—Current network processors (NPs) increasingly deal
with packets with heterogeneous processing times. As a conse-
quence, packets that require many processing cycles can signif-
icantly delay low-latency traffic, because the common approach
in today’s NPs is to employ run-to-completion processing. These
difficulties have led to the emergence of the Multipass NP
architecture, where after a processing cycle ends, all processed
packets are recycled into the buffer and re-compete for processing
resources.

In this work we provide a model that captures many of
the characteristics of this architecture, and consider several
scheduling and buffer management algorithms that are specially
designed to optimize the performance of multipass network
processors. In particular, we provide analytical guarantees for the
throughput performance of our algorithms. We further conduct
a comprehensive simulation study that validates our results.

I. INTRODUCTION

A. Background

Multi-core Network Processors (NPs) are widely used to
perform complex packet processing tasks in modern high-
speed routers. NPs are able to address such diverse functions
as forwarding, classification, protocol conversion, DPI and
intrusion detection. They are often implemented using many
processing cores. These cores are either arranged as a pool
of identical cores (e.g., the Cavium CN68XX [1]), as a
long pipeline of cores (e.g., the Xelerated X11 [2]) or as a
combination of both (e.g., the EZChip NP-4 [3]).

Such architectures are very efficient for simple traffic
mixes. However, following operator demands, packet pro-
cessing needs are becoming more heterogeneous and rely
on a growing number of more complex features, such as
advanced VPN encryptions, hierarchical packet classification,
and compression/decompression.

These features are increasingly challenging for traditional
architectures, raising implementation, fairness, and bench-
marking issues. First, longer and more complex features
require either deeper pipeline lengths (e.g., 512 PISC processor
cores in the Xelerated HX3XX series [2]) or longer processing
times in run-for-completion cores. Second, a few packets with

†This work was done while the author was with the Department of
Communication Systems Engineering at the Ben-Gurion University of the
Negev.

many features can delay, and even temporarily starve or cause
to drop, the later packets.

In view of the increasing impact of packets with heavy
features, another NP architecture has emerged as a leading
alternative in the industry: the Multipass NP architecture. In
this architecture, the processing time of a packet is divided
into several time intervals, called passes or cycles. Intuitively,
when a packet arrives to the NP, it is sent to a processing core.
Then, after the core completes its processing pass, the packet
is recycled into the set of packets awaiting processing, and so
on, until all the packet passes are completed.

A major benefit of the multipass architecture is that it is
more flexible than the run-for-completion approach. Also, it
does not require the NP designer to define a large pipeline
length in advance. This is especially useful for NPs with
different possible markets. In addition, note that in multipass
NPs, actually recycling packets would involve complex in-
terconnections and large buffers. Therefore, to decrease the
cost of recycling, packets practically stay buffered and small
control messages go through recycling instead.

This NP architecture with recycling has for instance been
implemented in the recent Cisco QuantumFlow NP [4]. Also,
although not strictly multipass NP architectures, several NP
architectures in the literature already allow for recycling of
complex packets, such as IP control packets [5].

Given a heterogeneous set of packet processing times,
the scheduler plays a significant role in the multipass NP
architecture. This is because it should make sure that heavy
packets with many passes do not monopolize the cores and
starve packets with fewer passes.

To the best of our knowledge, despite the emergence of
the multipass NP architecture, there has not yet been any
analysis of its scheduler performance in the literature. In
particular, NP schedulers are typically designed for the worst-
case throughput to support a guaranteed wire rate (see Section
2.2 in [6]). This is the main motivation guiding our algorithmic
design, and methods of analysis.

B. Our Contributions

The goal of this paper is to offer designs with proven per-
formance guarantees for the multipass-NP scheduler. In this
paper, we analyze the performance of scheduling and buffer

management policies in multipass NPs, and provide guarantees
as to their worst-case throughput. Our solutions enable dealing
with the various requirements posed to the scheduler (such
as delay, throughput, and implementation complexity), and
illustrate tradeoffs as to the scheduler’s ability to fulfill these
requirements.

We consider settings where each arriving packet requires
some number of processing passes, and study the interplay of
three factors: the scheduling policy, the buffer management
policy, and the copying cost of packets into the buffer. We
design and analyze algorithms that aim at maximizing the
overall value obtained by the system, which is affected by both
the packet-level throughput (considered as benefit) and the
copying cost (considered as penalty). We note that our model
can also be used to model cold-cache penalties. A detailed
description of our model is given in Section II.

For our analytical results, we use competitive analysis to
evaluate the performance of our proposed policies. For the
case where no copying cost is incurred, we design and analyze
buffer management algorithms for both FIFO- and Priority-
based environments (Section III). For the case where the
system incurs a strictly positive copying cost, we devise
competitive buffer management algorithms for Priority-based
environments, and provide an elaborate analysis of their per-
formance guarantees (Section IV). Due to space constraints,
some of the proofs are omitted, and can be found in [7].

To complete our study, we present a simulation study that
further validates our results and provides additional insights
as to the performance of multicore NPs (Section V).

Our work gives rise to a multitude of questions and possible
extensions. We discuss these further in Section VI.

C. Related Work

As mentioned above, recycling is not new in NPs and has
previously appeared in the literature, especially for particularly
complex packets that cannot be processed using a typical
pipelining scheme [5]. However, to our knowledge, there is no
previous work in the literature that discusses the scheduling
and buffer management policies in multipass NPs. Moreover,
no paper analyzes the impact of the packet admission control
policy on the worst-case NP performance.

There is a long history of OS scheduling for multithreaded
processors. A comprehensive overview of competitive online
scheduling for server systems is provided in [8]. For instance,
the SRPT (Shortest Remaining Processing Time) algorithm
always runs the job with the least amount of remaining
processing time, and it is well known to be optimal for mean
response [9]. When comparing this body of research with
the framework of NPs one should note that OS scheduling
is mostly concerned with average response time, average
slowdown, etc., while NP scheduling is targeted at providing
(worst-case) guarantees on the throughput. In addition, NP
scheduling is unique due to its inherently-limited buffer size.

Another large body of research related to our work focuses
on competitive packet scheduling and buffer management,
mostly for various switching architectures, such as Output-

SM IB
(memory)

PPE1 PPE2 · · · PPEC

manage buffer/queues
and assign

packets to PPEs

memory
access

arrivals departures

recycling control messages

Fig. 1. An outline of the architecture model, as an abstraction of a standard
Multipass NP Architecture (see, e.g. [4]).

Queued (OQ) switches (e.g., [10], [11]) and shared memory
switches with OQs (e.g., [12], [13]).

II. MODEL DESCRIPTION

A. Multipass NP Architecture
Figure 1 illustrates the multipass NP architectural model

used in this paper. It is a simplified model of the Cisco
QuantumFlow NP architecture [4]. The three major modules
in our model are: (a) the Input Buffer (IB), (b) the Scheduler
Module (SM), and (c) a set of C cores or Packet Processing
Elements (PPEs).

First, the IB module is used to buffer incoming packets. The
IB holds a buffer that can contain at most B packets. It obeys
a given Buffering Model (BM), as defined later. Second, the
SM module has two main functionalities in our model: the
buffer management, as later described, and the assignment of
packets to PPEs, by binding each PPE with its corresponding
IB packet. Each PPE element is a processing core that works
on a specific packet stored in the IB for one cycle (predefined
period of time), also referred to as a time slot. For simplicity
we assume that each PPE is single threaded.

We divide time into discrete time slots, where each step
consists of four phases: (i) transmission, in which com-
pleted packets leave the NP, while packets with remaining
passes recycle control messages, (ii) arrival, in which the
SM performs its buffer management task considering newly
arrived packets and recycled control messages (observe that
recycled control messages are admitted to IB before new
arrivals), (iii) scheduling, in which C head-of-queue packets
are designated for processing, and (iv) processing, in which
the SM assigns a designated packet to each PPE, and packet
processing takes place.

We assume arbitrary packet arrival (i.e., it is not governed by
any specific stochastic process, and may even be adversarial).
We also assume that all packets have unit size. Each arriving
packet p is further stamped with the number of passes it
requires from the NP, denoted r(p). This number is essentially

the number of times the packet should be assigned to a PPE
if it is to be successfully delivered. The availability of this
information relies on [14], which shows that “processing on an
NP is highly regular and predictable. Therefore it is possible
to use processing time predictions in admission control and
scheduling decisions.” In practice, this number of passes r(p)
might only be an approximation, or only be known after the
first pass, even though we assume it in this paper to be known
from the start. Finally, we assume that all packets in a given
sub-flow require the same number of passes, and therefore
there are no reordering issues.

B. Problem Statement and Objectives

In the NP multipass architecture, new packets incur higher
costs than recycled packets. New packets admitted to the
buffer monopolize part of the memory link capacity to enter
the memory. Therefore, they require more capacity in the
memory access implementation of an NP. Each new packet
also needs to update many pointers and associated structures
at link speeds. These costs are substantially higher than the
costs associated with recycled control messages corresponding
to packets already stored in the buffer.

To reflect the value of throughput, we assume that each
departed packet has unit value. However, to reflect the cost
of admitting new packets, each newly admitted packet is also
assumed to incur a fixed copying cost of α > 0 for copying
it to IB. Clearly, since packets have unit value, we need only
consider costs α ∈ [0, 1).

Finally, we measure the final overall value as the total
throughput value minus the total copying cost. Therefore, for
the case where α = 0, the overall value is equal to the system
throughput. For the case where α > 0, the overall value equals
the throughput minus the overall copying cost incurred by
admitting packets to IB.

Any specific architecture corresponding to our model can
be summarized by a 4-tuple (B,BM,C, α), where B denotes
the buffer size available for IB in units of packets, BM is the
buffering model (in this paper it will usually be PQ or FIFO),
C is the number of available PPEs and α is the copying cost.

Our objective is the following: given a (B,BM,C, α)-
architecture, and given some finite arrival sequence, maximize
the value of successfully delivered packets.

Our goal is to provide performance guarantees for vari-
ous scheduling and buffer management algorithms. We use
competitive analysis [15], [16] to evaluate the performance
guarantees provided by online algorithms. An algorithm ALG
is said to be c-competitive (for some c ≥ 1) if for any arrival
sequence σ, the overall value of packets successfully delivered
by ALG is at least 1/c times the overall value of packets
successfully delivered by an optimal solution (denoted OPT),
obtained by a possibly offline clairvoyant algorithm.

C. Further Notation and Algorithmic Framework

We will define a greedy buffer management policy as a
policy that accepts all arrivals whenever there is available
buffer space (in the IB). Throughout this paper we only look

Algorithm 1 ALG: Buffer Management Policy
1: upon the arrival of packet p:
2: if the buffer is not full then
3: accept packet
4: else
5: DECIDEIFPREEMPT(ALG,p)
6: end if

at work-conserving schedulers, i.e. schedulers that never leave
a processor idle unnecessarily.

We will say that an arriving packet p preempts a packet
q that has already been accepted into the IB module iff q
is dropped and p is admitted to the buffer instead. A buffer
management policy is called preemptive whenever it allows
for preemptions.

For any algorithm ALG and time-slot t, we let IBALGt

denote the set of packets stored in ALG’s IB at time t.
We assume that the original number of passes required by

any packet is in a finite range {1, . . . , k}. The value of k will
play a fundamental role in our analysis. We note, however,
that none of our algorithms need to know k in advance.

The number of residual passes of a packet is key to several
of our algorithms. Formally, for every time t, and every packet
p currently stored in IB, its number of residual passes, denoted
rt(p), is defined as the number of processing passes it requires
before it can be successfully delivered.

Most of our algorithms will take the general form depicted
in Algorithm 1, where the specific DECIDEIFPREEMPT sub-
routine determining whether or not preemption takes place will
depend on the algorithm. We will focus on two natural BMs:

1) FIFO: where packets are served in FIFO order, i.e. the
C head-of-line packets are chosen for assignment to
the PPEs. Upon completion of a processing round by
the PPEs, all the packets that have been processed in
this round and still require further processing passes are
queued at the tail of the IB queue.

2) Priority Queueing (PQ): where packets with less residual
passes have higher priority and are served first, i.e., C
packets with the minimum number of residual passes are
chosen for assignment to the PPEs in every time slot.

We assume that the queue order is also maintained according
to the BM preference order.

III. BUFFER MANAGEMENT WITH NO COPYING COST
(α = 0)

A. Non-preemptive Policies
In this section we consider non-preemptive greedy buffer

management policies. Essentially, the subroutine DECIDEIF-
PREEMPT for such policies simply rejects the pending packet.
The following theorem provides a lower bound on the perfor-
mance of such non-preemptive policies for FIFO schedulers
(recall that omitted proofs can be found in [7]).

Theorem 1. The competitive ratio of any non-preemptive
greedy buffer management policy for a (B,FIFO,C, 0)-
system is at least k

C , where k is a maximal number of passes
required by any packet.

The following theorem provides a similar lower bound for
PQ schedulers.

Theorem 2. The competitive ratio of any non-preemptive
greedy buffer management policy for a (B,PQ,C, 0)-system
is at least k − 1, where k is a maximal number of passes
required by any packet.

As demonstrated by the above results, the simplicity of
non-preemptive greedy policies has its price. In the following
sections we explore the benefits of introducing preemptive
policies, and provide an analysis of their guaranteed perfor-
mance.

B. Preemptive Policies

For the case where α = 0, we consider the intuitive
preemption rule in which a newly arrived packet p should
preempt a buffered packet q at time t iff it has a lower
number of residual passes, i.e. rt(p) < rt(q). This rule is
formalized in Algorithm 2, which gives a formal definition of
the DECIDEIFPREEMPT procedure of Algorithm 1. In what
follows we consider the performance of the above preemption
rule for two specific BMs, namely: ALG ∈ {PQ,FIFO}.

1) Preemptive Priority Queueing: Consider Algorithm 2
with a BM implementing PQ. We refer to this algorithm as
PQ1.1 The following theorem characterizes its performance.

Theorem 3. PQ1 is optimal in a (B,PQ,C, 0)-system.

The above theorem provides concrete motivation for using
a priority queuing buffering model. It also enables using PQ1

as a benchmark for optimality.
However, priority queueing has many drawbacks in terms

of the difficulty in providing delay guarantees and in terms
of implementation. For instance, low-priority packets may be
delayed arbitrarily for an arbitrarily long amount of time due
to the steady arrival of higher-priority packets. Therefore, it
is of interest to study BMs that ensure such scenarios do not
occur. One such predominant BM uses FIFO queueing, which
is discussed in the following section.

2) Preemptive FIFO: Consider Algorithm 2 with a BM
implementing FIFO queueing. We refer to this algorithm as
FIFO1. FIFO has many attractive features, including bounded
delay, and it is easy to implement. We first begin by providing
the counterpart to Theorem 3. It shows that the performance of
FIFO1 can be rather far from optimal, as opposed to priority
queueing.

Theorem 4. FIFO1 has competitive ratio Ω(log k
C) in a

(B,FIFO,C, 0)-system.

We now turn to providing an upper bound on the perfor-
mance of FIFO1, as given by the following theorem.

Theorem 5. FIFO1 is 2k-competitive in a (B,FIFO,C, 0)-
system.

1The reason for choosing the subscript 1 would become clear in section IV.

Algorithm 2 DECIDEIFPREEMPT(ALG,p)
1: i← first packet in IBALG

t s.t. rt(pi) = maxi′ {rt(pi′)}
2: . first in the order implied by the BM
3: if r(p) < rt(pi) then
4: drop pi and accept p
5: else
6: reject p
7: end if

IV. BUFFER MANAGEMENT WITH COPYING COST (α > 0)

In this section we consider the more involved case where
each packet admitted to the buffer incurs a copying cost α.
In this model, it is preferable to perform as few preemptions
as possible, since preemptions increase the costs, but do not
contribute to the overall throughput. Recall that the overall
performance of an algorithm in this model is defined as the
algorithm throughput, from which we subtract the overall
copying cost incurred by admitting distinct packets to the
buffer.

A. Characterization of the Optimal Algorithm

We first note that if we consider algorithm PQ1 described
in the previous section, which is optimal for the case where
α = 0, we are guaranteed to have it produce the maximum
throughput possible given the arrival sequence. If we further
consider a slightly distorted model, where PQ1 is allowed to
“pay” its copying cost only upon the successful delivery of
a packet, we essentially obtain an optimal solution also for
cases where α > 0, because in that case PQ1 never pays a
useless cost of α for a packet that it ends up dropping. This
is formalized in the following theorem:

Theorem 6. PQ1 that pays the copying cost only for trans-
mitted packets is optimal for any (B,PQ,C, α)-architecture.

The theorem can also be seen with a different perspective.
Intuitively, a PQ1 scheduler would be optimal if it knew
in advance which packets are winners and only accepted
those packets. More formally, we can reach optimality by
combining PQ1 with a buffer admission control policy that
would only accept the packets that ultimately depart using a
given optimum scheduling policy.

B. Optimizing Priority Queuing

Given a copying cost α < 1, we will define a value
β = β(α) ≥ 1 (the precise value of β will be derived
from our analysis below), which will be used in defining the
preemption-rule DECIDEIFPREEMPT(PQβ ,p), as specified in
Algorithm 3. The algorithm essentially preempts a packet q in
favor of a newly arrived packet p only if p has β fewer residual
passes than q’s residual passes. Note that the special case of
PQβ with β = 1 coincides with algorithm PQ1 described in
section III-B (hence the subscript 1).

We now turn to analyzing the performance of the algorithm
with PQβ-preemption. We first prove an upper bound on the
performance of the algorithm, for any value of β. We can then

Algorithm 3 DECIDEIFPREEMPT(PQβ ,p)

1: pB ← last packet in IB
PQβ
t

2: . note that rt(pB) = max
p′∈IB

PQβ
t

rt(p
′)

3: if rt(p) < rt(pB)
β

then
4: drop pB and accept p
5: else
6: reject p
7: end if

2 4 6 8 10 12
10

20

30

40

50

60

70

80

90

100

110

(3.03,22.87)

(3.63,28.40)

(4.41,35.65)

(5.43,45.06)

(6.76,57.08)

(8.48,72.20)

(10.68,90.92)

β

C
R

α

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 2. The competitive ratio guarantee (y-axis) as a function of β (x-axis),
for various values of α (color-coded). For each value of α considered, the plot
specifies the optimal value of β, and the resulting competitive ratio guarantee.
These guarantees are for k = 100.

optimize the value of β = β(α) so as to yield the best possible
upper bound.

Theorem 7. PQβ has a competitive ratio of

(1 + log β
β−1

(k/2) + 2 logβ k)(1− α)

1− α logβ k
,

in a (B,PQ, 1, α)-system, for B ≥ 2, β > 1, α <
min(1, 1/ logβ k).

The proof outline of the theorem is provided below. By
optimizing the value of β one can obtain the minimum value
for the competitive ratio, depending on the value of α.

Figure 2 illustrates the performance guarantee as a function
of β for various values of α, in the case where k = 100.
Intuitively, as α gets larger, PQβ pays more and more to
accept packets that end up being preempted. Therefore, these
useless costs increasingly weaken its performance guarantees
when compared to the optimal offline algorithm.

C. Proof Intuition for Theorem 7
In the remainder of this section, we focus on the proof of

Theorem 7. Being rather technical, we provide here only a
high-level description of the proof, whereas the full proof can
be found in [7]. We will denote by G the set of packets
successfully delivered by PQβ , and by O be the set of
packets successfully delivered by some optimal solution OPT.
Consider a partition of the set of packets O\G = A1∪A2, such

p1 p2 · · · pm−1 pm

in G

q(1) q(2) q(m−1) q
(m)
1 q

(m)
2

· · · q
(m)
`

at most L packetsat most M − 1 packets

Fig. 3. Mapping χ outline: packet p1 is admitted to the buffer upon arrival
without preempting any packet, and henceforth packet pi+1 preempts packet
pi. The mapping ψ along the preemption sequence is depicted by dashed
arrows. Such a sequence ends at a packet pm which is successfully delivered
by PQβ . Mapping φ, depicted by solid arrows, maps at most 1 packet to any
packet that is preempted in the sequence, and possibly an additional ` packets
to the last packet of the sequence which is successfully delivered by PQβ .
This gives an overall number of 2(m − 1) + ` ≤ 2(M − 1) + L packets
mapped to any single packet successfully delivered by PQβ .

that A1 is the set of packets dropped by PQβ upon arrival, and
A2 is the remaining set of packets, consisting of packets that
were originally accepted, but at some point were preempted by
more favorable packets. It follows that O = A1∪A2∪(G∩O).

Our analysis will be based on describing a mapping of
packets in O to packets in G, such that every packet in G
piggybacks a bounded number of packets of O. Our mapping
will be devised in several steps.

First, we define a mapping φ : A1 7→ A2 ∪G such that for
every p ∈ A2,

∣∣φ−1(p)
∣∣ ≤ 1, and for every p ∈ G,

∣∣φ−1(p)
∣∣ ≤

L, for some value of L to be determined later (Lemmas 10
and 11). We then define a mapping ψ : A2 ∪ G 7→ G such
that for every p ∈ G,

∣∣ψ−1(p)
∣∣ ≤ M , for some value of M

to be determined later (Lemma 12). By composing these two
mappings we obtain a mapping χ : O \ G 7→ G such that
for every p ∈ G,

∣∣χ−1(p)
∣∣ ≤ 2(M − 1) + L, i.e., there are

at most 2(M − 1) + L packets from O \ G mapped to any
single packet in p ∈ G by χ. Figure 3 gives an outline of the
resulting mapping χ.

It is important to note that this mapping is done in hindsight,
as part of the analysis, and is not part of the algorithm’s
definition. We can therefore assume that for our analysis,
we know for every packet arrival which algorithm(s) would
eventually successfully deliver this packet.

D. The Basic Mapping φ

Our goal in this section is to define a mapping φ : A1 7→
A2∪G such that for every p ∈ A2,

∣∣φ−1(p)
∣∣ ≤ 1, and for every

p ∈ G,
∣∣φ−1(p)

∣∣ ≤ L, for some value of L to be determined
later. For every time t, we will denote the ordered set of
packets residing in the buffer of PQβ at t by pt1, p

t
2, and

so on. Recall that since the buffer size is at most B, such a
sequence is of length at most B. For clarity, we will sometimes
abuse notation and omit the superscript t, when it is clear
from the context. We will further define the load of pi at t
by nt(pi) =

∣∣φ−1(pi)
∣∣, i.e. the number of packets currently

mapped to packet pi. In order to avoid ambiguity as for the
reference time, t should be interpreted as the arrival time of
a single packet. When more than one packet arrive in a time
slot, these notations should be considered for every packet

φ before O accepts q

O

q1

q2

q3

q4

q5

q6

q7

q8

q9

q

G

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

q inserted to buffer slot 4
and mapped to p5

O

q1

q2

q3

q

q4

q5

q6

q7

q8

q9

G

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

complete the (O, j)-mapping-shift

O

q1

q2

q3

q

q4

q5

q6

q7

q8

q9

G

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

(a) (O, j)-mapping-shift (q ∈ A1 is admitted by O to slot j = 5)

φ before G accepts p

O G

p1

p2

p3

p4

p5

p6

p

complete the (G, i)-mapping-shift

O G

p1

p2

p

p3

p4

p5

p6

p inserted to buffer slot 3

O G

p1

p2

p

p3

p4

p5

p6

(b) (G, i)-mapping-shift (p is admitted by G to slot i = 3)

Fig. 4. Mapping-shifts outline: the new packet (marked gray) is inserted into the corresponding buffer slot, and the mapping is shifted accordingly. Packets
marked with diagonal lines are either packets in A2 ∪ (O ∩G), or packets in A1 that are no longer alive. White packets are live A1 packets, which might
be affected by changes in the mappings. In both examples L = 3.

independently, in the sequence in which they arrive (although
they might share the same actual time slot).

The mapping will be dynamically updated at each event of
packet arrival, or packet transmission from the buffer of G,
as follows: assume packet p arrives at time t. We distinguish
between 3 cases:

1) If p is not in both O and G (i.e., neither PQβ nor
OPT deliver it successfully), then the mapping remains
unchanged.

2) If p ∈ A1, and it is assigned to buffer slot j in the buffer
of O upon arrival, perform an (O, j)-mapping-shift (see
detailed description below).

3) If p ∈ A2 ∪ G, and it is assigned to buffer slot i in the
buffer of G upon arrival (i.e., after its acceptance to the
buffer we have pi = p), perform a (G, i)-mapping-shift
(see detailed description below).

The last case to consider is the case of a packet being suc-
cessfully delivered by G. In this case we perform a mapping-
collapse onto the head-of-line (HoL) packet in G (see detailed
description below).

At any given time, we consider the set of live packets in
A1 that are currently in the buffer of O, where this set is
updated dynamically as follows: Every packet q ∈ A1 is alive
upon arrival. A live packet q ceases to be alive the moment
φ(q) is completed (either by being preempted, or by being
delivered). All remappings described henceforth only apply to
live packets. Specifically, for every event causing a change or
update in the mapping occurring in any time t, packets in A1

which are no longer alive at t are essentially considered by
the following procedures as packets which are in A2∪(G∩O)
(i.e., their mappings do not change, and they are sidestepped
when shifting mappings).

We first give some definitions. We say a mapping is se-
quential if for every i < i′, the set of packets mapped to the
packet in slot i would leave OPT before the set of packets
mapped to the packet in slot i′ (assuming both of these slots
are non-empty). We further say a mapping is i-prefix-full if
every packet in slot i′ ≤ i has packets mapped to it and
every packet in slot i′ > i has no packets mapped to it, and

furthermore if i > 1 then the HoL packet in G has L packets
mapped to it.

In order to finalize the description of φ, it remains to
explain the notion of mapping-shifts, and mapping-collapse.
As illustrated in Figure 4(a), an (O, j)-mapping-shift works
as follows: If the HoL packet in G has less than L packets
currently mapped to it, we map the arriving packet p ∈ A1 to
the HoL packet in G. Otherwise, we find the minimal index i
of a packet in the buffer of G to which no packet is mapped
to, and map packet p to this packet. If there is no such packet
in the buffer of G (i.e., the HoL packet has load L, and every
other packet in the buffer of G has load exactly 1), then we
map p to the last packet in G. Clearly this mapping is feasible,
i.e., whenever a packet p ∈ A1 arrives, there is a packet in G to
which we can map p. In order to complete this mapping-shift,
we swap mappings (without changing the number of packets
mapped to any packet in G) such that the resulting mapping
is sequential.

As shown in Figure 4(b), a (G, i)-mapping-shift is simpler
and works as follows: for any non-empty buffer-slot j > i,
remap any packets mapped to pj , to pj−1, in sequence, starting
from j = i+ 1.

We now turn to describing the effect of a mapping-collapse,
as illustrated in Figure 5. Upon the successful delivery of
the HoL packet in G, the packet that was just in the second
position in G’s buffer, becomes the HoL. Upon its becoming
the HoL packet, we remap the largest set of live packets in A1

currently in the buffer of O, to the new HoL packet, such that
there are at most L packets mapped to it (our analysis will
later show that this is indeed feasible). If we have remapped
r such packets, and there remain additional packets in A1

currently in the buffer of O, then we remap each of these
packets r positions downward, such that the resulting mapping
is i-prefix-full for some buffer position i ∈ {1, . . . , B}.

We say that a mapping satisfies the HoL-before-OPT
(HOBO) property w.r.t. L, iff at any time t, whenever the
HoL packet in G has L packets mapped to it, then the last of
these packets would leave O no earlier than this HoL packet
would leave G.

The following lemma shows that if L satisfies the HOBO

φ before collapse

O G

p1

p2

p3

p4

p5

p6

φ after collapse (p1 delivered)

O G

p2

p3

p4

p5

p6

Fig. 5. Mapping-collapse outline: upon the delivery of the HoL packet in G,
p1, the largest set of live A1 packets closest to the head of queue in G (but no
more than L) are mapped to the new HoL packet, p2, and remaining packets
of A1 in O’s buffer are shifted downwards appropriately. In this example we
take L = 3.

property, then except for the HoL packet in the buffer of G,
any other packet in the buffer necessarily has load at most 1.
This follows by definition for all such non-HoL packets, save
possibly for the last packet in the buffer, which is the focus
of the lemma.

Lemma 8. If L satisfies the HOBO property, then at most one
O packet is mapped to the last packet in G.

The above lemma essentially guarantees that if we choose L
such that the HOBO property is maintained, then each packet
in G’s buffer, except for the first packet, has at most one
mapping. The following lemma ensures that upon any event
that affects the mapping, every live packet has sufficiently
many residual passes, compared to the packet to which it is
mapped to.

Lemma 9. For every i ∈ {1, . . . , B}, let pi denote the packet
residing in slot i in the buffer of G. For every such i, if q is
(re)mapped to pi at time t, then rOt (q) ≥ 1

β r
G
t (pi).

For every packet p ∈ G ∪ A2, consider the set of packets
mapped to p when p is completed. If p ∈ A2, i.e., it is
preempted by G at some time t, then since preemption always
takes place from the last slot in the buffer of G, and since
B ≥ 2, by the definition of the mapping there could be at
most one packet mapped to p when it is completed. We thus
have the following lemma.

Lemma 10. For every p ∈ A2, φ−1(p) ≤ 1 when p is
preempted.

In order to complete our analysis of φ, it suffices to find
a value L that satisfies the HOBO property. Combined with
Lemma 8, this would provide a bound on the number of
packets mapped to packets in G.

Lemma 11. Choosing L = 2 + log β
β−1

(k/2) satisfies the
HOBO property. Hence, for this value of L, every p ∈ G
satisfies φ−1(p) ≤ L when p is delivered.

E. The Mapping ψ
In this section we define a mapping ψ : A2 ∩G 7→ G such

that for every p ∈ G,
∣∣ψ−1(p)

∣∣ ≤ logβ k, i.e., there are at most
logβ k packets from A2 ∩ G mapped to any single packet in
p ∈ G by ψ.

The mapping essentially follows a preemption sequence of
packets, up to a packet that is successfully delivered by G.
Formally, it is defined by backward recursion as follows: if
p ∈ G, then ψ(p) = p. Otherwise p ∈ A2 is preempted in favor
of some packet q ∈ A2 ∪G, such that r(p) > βr(q), in which
case we define ψ(p) = ψ(q). Since each such preemption
witnesses a reduction in the number of residual recycles by a
factor of β, we obtain a logarithmic bound on the length of
such a preemption sequence, which implies the following:

Lemma 12. For every p ∈ G,
∣∣ψ−1(p)

∣∣ ≤ logβ k.

F. Putting it All Together
We are now in a position to prove our main theorem.

Proof of Theorem 7: Our proof essentially relies on
determining the value of L in the description of mapping φ.
We set L = 2 + log β

β−1
(k/2), as suggested by Lemma 11.

By composing the mappings φ and ψ we obtain a mapping
χ : A1 ∪ A2 7→ G such that for every p ∈ G,

∣∣χ−1(p)
∣∣ ≤

2(logβ k − 1) + L = L− 2 + 2 logβ k. This follows from the
fact that every packet along the preemption sequence, except
for the last one, piggybacks at most 1 packet by φ (Lemma 10),
and the last packet in the preemption sequence piggybacks at
most L packets by φ (Lemma 11). One should also take into
account all the packets in the preemption sequence itself which
are accounted for by ψ (save the last one, which is successfully
delivered by G). Again, see Figure 3 for an illustration of χ.

All that remains is to bound the value obtained by the
optimal solution, compared to the value obtained by by PQβ .
Assuming α < 1

logβ k
, one can see that the overall payments

made by the algorithm in any preemption sequence sum to at
most α logβ k < 1 (since payment is made only for packets in
A2∪G), and hence they do not exceed the unit profit obtained
by delivering the last packet in the sequence. It follows that any
packet delivered by our algorithm contributes at least a value
of 1 − α logβ k. For every such packet, the optimal solution
may obtain a value of at most (L−2+2 logβ k+1)(1−α) =
(2 + log β

β−1
(k/2)− 1 + 2 logβ k)(1−α) (note the additional

value of 1 which accounts for packets in O ∩G).

V. SIMULATION STUDY

In this section we compare the performance of the family
of algorithms PQβ for various values of β (defined in Sec-
tion IV), as well as algorithms PQ1 and FIFO1 (defined in
Section III-B), and the non-preemptive algorithm that uses PQ
(defined in Section III-A), which we dub PQ∞ (this notation
is used to maintain consistency with our notation of PQβ).

When considering the family of algorithms PQβ , we con-
sider several values for β, and do not restrict ourselves to
the optimal values implied by our analysis. The reason for
this is that our analysis is targeted at bounding the worst-case
performance, and it is instructive to evaluate the performance
of the algorithms using different values of β for simulated
traffic that is not necessarily worst-case.

Our traffic is generated using an ON-OFF Markov modu-
lated Poisson process (MMPP), which is targeted at producing
bursty traffic. The choice of parameters is governed by the

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 12 16 20 24

Tr
an

sm
it

te
d

 v
al

u
e

 v
e

rs
u

s
o

p
ti

m
al

Maximal number of recycles

(a) α = 0

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 12 16 20 24

Tr
an

sm
it

te
d

 v
al

u
e

 v
e

rs
u

s
o

p
ti

m
al

Maximal number of recycles

(b) α = 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 12 16 20 24

Tr
an

sm
it

te
d

 v
al

u
e

 v
e

rs
u

s
o

p
ti

m
al

Maximal number of recycles

(c) α = 0.4

Fig. 6. Performance ratio of online algorithms versus optimal for different values of α, as a function of the maximum number of passes k required by a
packet k. The results presented are for a single core (i.e., C = 1). The average arrival rate of the simulated traffic for each value of k is fixed to 0.3 (packets
per time slot).

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9

Tr
an

sm
it

te
d

 v
al

u
e

 v
e

rs
u

s
o

p
ti

m
al

Number of PPEs

(a) constant rate λ = 0.3 (α = 0.4, k = 16)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21

Tr
an

sm
it

te
d

 v
al

u
e

 v
e

rs
u

s
o

p
ti

m
al

Number of PPEs

(b) α = 0 (λ = 0.3 · C, k = 16)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21

Tr
an

sm
it

te
d

 v
al

u
e

 v
e

rs
u

s
o

p
ti

m
al

Number of PPEs

(c) α = 0.4 (λ = 0.3 · C, k = 16)

Fig. 7. Performance ratio of online algorithms versus optimal for different values of α, as a function of the number of cores C. In Figure 7(a) the arrival
rate is kept constant at λ = 0.3, regardless of the number of cores C. In all other figures the average arrival rate of the simulated traffic for each value of C
is proportional to the number of cores (set to λ = 0.3 · C).

average arrival load, which is determined by the product of the
average packet arrival rate and the average number of passes
required by packets. For a choice of parameters yielding an
average packet arrival rate of λ, where every packet has its
required number of passes chosen uniformly at random within
the range [1, k], we obtain an average arrival load (in terms of
required passes) of λ · k+1

2 .
Figures 6 and 7 provide the results of our simulations.

The Y -axis in all figures represents the ratio between the
algorithms’ performance and the optimal performance possible
given the arrival sequence. For the case where α = 0
the optimal performance is obtained by PQ1 (as proved in
Theorem 3), whereas for α > 0 the optimal performance is
obtained by the algorithm that incurs the copying cost only
upon transmission (as proved in Theorem 6).

We conduct two sets of simulations; one targeted at a better
understanding of the dependence on the number of recycles,
and the other targeted at evaluating the power of having
multiple cores. We note that the standard deviation throughout
our simulation study never exceeds 0.05 (deviation bars are
omitted from the figures for readability).

A. Variable Maximum Number of Required Passes
In the first set of simulations we set the average arrival

rate to be λ = 0.3. By performing simulations for variable
values of the maximum number of required passes k in
the range [4, 24], we essentially evaluate the performance of

our algorithms in settings ranging from underload (average
arrival load of 0.75) to extreme overload (average arrival
load of 3.75), which enables validating the performance of
our algorithms in various traffic scenarios. For every choice
of parameters, we conduct 20 rounds of simulation, where
each round consists of simulating the arrival of 1000 packets.
Throughout our simulations we use a buffer of size B = 20,
and restrict our attention to the single-core case, i.e., C = 1.

For α = 0, Figure 6(a) shows that the performance of PQβ
degrades as β increases. This behavior is of course expected,
since the optimal performance is known to be obtained by
algorithm PQ1 which preempts whenever some gain can be
obtained. The non-preemptive algorithm (PQ∞) has poor per-
formance, and the performance of FIFO1 lays in between the
performance of the algorithms PQβ and the non-preemptive
algorithm. When further considering the performance of the
algorithms for increasing values of α, in Figures 6(b)-6(c),
and most notably in Figure 6(c), it is interesting to note
that the performance of all algorithms (especially FIFO1)
degrades substantially, except for the performance of the
non-preemptive algorithm, which is maintained essentially
unaltered. It should also be noted that all algorithms exhibit
a performance far superior to the upper bound given in
Theorem 7.

One of the most interesting aspects arising from our simula-
tion results is the fact that they seem to imply that our worst-

case analysis has been beneficial to designing algorithms that
work well also on average. This can be seen especially by
comparing Figures 6(b) and 6(c): the results show that when
α changes, the value of β for which PQβ performs best
also changes (specifically, compare PQ1.5 and PQ2). This
change is in accordance with the value of β that optimizes the
competitive ratio, which is a worst-case bound derived from
our analysis

B. Variable Number of Cores

In this set of simulations we evaluate the performance of
our algorithms for variable values of C in the range [1, 25].
For each choice of parameters, we conduct 20 rounds of
simulation, where each round consists of simulating the arrival
of 1000 packets. Throughout our simulations we use a buffer
of size B = 20, and use k = 16 as the maximum number of
passes required by any packet.

Figure 7(a) presents the results for a constant traffic arrival
rate of λ = 0.3. Not surprisingly, the performance of all algo-
rithms improves drastically as the number of cores increases.
The increase in the number of cores essentially provides the
network processor with a speedup proportional to the number
of cores (assuming the average arrival rate remains constant).

We further evaluate the performance of our algorithms for
increasing numbers of cores, while simultaneously increasing
the average arrival rate (set to λ = 0.3 · C, for each value
of C), such that the ratio between the speedup and the arrival
rate remains constant. The results of this set of simulations are
presented in Figures 7(b) and and 7(c), for α = 0 and α = 0.4,
respectively. Contrarily to what may have been expected, the
performance of some of the algorithms is not monotonically
non-decreasing as the number of cores increases. Furthermore,
the performance of some of the algorithms, and especially
the non-preemptive algorithm PQ∞, decreases drastically as
the number of cores increases (up to a certain point), when
compared to the optimal performance possible. Only once
the number of cores is sufficiently large (which occurs when
C ≥ 14), do all algorithms exhibit a steady improvement in
performance as the number of cores further increases. This
is due to the fact that for such a large number of cores,
almost all packets in the buffer are scheduled in every time
slot (recall that the buffer used in our simulations has a
size of B = 20). It is interesting to note that this behavior
trend is independent of the value of α for both FIFO1

and PQ∞. These results provide further motivation, beyond
the worst-case lower bounds presented in Section III-A, for
adopting preemptive buffer management policies in multi-core,
multipass NPs, and shows the vulnerability of architectures
based on FIFO buffers.

VI. DISCUSSION

The increasingly-heterogeneous packet-processing needs of
NP traffic are posing design challenges to NP architects. In
this paper, we provide performance guarantees for various
algorithms within the multipass NP architecture, and further
validate these results by simulations.

Our results can be extended in several directions to reflect
current NP constraints. Our work, which focuses on unit-sized
packets and homogeneous PPEs, can be considered as a first
step towards solutions which more generally deal with variable
packet sizes and heterogeneous PPEs. In addition, it would be
interesting to study non-greedy algorithms, which are equipped
with admission control mechanisms that aim at maximizing the
guaranteed NP throughput. Last, it would be interesting to see
the impact of moving the computation of the number of passes
needed for each packet from the entrance of the NP to PPEs
during the first pass. This is especially interesting because the
first pass often corresponds to processing features that lead to
the early dropping of packets, such as ACL processing.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Isask’har (Zigi) Walter for
his comments.

This research work was partly supported at the Ben-
Gurion University by the US Air Force European Office of
Aerospace Research and Development grant FA8655-09-1-
3016, by Deutsche Telecom, by the EC FLAVIA project,
and by the Israeli MOITAL CORNET consortium; and at the
Technion by the European Research Council Starting Grant
n◦ 210389, by an Intel research grant, by the Hasso Platner
Center for Scalable Computing, and by the Israeli MOST CMP
Research Center.

REFERENCES

[1] Cavium, OCTEON II CN68XX Multi-Core MIPS64 Processors, Product
Brief, 2010. [Online] http://www.caviumnetworks.com/OCTEON-II
CN68XX.html.

[2] Xelerated, X11 Family of Network Processors, Product Brief, 2010.
[Online] http://www.xelerated.com/Uploads/Files/67.pdf.

[3] EZChip, nP-4 Network Processor, Product Brief, 2010. [Online] http:
//www.ezchip.com/p np4.htm.

[4] Cisco, the Cisco QuantumFlow Processor, Product Brief, 2010.
[Online] http://www.cisco.com/en/US/prod/collateral/routers/ps9343/
solution overview c22-448936.html.

[5] C. Wiseman et al., “Remotely accessible network processor-based router
for network experimentation,” in ANCS, 2008, pp. 20–29.

[6] T. Sherwood, G. Varghese, and B. Calder, “A pipelined memory ar-
chitecture for high throughput network processors,” in ISCA, 2003, pp.
288–299.

[7] I. Keslassy, K. Kogan, G. Scalosub, and M. Segal, “Providing per-
formance guarantees in multipass network processors,” Technical Re-
port TR10-02, Comnet, Technion, Israel, 2010. [Online] http://www.ee.
technion.ac.il/∼isaac/p/tr10-02 multipass.pdf.

[8] K. Pruhs, “Competitive online scheduling for server systems,” PER,
vol. 34, no. 3, pp. 52–58, 2007.

[9] L. Schrage, “A proof of the optimality of the shortest remaining
processing time discipline,” OR, vol. 16, no. 3, pp. 687–690, 1968.

[10] A. Kesselman, Z. Lotker, B. Patt-Shamir, Y. Mansour, B. Schieber,
and M. Sviridenko, “Buffer overflow management in QoS switches,”
SICOMP, vol. 33, no. 3, pp. 563–583, 2004.

[11] G. Scalosub, J. Liebeherr, and P. Marbach, “Buffer management for
aggregated streaming data with packet dependencies,” in Infocom, 2010.

[12] W. Aiello, A. Kesselman, and Y. Mansour, “Competitive buffer man-
agement for shared-memory switches,” TALG, vol. 5, no. 1, 2008.

[13] A. Kesselman and Y. Mansour, “Harmonic buffer management policy for
shared memory switches,” TCS, vol. 324, no. 2–3, pp. 161–182, 2004.

[14] T. Wolf, P. Pappu, and M. A. Franklin, “Predictive scheduling of network
processors,” Computer Networks, vol. 41, no. 5, pp. 601–621, 2003.

[15] D. Sleator and R. Tarjan, “Amortized efficiency of list update and paging
rules,” Commun. ACM, vol. 28, no. 2, pp. 202–208, 1985.

[16] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

