
Machine Learning manuscript No.
(will be inserted by the editor)

RADE: Resource-Efficient Supervised Anomaly Detection
Using Decision Tree-Based Ensemble Methods

Shay Vargaftik · Isaac Keslassy · Ariel Orda ·
Yaniv Ben-Itzhak

Received: date / Accepted: date

Abstract The capability to perform anomaly detection in a resource-constrained setting,
such as an edge device or a loaded server, is of increasing need due to emerging on-premises
computation constraints as well as security, privacy and profitability reasons. Yet, the in-
creasing size of datasets often results in current anomaly detection methods being too re-
source consuming, and in particular decision-tree based ensemble classifiers.

To address this need, we present RADE – a new resource-efficient anomaly detection
framework that augments standard decision-tree based ensemble classifiers to perform well
in a resource constrained setting. The key idea behind RADE is first to train a small model
that is sufficient to correctly classify the majority of the queries. Then, using only subsets of
the training data, train expert models for these fewer harder cases where the small model is
at high risk of making a classification mistake.

We implement RADE as a scikit-learn classifier. Our evaluation indicates that RADE
offers competitive anomaly detection capabilities as compared to standard methods while
significantly improving memory footprint by up to 12×, training-time by up to 20×, and
classification time by up to 16×.

Keywords Resource efficient machine learning · Fast machine learning · Anomaly
detection · Supervised learning · Decision-tree based ensemble methods

Shay Vargaftik
VMware Research
E-mail: shayv@vmware.com

Isaac Keslassy
VMware Research
Technion
E-mail: isaac@ee.technion.ac.il

Ariel Orda
Technion
E-mail: ariel@ee.technion.ac.il

Yaniv Ben-Itzhak
VMware Research
E-mail: ybenitzhak@vmware.com

2 Shay Vargaftik et al.

1 Introduction

Machine learning (ML) based anomaly detection is exceptionally challenging and has a
wide range of applications in domains such as finance, fraud detection, surveillance, health
care, intrusion detection, and medical diagnosis. For example, an anomalous network traffic
pattern could mean that a hacked device sends out sensitive data to an unauthorized des-
tination. Anomalies in credit card transactions could indicate credit card or identity theft.
Also, anomaly readings from various sensors could signify a faulty behavior in hardware or
a software component of an automotive.

Employing anomaly detection in a resource-constrained setting or device is an on-going
challenge, due to the following and often contradicting requirements. It has to:

– Locally carry out a substantial amount of computation, storage, and communication.
– Adhere to resource constraints such as limited memory, network connectivity and CPU

due to timing or power constraints.
– Deal with the increasing amounts of data and available information.

A key supervised anomaly detection ML solution for tabular data is to employ decision-
tree-based ensemble methods (DTEMs). DTEMs rely on either bagging or boosting tech-
niques to improve their detection capabilities and offer appealing robustness, ease of use,
and generalization properties as we next describe.

Bagging (or bootstrap aggregation). Bagging methods such as tree bagging [6], random
forest [8] and extra trees [34] offer a controlled variance which is used to improve classi-
fication accuracy as well as achieve better generalization properties. In particular, Random
Forest (RF) [8] is the most well-known and widely employed decision-tree-based bagging
method. In a nutshell, RF grows each decision tree using a random subsample of the data
and possibly different split features in tree nodes, resulting in different and weakly correlated
trees. Then, a majority vote is used to determine the classification.

Several studies [37, 80, 86, 100] have proposed using RF for supervised anomaly detec-
tion. For instance, [100] employed RF for anomaly detection by using data mining tech-
niques to select features and handle the class imbalance problem; and, [80] provided a scal-
able implementation of intrusion detection system.

RF is a popular classifier as it often offers appealing properties in comparison to other
classification methods, such as Neural Networks [3], Support Vector Machines [32], Fuzzy
Logic methods [9], and Bayesian Networks [45]. Specifically, RF offers : (1) robustness
and moderate sensitivity to hyper-parameters; (2) parallel and fast training; (3) capability to
deal with imbalanced datasets; (4) embedded feature selection and ranking capabilities; (5)
handling missing, categorical and continuous features in many cases; (6) interpretability for
advanced human analysis for further investigation or whenever such capability is required
by regulations [70], e.g., in order to understand the underlying risks. To that end, an RF can
be interpreted by different methods, such as [4].

All these aforementioned advantages are repeatedly pointed out in the literature via anal-
ysis as well as comparative tests (see [36, 57, 69] and references therein) especially for in-
trusion detection (IDS) [37, 86, 100], fraud detection [97] and anomaly detection [80, 101].

Are bagging methods a natural fit for resource-constrained settings?
Traditional bagging classifiers tend to be memory bound and slower at classification [2, 51,
56, 92]. Moreover, standard bagging methods are typically less suitable for acceleration us-
ing embedded systems (e.g., FPGAs, or GP-GPUs). This is mainly due to the need to traverse

RADE: Resource-Efficient Supervised Anomaly Detection 3

numerous large decision trees. Indeed, the classification time of a large RF makes it infeasi-
ble for resource-constrained devices and its large memory footprint makes it infeasible for
devices with little memory.

Boosting. Unlike bagging, boosting primarily offers controlled bias (and also variance).
Many popular decision-tree-based boosting methods such as GBDT [30,38], XGBoost [18],
LightGBM [43], CatBoost [64] and AdaBoost [29] employ the boosting concept, usually,
by using iterative training. For example, in Adaptive Boosting, a weak classifier such as a
stump1 is added at each iteration (unlike bagging methods that use full-grown trees) and
typically weighted with respect to its accuracy. Then, the data weights are readjusted such
that a higher weight is given to the misclassified instances when considering all previous
trees. In Gradient Boosting, a small decision tree (e.g., with 8-32 terminal nodes) is added
at each iteration and scaled by a constant factor. Then, a new tree is grown to reduce the loss
function of the previous trees. For both methods, the next trees are trained with more focus
on previous misclassifications.

Decision-tree-based boosting methods are known to be among the best off-the-shelf
supervised learning methods available [52, 71, 72, 74], achieving appealing accuracy with
only modest memory footprint, as opposed to RF that is usually memory bounded. Boosting
methods also share many of the aforementioned advantages offered by RF [39].

That being said, boosting methods are also more sensitive to overfitting than RF, espe-
cially when the data is noisy [25]. Often, they are also harder to tune since they have more
hyperparameters and higher sensitivity to these hyperparameters.

Are boosting methods a natural fit for resource-constrained settings?
The training of boosting classifiers is often significantly longer than bagging classifiers such
as RFs, mainly since the trees are built sequentially and compute-intensive tasks such as
classification and data weights readjustments take place at every iteration. In this compute-
intensive process, it is often the case that the same training data is scanned and processed
multiple times. For a resource-constrained device, this means that off-premise training may
be required (e.g., over the cloud), which in turn requires transferring the dataset and receiv-
ing the trained model over the network. However, that may require considerable network
bandwidth and connectivity. Local training of boosting ML models is preferable when the
network connectivity is limited or expensive (in terms of cost or energy), and when the data
privacy is of great concern. Boosting methods also admit slower classification as the number
of trees increases [1, 67] which makes them less suitable for resource-constrained settings
and devices.

Motivation. Our comparison (Section 3.4) between bagging (RF) and boosting (XGBoost)
to well-known classifiers including Decision-tree (DT), K-nearest-neighbors (KNN), Multi-
layer Perceptron (MLP), and Support Vector Classifier (SVC) shows that RF and XGBoost
offer a balanced trade-off between ML and system performance (i.e., ML scores vs. time and
memory) where the best method often depends on the specific dataset and the application.

Nevertheless, both bagging and boosting are challenged by the continuous growth of
datasets [50] in terms of the number of features and data instances alongside the increasing
demand for lower memory footprint, faster training, and lower classification time.

With powerful under-loaded servers at hand, a sufficiently large and adequately trained
DTEM may offer satisfactory anomaly detection capabilities. However, for a resource-constrained
setting or device, this would typically lead to at least one of the following drawbacks:

– Large memory footprint.

1 A one-level decision tree.

4 Shay Vargaftik et al.

– Long training time.
– High energy consumption.
– Long classification time.

This is because in such cases the available hardware resources are low. For example,
the clock speed of edge devices varies from tens of MHz (e.g., Arduino MKR1000 with
48 MHz ARM) and up to 1 GHz (e.g., Raspberry Pi 3 and Dell Edge 3000 series) with a
low core count (e.g., 1-4) and constrained power consumption. Their memory and RAM/L2
cache sizes vary from 256KB/no-cache (Arduino MKR1000) and up to 1GB/512KB (Rasp-
berry Pi 3) and 2GB/1MB (Dell Edge 3000 series). This is in contrast to servers. For ex-
ample, a t2.2xlarge AWS EC2 instance offers 8 cores at 2.3-GHz, 32 GB RAM, and
4.5 MB/45 MB of L2/L3 caches (Intel Broadwell E5-2686v4).
Contributions. Our aim is to make a step forward in overcoming the aforementioned per-
formance drawbacks, which we find to be essential for efficient execution of DTEM-based
anomaly detection in a resource-constrained settings and devices.

Accordingly, in this paper, we present, design, and evaluate RADE. RADE is a resource-
efficient DTEM-based anomaly detection approach that merely augments standard DTEM
classifiers with competitive anomaly detection capabilities and while offering significant
savings in resource usage. In particular, in comparison to standard state-of-the-art DTEMs,
RADE models are smaller in terms of memory footprint; faster to train in terms of required
resources; offer lower response time / higher throughput. In turn, this also means that a
classification query does not require too much computation resources.

The core idea behind RADE is based on two observations:

1. We can build a small model that is sufficient to classify correctly the majority of the
classification queries.

2. For these harder cases, where the small model is not sufficiently confident and is at high
risk of making a classification mistake, we can train expert models using only subsets of
the training data.

Due to its modular design, RADE is orthogonal to the discussed bagging and boosting tech-
niques and can augment them to form a more resource-efficient DTEM classifier.

We implement RADE as a scikit-learn classifier [11] and conduct extensive evaluation
using different publicly available datasets. Evaluation results over different AWS EC2 in-
stances and a Raspberry Pi 3 device are consistent and indicate that RADE offers competi-
tive anomaly detection capabilities as compared to the monoloithic state-of-the-art DTEMs
while significantly reducing model memory footprint (12×), training-time (20×), and clas-
sification time (by up to 16×).

2 RADE

In the following, we describe RADE’s architecture in detail and provide some intuition as
to why it is expected to be resource-efficient in comparison to standard monolithic DTEMs
while offering competitive anomaly detection capabilities.

2.1 Observations

As mentioned, RADE has a hierarchical structure in which we first train a small ML model
using the entire training dataset and only then train two expert ML models, using only sub-

RADE: Resource-Efficient Supervised Anomaly Detection 5

sets of the training dataset, to complement the small ML model. We now detail the two
observations that led us to such architecture.

1. We can build a small ML model that is sufficient to classify the majority of the
classification queries correctly. An appealing property offered by DTEMs is that every
classification query not only receives a label but it also has a corresponding empirical
measure termed confidence level which is a measure of how confident the ML model
is in its classification result [8]. For a DTEM, the confidence level is calculated by in-
corporating the individual votes of all trees into a single class distribution vector and
taking the maximal value2. We heuristically use the confidence level as an indication to
which data instances the small model finds easy (i.e., instances with a high classification
confidence) and which it finds hard (i.e., instances with a low classification confidence).
Specifically, we find that a small DTEM model can be used to correctly classify the ma-
jority of classification queries (but not necessarily all) by requiring a sufficiently high
classification confidence level. That is, the classification result of a small model is valid
only if its corresponding confidence level is sufficiently high, rather than accepting any
classification confidence.

2. For these harder cases, where the small ML model is not sufficiently confident and
is at high risk of making a classification mistake, we can train expert ML models
using only subsets of the training data. With a small ML model that offers a valid
classification result only for the high confidence queries, we remain with the harder
queries, i.e., that fraction of queries without a valid classification by the small model due
to an insufficient confidence level. For this fraction of harder queries we build expert ML
models. To do so in a resource efficient manner, we want to identify only the relevant
subsets of the training data that will train the expert models to succeed specifically where
the small model has low confidence in its classifications and is more likely to make a
classification mistake. To do so, we observe that it is possible to leverage the small
model we have already built. Specifically, we classify the entire training dataset by the
small model and obtain the classification confidence level of each data instance. Roughly
speaking, we “filter” data instances that the small model finds easy and train the experts
using only data instances it finds hard. As we later detail, we use two expert models,
each of which is responsible to handle a specific type of possible misclassifications by
the small model.

2.2 RADE’s Architecture

RADE’s architecture is illustrated in Figure 1. We next detail RADE’s classification and
training processes as well as introduce new hyper-parameters and provide further intuition
into our design choices.

Classification. Algorithm 1 describes the procedure for a classification by RADE. First, we
classify an arriving data instance by the coarse-grained model (Mcg in line 1). Whenever
the resulting confidence level is greater than or equal to the classification confidence thresh-
old (CCT) the classification by the coarse-grained model is valid and therefore returned
(lines 2-4). Otherwise, if the resulting confidence level is lower than CCT, the query is for-
warded to one of the fine-grained models, which is chosen according to the coarse-grained

2 For example, if a classification output is (Normal=0.78, Anomaly=0.22) that means that the instance is
classified as Normal with a classification confidence level of 0.78.

6 Shay Vargaftik et al.

Fine-grained
model 1

Fine-grained
model 2

Coarse-grained
model

RADE Model

High
confidence

Normal with
low confidence

Anomaly with
low confidence

Query

Fig. 1: RADE’S architecture. Upon a classification query, it is first classified by the small
ML model (termed coarse-grained). Only if the classification confidence by the coarse-
grained model is not sufficiently high, the query is forwarded to an expert ML model (termed
fine-grained) for re-classification. Fine-grained model 1 is responsible for low-confidence
Normal classifications and Fine-grained model 2 for low-confidence Anomaly classifica-
tions, of the coarse-grained ML model.

Algorithm 1 RADE classification
Input: Unlabeled data point x, confidence threshold CCT.
1: obtain coarse-grained distribution: dx = Mcg(x)
2: classify: y = argmax(dx)
3: if max(dx) ≥ CCT:
4: return y
5: else:
6: y == Normal ? c = 1 : c = 2
7: obtain fine-grained distribution: d̄x = Mc

fg

8: classify: ȳ = argmax(d̄x)
9: return ȳ

classification (lines 5-9). Specifically, if the coarse-grained low-confidence classification is
Normal, then the instance is forwarded to fine-grained model 1 (M1

fg) which is trained
to distinguish between Normal instances that are correctly classified by the coarse-grained
model and Anomaly instances. Likewise, if the coarse-grained low-confidence classification
is Anomaly, then the instance is forwarded to fine-grained model 2 (M2

fg) which is trained
to distinguish between Normal instances that are misclassified by the coarse-grained model
and Anomaly instances.

Note that Algorithm 1 introduces the new hyper-parameter CCT. Roughly speaking,
CCT introduces a trade-off between error rate and resource usage. We would like to choose
its value low enough such that most of the classification queries are classified by the coarse-
grained model but high enough such that we keep low and competitive error rate.

Training. Algorithm 2 describes the procedure for training a RADE model. It begins with
the training of a coarse-grained model using all training data (line 1). Next, we train the
fine-grained models. To that end, we classify each data instance in the training data by the
coarse-grained model (lines 5). Then, if the confidence level (i.e., max(dx)) of the data

RADE: Resource-Efficient Supervised Anomaly Detection 7

Algorithm 2 RADE training
Input: Labeled training data set X , confidence threshold TCT.
1: train Mcg using X
2: set: data mask 1 = ∅
3: set: data mask 2 = ∅
4: for each x ∈ X:
5: obtain coarse-grained distribution: dx = Mcg(x)
6: if max(dx) < TCT:
7: if x.label == Anomaly:
8: update: data mask 1.append(True)
9: update: data mask 2.append(True)
10: else:
11: classify: y = argmax(dx)
12: if y == Normal:
13: update: data mask 1.append(True)
14: update: data mask 2.append(False)
15: else:
16: update: data mask 1.append(False)
17: update: data mask 2.append(True)
18: else:
19: update: data mask 1.append(False)
20: update: data mask 2.append(False)
21: train M1

fg using X[data mask 1]

22: train M2
fg using X[data mask 2]

instance is lower than the training confidence threshold (TCT), the labeled data instance
is used by both experts if its label is Anomaly (lines 8-9) or otherwise used by a single
fine-grained model according to the prediction made by the coarse-grained model (lines 11-
17). Notice that in lines 11-17, the data instances are used by a specific fine-grained model
according to their low-confidence coarse-grained classification, and not according to their
labels. The reason is that we train the fine-grained models to succeed specifically where the
coarse-grained model is insufficiently confident and is more likely to make a mistake.

2.3 Why use all low-confidence anomalies for the training of both experts?

As illustrated in Figures 2(a) and 2(b), the data instances that are used to train fine-grained
model 1 contain: (1) all low confidence Anomaly instances and, (2) low confidence Normal
instances that are correctly classified by the coarse-grained model. Intuitively, this model
becomes an expert in distinguishing between Normal instances that are correctly classified
by the coarse-grained model and Anomaly instances. Likewise, the data instances that are
used to train fine-grained model 2 contain: (1) all low confidence Anomaly instances and,
(2) low confidence Normal instances that are misclassified by the coarse-grained model.
Intuitively, this model becomes an expert in distinguishing between misclassified Normal
instances by the coarse-grained model and Anomaly instances.

Naturally, for a training dataset, the Anomaly class is considerably smaller (usually by
orders of magnitude) than the Normal class in terms of the number of instances, and its
low-confidence subset is even smaller. This fact results in two potential drawbacks, which
we mitigate by using the low-confidence Anomaly labeled instances in the training of both
fine-grained models (lines 8-9 in Algorithm 2), as we describe in the following:

8 Shay Vargaftik et al.

– Less accurate Anomaly coarse-grained classification: Since the coarse-grained model
is trained using a rather small number of Anomaly instances as compared to the num-
ber of Normal instances, its classifications over these instances, as we find, are very
noisy with many misclassifications as compared to the Normal instances. Namely, the
classification distribution vector over these instances has a significant variance, which is
even more severe for the low-confidence Anomaly subset. This makes the classification
of the coarse-grained model as to which fine-grained model we need to send a specific
low-confidence Anomaly instance less reliable (unlike for the Normal instances).

– Increased overfitting likelihood by the fine-grained models: Due to the small cardinality
of the low-confidence subset of the Anomaly instances, it is more likely for a fine-
grained classifier to receive a non-sufficient number of such instances for training. This,
in turn, increases the likelihood of overfitting the model. That is, it is more likely for
the training of a fine-grained classifier to terminate in a state in which it has a nearly
perfect score for the low-confidence subset of the Anomaly instances that were used for
its training, but this fine-grained model is likely to be less accurate at a classification of
a low-confidence Anomaly instance that have not been used for its training and thus is
more likely to be too different from other labeled instances this fine-grained classifier
was trained on.

Therefore, using all the low-confidence subset of Anomalies by both fine-grained models
reduces the likelihood of both drawbacks and makes the fine-grained models better experts
for those queries in which the coarse-grained model is more likely to make a classification
mistake. As we show in our evaluation, this design choice results in a very low overhead in
terms of the number of data instances used for the fine-grained models training.

Evidently, many other data augmentation techniques such as synthesizing new cases,
adding random noise and optimizing the oversampling percentage can be used by any clas-
sifier to potentially boost performance for imbalanced classification tasks (e.g., [17], [102]
and references therein). However, our usage of anomaly instances in both experts is unique
to RADE’s construction (as we have two fine-grained models) and is irrelevant to traditional
state-of-the-art DTEMs. On the other hand, other techniques, as those mentioned above, are
relevant to all DTEMs, including RADE, and are orthogonal to our contribution. In par-
ticular, after the dataset for each fine-grained model is selected, any of the aforementioned
subsampling or up-sampling techniques can be employed when training an expert (e.g., bal-
anced or stratified sampling within its dataset).

In Section 3.6, we show evaluation results where we subsample and oversample the low
confidence anomalies for the training of the two expert models, shedding light on our default
design choice.

2.4 Putting it all together

Note that Algorithm 2 introduces the new hyper-parameter TCT. TCT should be chosen
with respect to CCT. Roughly speaking, TCT introduces a tradeoff between the size of
the fine-grained models and their training complexity to robustness against high-variance
classification distributions by the coarse-grained model as we next describe.

Figure 2(c) depicts an illustration of RADE’s TCT driven training and CCT driven clas-
sification and how the two hyper-parameters relate. As illustrated, we may use different TCT
and CCT values where we are interested in a subset of values such that TCT≥CCT. The in-
tuition for why it may be of interest to set TCT>CCT rather than TCT==CCT, is that it
allows us to train the fine-grained models with a bigger subset of the labeled data instances

RADE: Resource-Efficient Supervised Anomaly Detection 9

TCTTCT

Low confidence coarse-grained DTEM (𝑴𝒄𝒈)
classification of the training dataset

1 10.5
True Negative
False Negative

True Positive
False Positive

Normal with a
high confidence

Anomaly with a
high confidence

True Positive and False Negative = Anomaly instances
True Negative and False Positive = Normal instances

(a) We classify the training dataset using the coarse-grained model. Only the instances with low resulting
classification confidence are used for the training of the fine-grained models.

𝑴𝒇𝒈
𝟏 training dataset:

True Negative
False Negative

True Positive
False Positive

True Negative
False Negative

True Positive
False Positive

𝑴𝒇𝒈
𝟐 training dataset:

(b) Illustrating the dataset of each fine-grained model. Low confidence anomalies are included in both subsets.

CCT TCT

Low confidence coarse-grained DTEM
(𝑴𝒄𝒈) classification

1 10.5TCT CCT

Classified by
𝑴𝒇𝒈
𝟏

Classified by
𝑴𝒇𝒈
𝟐

Returned as
Normal by 𝑴𝒄𝒈

Returned as Anomaly
by 𝑴𝒄𝒈

(c) Illustrating RADE’s confidence level driven classification. CCT is chosen to be less or equal to TCT. This
results in the fine-grained models being trained using a superset of instances in terms of their confidence level
by the coarse-grained model in comparison to the set that is being forwarded to them for classification.

Fig. 2: RADE confidence level driven training and classification. The training confidence
threshold (TCT) at the coarse-grained model determines the training data for each fine-
grained classifier. For classification, the classification confidence threshold (CCT) at the
coarse-grained model determines whether a classification query is returned directly by the
coarse-grained model or which fine-grained model is queried for the latter case.

as compared to the classification subset that is re-classified by them. Tuning TCT, as we
empirically find in our evaluations, often improves the anomaly detection capabilities for a
modest price in training time and fine-grained model sizes.

2.5 On RADE and resource-efficiency

We next discuss intuition as to why RADE results in lower memory footprint, lower training
time, and lower classification time as compared to standard monolithic DTEMs.

The training time and training complexity of DTEMs depend on the amount of available
training data instances, the number of features (i.e., the dimensionality of the data), the

10 Shay Vargaftik et al.

number of trees and their depth limitations (if there are any). Whereas, the classification
time mostly depends on the model size (i.e., the number of trees and their depths). Clearly,
the smaller model size of a coarse-grained classifier directly improves all of the criteria
mentioned above. Beyond being fast to train and quick to query, its small size, as we find in
our evaluation, often enables it to be fully/largely contained in cache memory even for small
cache sizes, such as of edge devices. Additionally, as mentioned, the fine-grained classifiers
are being trained by subsets of the training data, which reduces their training time, and,
often, their size. Indeed, our evaluation shows that the size of the fine-grained models is
considerably smaller as compared to their corresponding monolithic models for all tested
data sets and classification methods.

Essentially, when considering a RADE model (i.e., both the coarse-grained and the fine-
grained models), on average, the classification time of RADE equals to a weighted average
of the latencies according to the fraction of the classifications that are served by the coarse-
grained and fine-grained models. Since the aim is for the coarse-grained model to serve most
of the classifications, the averaged classification time is expected to significantly improve
over standard monolithic DTEMs.

To summarize, both the coarse-grained and fine-grained models contribute to the overall
improvements of RADE, in the following ways: The coarse-grained model is (1) based on
a small classifier and, (2) serves most of the classification queries. The fine-grained models
are (1) being trained using only subsets of the training data, (2) smaller as compared to the
corresponding monolithic DTEMs and, (3) serve only a small fraction of the classification
queries.

3 Evaluation

In this section, we conduct an evaluation of RADE and compare it to monolithic state-of-
the-art DTEMs using different real-world datasets. We evaluate over different AWS EC2
instances and a Raspberry Pi 3 Model B Plus device. We start by briefly describing RADE’s
modular implementation in §3.1, introduce configuration notations in §3.2, detail the evalu-
ation datasets in §3.3 and compare our chosen DTEM baselines to other non-DTEM state-
of-the-art classifiers in §3.4.

Then, in §3.5 we turn to the evaluation of our first observation, i.e., that a small (i.e.,
coarse-grained) DTEM model is sufficient to classify the majority of the classification queries
correctly. We continue to compare RADE models against monolithic RF and XGBoost in
§3.7. Then, we take a deeper look into RADE’s components in §3.8 showing its unique
properties including the especially small size of the coarse-grained model, the reduced data
subsets that are used for the training of the fine-grained models and the small data fractions
that are classified by them. We also briefly discuss the new hyperparameters and our de-
fault configuration for RADE. Finally in §3.9, we conduct evaluation over Raspberry Pi 3
B Plus showing the advantages of RADE over monolithic models when employed over a
resource-constrained device.

3.1 RADE’s Implementation

We implement RADE as a scikit-learn classifier [63]. RADE’s design is modular such that
it supports any DTEM classifier that implements scikit-learn’s API.

The code is available in [78].

RADE: Resource-Efficient Supervised Anomaly Detection 11

Instances (n) # Features (d) Anomalies [%]

covertype 286048 54 0.96%
kddcup99 976158 41 0.35%
creditcardfraud 284807 30 0.17%
seismic 2584 18 6.58%
mammography 11183 6 2.32%
communities 1994 127 2.86%

Table 1: Evaluation datasets.

In our evaluation, we focus on the state-of-the-art widely used DTEMs

– Random forest [76] as a representative bagging DTEM.
– xgboost-v0.90 [66] as a representative boosting DTEM.

3.2 Classifier Configuration Notations

For ease of exposition, we use the following notations.

Monolithic classifier configuration. We denote a classifier C with T trees and a tree depth
limitation of D, by C(T,D). A classifier without a tree depth limitation is denoted by
C(T,None). In our evaluation C can be either a random forest (RF), or XGBoost (XGB).
For instance, a RF with 10 trees, each limited to a depth of 5 is denoted by RF (10, 5).

RADE classifier configuration. We denote a RADE classifier by a tuple RADE(C(Tcg, Dcg),
C(Tfg, Dfg),CCT,TCT), that states the coarse-grained model, followed by the fine-grained
models, followed by the classification and training confidence thresholds. For instance,
RADE(RF(10,5),RF(25,20),0.8,0.9) is a RADE model with RF (10, 5) as the coarse-grained
model, RF (25, 20) as each of the fine-grained models, CCT = 0.8, and TCT = 0.9.

3.3 Datasets

Table 1 summarizes the datasets we use in our evaluation. Three of them are of a higher
interest to our study since they are both larger and thus more resource consuming and with
a lower percentage of anomalies. All three are from different domains and use cases as we
next describe:

– covertype [54]. This dataset is used in predicting forest cover type from cartographic
variables [5, 31, 59, 61]. This study includes four wilderness areas located in the Roo-
sevelt National Forest of northern Colorado. Class 2 is considered as Normal, and class
4 as Anomaly (0.96%).

– kddcup99 [55]. This dataset is a popular benchmark and is widely used for the evalu-
ation of IDS systems [24, 42, 73]. It was used for The Third International Knowledge
Discovery and Data Mining Tools Competition in which the task was to build a network
intrusion detector. This database contains a standard set of data to be audited, which in-
cludes a wide variety of intrusions simulated in a military network environment. In our
evaluation, we treat all intrusions (e.g., DoS, Probe, R2L) as Anomalies (0.35%) and all
non-hostile connections as Normal.

12 Shay Vargaftik et al.

Dataset Model Macro
F1

AUC
Score

Kappa
Score

Training
Time [sec]

Classification
Latency [sec]

Model Size
[MB]

communities

DT 0.607±0.058 0.607±0.067 0.215±0.116 0.046±0.01 0.0013±0.0001 0.005±0.0
KNN 0.493±0.0 0.5±0.0 0.0±0.0 0.014±0.001 0.0477±0.0003 2.657±0.0
MLP 0.561±0.041 0.547±0.033 0.128±0.078 1.083±0.908 0.0018±0.0002 0.302±0.001
SVC 0.491±0.061 0.635±0.055 0.08±0.048 0.26±0.008 0.1219±0.0041 1.015±0.034
RF 0.591±0.062 0.561±0.043 0.199±0.124 0.299±0.014 0.0046±0.0001 0.396±0.014
XGBoost 0.617±0.052 0.582±0.041 0.238±0.104 0.464±0.004 0.0039±0.0002 0.057±0.002

creditcardfraud

DT 0.87±0.004 0.867±0.011 0.741±0.009 13.504±1.447 0.0173±0.001 0.018±0.0
KNN 0.542±0.01 0.523±0.006 0.085±0.02 1.109±0.058 4.6257±0.0183 91.569±0.0
MLP 0.837±0.046 0.837±0.088 0.675±0.091 362.529±22.293 0.5022±0.0585 0.084±0.0
SVC 0.307±0.01 0.572±0.017 0.001±0.0 5905.542±192.291 953.3254±35.9696 40.944±0.479
RF 0.923±0.01 0.884±0.013 0.846±0.018 143.845±5.947 1.0881±0.0277 1.83±0.088
XGBoost 0.92±0.01 0.888±0.017 0.841±0.02 43.287±0.321 0.3027±0.0136 0.066±0.001

kddcup99

DT 0.998±0.001 0.997±0.001 0.996±0.002 4.938±0.478 0.1914±0.0024 0.006±0.0
KNN 0.997±0.0 0.995±0.001 0.994±0.0 212.902±6.352 81.9521±0.3294 428.133±0.0
MLP 0.998±0.0 0.997±0.001 0.996±0.001 751.677±336.662 1.4721±0.0691 0.106±0.001
SVC 0.799±0.035 0.995±0.001 0.599±0.07 16199.047±5556.238 4128.2109±979.2873 57.734±13.313
RF 0.999±0.0 0.998±0.001 0.998±0.001 28.934±3.024 1.3763±0.0254 0.549±0.032
XGBoost 0.999±0.0 0.998±0.001 0.996±0.001 63.554±2.03 0.8775±0.0327 0.057±0.0

mammography

DT 0.789±0.022 0.782±0.029 0.579±0.044 0.024±0.002 0.0003±0.0 0.017±0.001
KNN 0.803±0.023 0.752±0.023 0.607±0.045 0.019±0.007 0.1924±0.0028 0.809±0.0
MLP 0.828±0.01 0.779±0.01 0.657±0.02 5.27±0.39 0.0027±0.0001 0.028±0.0
SVC 0.698±0.014 0.903±0.008 0.404±0.027 0.615±0.061 0.1788±0.0095 0.099±0.005
RF 0.828±0.017 0.767±0.021 0.659±0.038 0.531±0.019 0.0272±0.0008 1.516±0.075
XGBoost 0.83±0.013 0.781±0.017 0.661±0.026 0.293±0.003 0.0074±0.0002 0.061±0.001

Table 2: ML and resource consumption comparison among different monolithic classifiers.

– creditcardfraud [53]. This is a popular dataset that is used for anomaly and fraud de-
tection benchmarking. [13, 14, 21, 22, 48]. The datasets contains transactions made by
credit cards in September 2013 by european cardholders. This dataset presents transac-
tions that occurred in two days, with frauds which we treat as Anomalies (0.17%) where
all the rest are legitimate (Normal) transfers.

While we give more focus to the three aforementioned largest datasets, all datasets,
including seismic, mammography and communities are widely used and publicly available
via the UCI repository [26]. creditcardfraud is available via Kaggle [53] and kddcup99 and
covertype are also available via scikit-learn’s datasets module.

3.4 Monolithic DTEMs as Baselines

In this paper, we focus on DTEMS. Nevertheless, we next compare our chosen baselines,
i.e., RF and XGBoost, to several non-DTEM state-of-the-art classifiers: Decision-tree (DT),
K-nearest-neighbors (KNN), Multi-layer Perceptron (MLP), and Support Vector Classifier
(SVC). We perform the ML performance comparison over three different scores: Macro-F1,
area-under-the-curve (AUC), and Kappa [20].

The results are depicted in Table 2. Both RF and XGBoost offer an appealing tradeoff be-
tween ML performance and resource consumption. In particular, in our datasets, they mostly
achieve the best ML performance across all three ML metrics while being competitive in
resource consumption with other classifiers (except KNN and SVC, whose resource con-
sumption is usually higher than the other methods and MLP whose training time is usually
higher than the other methods). Note that DT is often less resource-consuming than other
methods. However, it mostly achieves lower ML scores than RF and especially XGBoost.

RADE: Resource-Efficient Supervised Anomaly Detection 13

covertype

0.5 0.6 0.7 0.8 0.9 1.0
CCT

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n

Anomaly

Normal

0.5 0.6 0.7 0.8 0.9 1.0
CCT

0.94

0.95

0.96

0.97

0.98

0.99

1.00

M
ac

ro
F

1

kddcup99

0.5 0.6 0.7 0.8 0.9 1.0
CCT

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

F
ra

ct
io

n

Anomaly

Normal

0.5 0.6 0.7 0.8 0.9 1.0
CCT

0.995

0.996

0.997

0.998

0.999

1.000

M
ac

ro
F

1

creditcardfraud

0.5 0.6 0.7 0.8 0.9 1.0
CCT

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n

Anomaly

Normal

0.5 0.6 0.7 0.8 0.9 1.0
CCT

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

M
ac

ro
F

1

(a) Classification by a small RF with 10 trees each of
which is limited to a depth of 5 – RF (10, 5).

covertype

0.5 0.6 0.7 0.8 0.9 1.0
CCT

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n

Anomaly

Normal

0.5 0.6 0.7 0.8 0.9 1.0
CCT

0.94

0.95

0.96

0.97

0.98

0.99

1.00

M
ac

ro
F

1

kddcup99

0.5 0.6 0.7 0.8 0.9 1.0
CCT

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

F
ra

ct
io

n

Anomaly

Normal

0.5 0.6 0.7 0.8 0.9 1.0
CCT

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

M
ac

ro
F

1

creditcardfraud

0.5 0.6 0.7 0.8 0.9 1.0
CCT

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n

Anomaly

Normal

0.5 0.6 0.7 0.8 0.9 1.0
CCT

0.78

0.80

0.82

0.84

0.86

0.88

M
ac

ro
F

1
(b) Classification by a small XGBoost with 10
trees each of which is limited to a depth of 3 –
XGB(10, 3).

Fig. 3: The useful classification fraction and its resulting macro F1 score by a small ML
model (coarse-grained model), when a classification is valid only if its confidence level is
greater than or equal to a given classification confidence threshold (CCT).

3.5 Small ML model with a high confidence?

We turn to the evaluation of our first observation (the first of two observations on which
RADE’s architecture relies on):

“We can build a small ML model that is sufficient to classify the majority of the classifi-
cation queries correctly” (§2.1)

Setup. We conduct evaluation over:

– A small RF with only 10 trees, each of which is limited to a depth of 5 (i.e., RF (10, 5)).
– A small XGBoost with only 10 trees, each of which is limited to a depth of 3 (i.e.,

XGB(10, 3)).

We present the results for these specific hyperparameters since these are, in fact, the default
sizes of our coarse-grained models in RADE. In these experiments we focus on the 3 largest
datasets, i.e., covertype, kddcup99 and creditcardfraud.

In each experiment, we sweep over CCT and measure the valid classification fraction of
Anomaly and Normal instances as well as their Macro F1 score3.

3 We use F1 score since it is more useful than Accuracy, for an uneven class distribution. Indeed, this is the
case for anomaly detection purposes. Macro F1 score is the non-weighted mean of the Anomaly and Normal
F1 scores.

14 Shay Vargaftik et al.

RF(10,5). Figure 3(a) shows the evaluation results. Several phenomena are evident:

– As CCT increases, the fraction of valid classifications decreases. This phenomenon is
especially significant for the anomalies. Indeed, this comes in line with the intuition that
anomalies, due to their significantly smaller number and possible uniqueness, are much
harder to classify correctly and with a high confidence for this small model.

– Unless CCT is set too high or too low, the resulting fraction of the valid classifications
has a higher Macro F1 score. Again, this comes in line with the intuition that higher con-
fidence is a good indication for a correct classification. It is important to note, however,
that this phenomenon is not necessarily monotonic. For example, for the creditcardfraud
dataset, CCT = 0.85 leads to a higher score than CCT = 0.9. This means that several
classifications that were correct with a confidence level between 0.85 and 0.9 became
not valid with the increase of CCT.

– Unless CCT is set too high, the resulting fraction of non-valid classifications is at most
≈1%. This is because over 99% of the data points are normal, so the non-valid anomalies
account only for a small fraction of the entire dataset.

– As can be seen by the kddcup99 and creditcardfraud datasets, we occasionally find few
misclassifcations with a high confidence. These are often points that are misclassified
even by large monolithic models since they are located deeply in the domain of the
opposite class.

– If CCT is set too high, all / nearly all classification results are not valid and therefore
their respective fractions drop.

To summarize, we find that working with a small model by setting a sufficient CCT
results in a high fraction of valid classifications with a Macro F1 score that is competitive to
large monolithic models as we later show.

XGB(10,3). Figure 3(b) shows the evaluation results. All the results follow similar lines to
the results in Figure 3(a). The main difference is that the confidence levels are, in general,
lower than those by the RF. This should be taken into consideration when setting hyperpa-
rameters for RADE as we later discuss.

3.6 The use of low confidence anomalies for the training of the expert models

This section examines the effect of sub- and over-sampling the low-confidence anomalies
for the training of RADE’s expert models. Figure 4 shows how the sampling ratio affects
RADE’s ML scores (i.e., AUC, Kappa, and Macro F1) for different datasets and both RADE
flavors (RF- and XGboost-based).

Sub-sampling the low-confidence anomalies results in degraded ML scores, which aligns
with intuition. That is, low-confidence anomalies form a minority set with often unique ex-
amples. Similar examples at the test data are expected to result in low confidence classifi-
cation by the coarse-grained model. Thus, omitting similar examples from the training of
the fine-grained models increases the possibility of misclassification. It is also evident that
increasing the number of such examples (i.e., oversampling) results in a limited impact on
the ML performance for our DTEM based classifiers.

Using all the low-confidence anomalies for the training of both fine-grained models
(which is equivalent to a sampling ratio of 1 in the figure) emerges as a solid operating point
across all tests we conducted. Indeed, this is our default design choice for RADE.

RADE: Resource-Efficient Supervised Anomaly Detection 15

0.0 0.5 1.0 1.5 2.0

0.550

0.575

0.600

0.625

0.650

R
F

-b
as

ed

AUC score

0.0 0.5 1.0 1.5 2.0

0.200

0.225

0.250

0.275

0.300

Kappa score

0.0 0.5 1.0 1.5 2.0

0.575

0.600

0.625

0.650

0.675

Macro F1 score

0.0 0.5 1.0 1.5 2.0

Sampling ratio

0.64

0.66

0.68

0.70

X
G

B
o
os

t-
b

as
ed

0.0 0.5 1.0 1.5 2.0

Sampling ratio

0.32

0.34

0.36

0.38

0.0 0.5 1.0 1.5 2.0

Sampling ratio

0.66

0.68

0.70

(a) communities

0.0 0.5 1.0 1.5 2.0

0.75

0.76

0.77

0.78

0.79

R
F

-b
as

ed

AUC score

0.0 0.5 1.0 1.5 2.0

0.62

0.64

Kappa score

0.0 0.5 1.0 1.5 2.0

0.80

0.81

0.82

0.83

Macro F1 score

0.0 0.5 1.0 1.5 2.0

Sampling ratio

0.77

0.78

0.79

X
G

B
o
os

t-
b

as
ed

0.0 0.5 1.0 1.5 2.0

Sampling ratio

0.63

0.64

0.65

0.0 0.5 1.0 1.5 2.0

Sampling ratio

0.81

0.82

0.83

(b) mammography

0.0 0.5 1.0 1.5 2.0

0.9945

0.9950

0.9955

0.9960

0.9965

R
F

-b
as

ed

AUC score

0.0 0.5 1.0 1.5 2.0

0.9915

0.9920

0.9925

0.9930

Kappa score

0.0 0.5 1.0 1.5 2.0

0.9950

0.9955

0.9960

0.9965

0.9970

Macro F1 score

0.0 0.5 1.0 1.5 2.0

Sampling ratio

0.994

0.995

X
G

B
o
os

t-
b

as
ed

0.0 0.5 1.0 1.5 2.0

Sampling ratio

0.989

0.990

0.991

0.0 0.5 1.0 1.5 2.0

Sampling ratio

0.994

0.995

0.996

(c) covertype

0.0 0.5 1.0 1.5 2.0

0.875

0.880

0.885

0.890

R
F

-b
as

ed

AUC score

0.0 0.5 1.0 1.5 2.0

0.825

0.830

0.835

0.840

Kappa score

0.0 0.5 1.0 1.5 2.0

0.910

0.915

0.920

0.925

Macro F1 score

0.0 0.5 1.0 1.5 2.0

Sampling ratio

0.880

0.885

0.890

0.895

X
G

B
o
os

t-
b

as
ed

0.0 0.5 1.0 1.5 2.0

Sampling ratio

0.825

0.830

0.835

0.840

0.0 0.5 1.0 1.5 2.0

Sampling ratio

0.910

0.915

0.920

0.925

(d) creditcardfraud

Fig. 4: The effect of sub- and over-sampling the low-confidence anomalies on RADE’s per-
formance. Our design choice for RADE (i.e., sampling ratio of 1) is marked by a bigger
marker.

16 Shay Vargaftik et al.

Classifier Dataset Model Macro F1 AUC Kappa Score

RF

covertype Monolithic 0.998±0.001 0.999±0.001 0.996±0.001
RADE 0.996±0.001 (-0.002) 0.996±0.001 (-0.003) 0.992±0.001 (-0.004)

kddcup99 Monolithic 0.999±0.0 0.998±0.001 0.998±0.001
RADE 0.998±0.001 (-0.001) 0.997±0.001 (-0.002) 0.996±0.001 (-0.001)

creditcardfraud Monolithic 0.923±0.01 0.884±0.013 0.846±0.018
RADE 0.92±0.008 (-0.003) 0.891±0.013 (+0.007) 0.841±0.016 (-0.006)

seismic Monolithic 0.502±0.013 0.509±0.007 0.031±0.023
RADE 0.522±0.02 (+0.019) 0.52±0.012 (+0.011) 0.062±0.035 (+0.031)

mammography Monolithic 0.828±0.017 0.767±0.021 0.659±0.038
RADE 0.826±0.017 (-0.002) 0.786±0.02 (+0.019) 0.653±0.034 (-0.006)

communities Monolithic 0.591±0.062 0.561±0.043 0.199±0.124
RADE 0.65±0.036 (+0.059) 0.629±0.034 (+0.067) 0.301±0.072 (+0.101)

XGBoost

covertype Monolithic 0.996±0.001 0.995±0.001 0.992±0.002
RADE 0.994±0.001 (-0.002) 0.994±0.002 (-0.002) 0.988±0.003 (-0.004)

kddcup99 Monolithic 0.999±0.0 0.998±0.001 0.996±0.001
RADE 0.996±0.001 (-0.003) 0.992±0.002 (-0.006) 0.989±0.004 (-0.008)

creditcardfraud Monolithic 0.92±0.01 0.888±0.017 0.841±0.02
RADE 0.92±0.01 (+0.000) 0.896±0.014 (+0.008) 0.841±0.02 (-0.000)

seismic Monolithic 0.508±0.019 0.512±0.01 0.041±0.033
RADE 0.49±0.012 (-0.018) 0.503±0.006 (-0.009) 0.01±0.02 (-0.031)

mammography Monolithic 0.83±0.013 0.781±0.017 0.661±0.026
RADE 0.812±0.018 (-0.018) 0.769±0.019 (-0.012) 0.625±0.035 (-0.036)

communities Monolithic 0.617±0.052 0.582±0.041 0.238±0.104
RADE 0.674±0.069 (+0.057) 0.632±0.059 (+0.050) 0.351±0.136 (+0.113)

Table 3: RADE vs. monolithic DTEMs over t2.2xlarge AWS EC2 instance. RADE has
a competitive ML performance in terms of Macro F1, AUC and Kappa scores. The values
in the parenthesis show the difference between RADE and the monolithic models.

Clearly, for each specific dataset and model, one can optimize over the sampling ra-
tio; for example, for the communities dataset, using 1.5 instead of 1 slightly improves the
performance for the XGBoost-based flavor.

3.7 RADE vs. Monolithic DTEMs

Setup. We report results conducted over a general purpose environment by a t2.2xlarge
AWS EC2 instance that provides a balance of compute and memory, with 8 vCPUs and
32 GB RAM running Ubuntu 16.04 LTS. All classifiers are configured to run on a single
core for fair training and classification time comparison.

Runs. For each classifier and dataset, we perform 10 runs with different seeds and report
mean and standard deviation values.

Models. We compare between our default RADE models to the default models of the mono-
lithic RF and XGBoost. That is, we compare between

– RF(100,–) and RADE(RF(10,5),RF(25,20),0.8,0.9).
– XGB(100,3) and RADE(XGB(10,3),XGB(30,3),0.8,0.8).

Results. The results are summarized in Table 3 (ML scores) and Table 4 (resource con-
sumption metrics). For both RF and XGBoost, RADE is competitive in comparison to the
monolithic models in all ML scores.

In terms of resource usage, it is evident how RADE offers large savings in training time,
classification time, and memory footprint. These savings become more significant as the
datasets become larger. For example, for the creditcardfraud dataset, RADE’s training time

RADE: Resource-Efficient Supervised Anomaly Detection 17

Classifier Dataset Model Training Time [sec] Classification Time [sec] Model Size [MB]

RF

covertype Monolithic 8.6±0.4 0.607±0.0148 1.69±0.04
RADE 3.0±0.0 (2.9x) 0.0736±0.0008 (8.2x) 0.39±0.03 (4.3x)

kddcup99 Monolithic 28.9±3.0 1.3763±0.0254 0.55±0.03
RADE 5.7±0.2 (5.1x) 0.2258±0.0015 (6.1x) 0.07±0.0 (8.2x)

creditcardfraud Monolithic 143.8±5.9 1.0881±0.0277 1.83±0.09
RADE 6.9±0.1 (20.9x) 0.0655±0.0008 (16.6x) 0.14±0.01 (12.8x)

seismic Monolithic 0.2±0.0 0.0065±0.0002 1.9±0.03
RADE 0.1±0.0 (3.3x) 0.0007±0.0 (8.9x) 0.27±0.02 (7.0x)

mammography Monolithic 0.5±0.0 0.0272±0.0008 1.52±0.07
RADE 0.2±0.0 (3.2x) 0.0021±0.0001 (12.9x) 0.2±0.01 (7.6x)

communities Monolithic 0.3±0.0 0.0046±0.0001 0.4±0.01
RADE 0.1±0.0 (4.7x) 0.0015±0.0 (3.0x) 0.08±0.0 (4.9x)

XGBoost

covertype Monolithic 23.8±0.2 0.2628±0.0098 0.05±0.0
RADE 5.4±0.0 (4.4x) 0.0983±0.0006 (2.7x) 0.04±0.0 (1.2x)

kddcup99 Monolithic 63.6±2.0 0.8775±0.0327 0.06±0.0
RADE 13.8±1.3 (4.6x) 0.4403±0.0114 (2.0x) 0.03±0.0 (2.1x)

creditcardfraud Monolithic 43.3±0.3 0.3027±0.0136 0.07±0.0
RADE 6.9±0.1 (6.3x) 0.0654±0.0005 (4.6x) 0.05±0.0 (1.4x)

seismic Monolithic 0.1±0.0 0.0026±0.0001 0.06±0.0
RADE 0.0±0.0 (2.6x) 0.0008±0.0 (3.3x) 0.03±0.0 (2.0x)

mammography Monolithic 0.3±0.0 0.0074±0.0002 0.06±0.0
RADE 0.1±0.0 (2.2x) 0.0013±0.0001 (5.6x) 0.04±0.0 (1.5x)

communities Monolithic 0.5±0.0 0.0039±0.0002 0.06±0.0
RADE 0.1±0.0 (4.1x) 0.0025±0.0001 (1.6x) 0.03±0.0 (1.9x)

Table 4: Resource consumption measurements for the evaluations in Table 3 – RADE vs.
monolithic DTEMs over t2.2xlarge AWS EC2 instance. RADE offers significant sav-
ings in training time, classification time and memory footprint.

Classifier Dataset Model
Size [KB]

Coarse-Grained
Model Size [KB]

Fine-grained
training data
[M1

fg , M2
fg]

Fine-grained
test data

[M1
fg , M2

fg]

RF

covertype 391.01 25.86 (6.6%) 1.27%, 0.94% 0.38%, 0.6%
kddcup99 66.80 26.88 (40.2%) 0.07%, 0.0% 0.0%, 0.0%
creditcardfraud 143.21 31.77 (22.2%) 0.09%, 0.07% 0.03%, 0.04%
seismic 271.94 37.95 (14.0%) 17.44%, 0.44% 6.59%, 0.07%
mammography 198.39 35.92 (18.1%) 2.66%, 1.36% 1.16%, 0.53%
communities 81.32 26.33 (32.4%) 6.0%, 0.0% 3.58%, 0.0%

XGBoost

covertype 44.13 8.27 (18.7%) 0.48%, 0.31% 0.24%, 0.28%
kddcup99 27.30 7.72 (28.3%) 0.07%, 0.01% 0.07%, 0.0%
creditcardfraud 46.12 8.13 (17.6%) 0.23%, 0.16% 0.11%, 0.14%
seismic 28.83 7.85 (27.2%) 25.56%, 0.93% 24.88%, 0.01%
mammography 40.21 8.05 (20.0%) 5.19%, 1.73% 4.25%, 1.12%
communities 29.76 8.64 (29.0%) 11.57%, 0.28% 11.19%, 0.06%

Table 5: A deeper look into RADE’s training and classification. It is evident how the coarse-
grained model is sufficiently small to fit into the cache memory of even a small edge device.
The percentage in the parenthesis show the coarse-grained size out of the total size of RADE.
It is also notable how often the fractions that are passed for the training of the fine-grained
models and for their classification are small.

is 6.3× faster than that of XGBoost. For the same dataset, RADE’s model size is 12.8×
smaller than that of RF.

We have also tried different hyperparameters for both RADE and the monolithic models
and found the above results to be representative. In fact, a more careful choice of hyper-
parameter for RADE often leads to larger gains than reported in this paper. However, such

18 Shay Vargaftik et al.

Classifier Dataset Model Macro F1 AUC Score

RF

covertype RADE 0.996±0.001 0.996±0.001
RADE (coarse-grained only) 0.937±0.007 0.891±0.011

kddcup99 RADE 0.998±0.001 0.997±0.001
RADE (coarse-grained only) 0.997±0.001 0.994±0.001

creditcardfraud RADE 0.92±0.008 0.891±0.013
RADE (coarse-grained only) 0.899±0.014 0.858±0.018

seismic RADE 0.522±0.02 0.52±0.012
RADE (coarse-grained only) 0.486±0.007 0.501±0.004

mammography RADE 0.826±0.017 0.786±0.02
RADE (coarse-grained only) 0.774±0.021 0.707±0.021

communities RADE 0.65±0.036 0.629±0.034
RADE (coarse-grained only) 0.593±0.043 0.561±0.03

XGBoost

covertype RADE 0.994±0.001 0.994±0.002
RADE (coarse-grained only) 0.982±0.001 0.982±0.003

kddcup99 RADE 0.996±0.001 0.992±0.002
RADE (coarse-grained only) 0.985±0.002 0.972±0.003

creditcardfraud RADE 0.92±0.01 0.896±0.014
RADE (coarse-grained only) 0.889±0.011 0.864±0.014

seismic RADE 0.49±0.012 0.503±0.006
RADE (coarse-grained only) 0.485±0.008 0.501±0.004

mammography RADE 0.812±0.018 0.769±0.019
RADE (coarse-grained only) 0.776±0.023 0.711±0.022

communities RADE 0.674±0.069 0.632±0.059
RADE (coarse-grained only) 0.61±0.05 0.574±0.035

Table 6: RADE vs. coarse-grained model only. It is evident how both scores are consistently
and significantly higher for RADE. This indicates that the aforementioned small fractions
of test data in Table 5 that are passed to the fine-grained model are misclassified by the
coarse-grained model but are correctly classified by the fine-grained models.

Classifier Dataset Macro F1 AUC Score
Fine-grained

training data %
[M1

fg , M2
fg]

Fine-grained
test data %
[M1

fg , M2
fg]

Training
Time [sec]

Classification
Time [sec]

Model
Size [MB]

RF

covertype 0.997 (+0.001) 0.998 (+0.002) 100.0%, 0.96% 0.6%, 0.74% 5.7 (191.9%) 0.0745 (101.1%) 0.48 (123.5%)
kddcup99 0.999 (+0.001) 0.997 (+0.001) 99.88%, 0.0% 0.01%, 0.0% 15.6 (272.6%) 0.2369 (104.9%) 0.16 (245.2%)
creditcardfraud 0.92 (-0.000) 0.887 (-0.004) 99.99%, 0.18% 0.06%, 0.07% 42.2 (614.2%) 0.0649 (99.1%) 0.49 (344.8%)
seismic 0.511 (-0.011) 0.513 (-0.006) 99.99%, 0.66% 19.54%, 0.07% 0.1 (135.2%) 0.0009 (126.6%) 0.52 (189.4%)
mammography 0.818 (-0.009) 0.766 (-0.020) 99.94%, 2.34% 2.53%, 0.83% 0.3 (169.3%) 0.0023 (109.1%) 0.43 (217.9%)
communities 0.614 (-0.036) 0.578 (-0.051) 99.97%, 0.0% 9.66%, 0.0% 0.1 (179.3%) 0.0015 (100.7%) 0.13 (157.2%)

XGBoost

covertype 0.994 (+0.000) 0.993 (-0.001) 99.97%, 0.99% 99.04%, 0.96% 12.4 (230.4%) 0.1989 (202.3%) 0.04 (101.7%)
kddcup99 0.997 (+0.001) 0.995 (+0.003) 100.0%, 0.17% 99.67%, 0.16% 35.4 (257.2%) 0.5201 (118.1%) 0.03 (115.2%)
creditcardfraud 0.917 (-0.004) 0.891 (-0.005) 99.98%, 0.19% 99.85%, 0.15% 19.5 (283.0%) 0.1387 (211.9%) 0.05 (101.6%)
seismic 0.485 (-0.004) 0.501 (-0.002) 99.99%, 1.32% 99.85%, 0.01% 0.1 (140.5%) 0.0013 (155.9%) 0.03 (105.0%)
mammography 0.799 (-0.013) 0.749 (-0.020) 99.91%, 2.42% 98.82%, 1.18% 0.2 (152.1%) 0.0031 (230.3%) 0.04 (102.7%)
communities 0.64 (-0.034) 0.598 (-0.034) 99.99%, 0.29% 99.28%, 0.06% 0.2 (178.6%) 0.0033 (132.1%) 0.03 (103.0%)

Table 7: Comparing the default RADE configurations to RADE configurations with an ad-
dition of 0.1 to the CCT and TCT values (i.e., , to RADE(RF(10,5),RF(25,20),0.9,1.0) and
RADE(XGB(10,3),XGB(30,3),0.9,0.9)). The values in the parenthesis show the difference
between these configurations and the default ones. It is evident how the further increase
in the thresholds show similar performance in terms of Macro F1 and AUC scores while
consuming considerably more resources.

careful tuning is out of the scope and motivation of our paper since we target training in
resource-constrained settings.

RADE: Resource-Efficient Supervised Anomaly Detection 19

3.8 Taking a deeper look into RADE

We rerun the experiments but now take a deeper look into RADE’s training and classifica-
tion.

In Table 5 we summarize the results of the memory footprint of the coarse-grained model
in comparison to the entire memory footprint of RADE. We also measure the fractions of
the training dataset that is used for the training of each fine-grained model and the fractions
that are passed to each during the classification of the test dataset.

It is evident how the coarse-grained model is sufficiently small and hence can fit into
the cache memory of even a small edge device, requiring no more than 40 KB. This further
contribute to the improvement of the classification latency, since many expensive cache
misses are alleviated for most of the instances. Also, the data fractions that are passed to the
fine-grained models for both training and classification are small. Indeed, this is expected
according to the previous analysis in §3.5 showing that the coarse-grained model manages
to handle the absolute majority of queries with a sufficiently high confidence.

Now we take a deeper look into the ML performance in terms of F1 and AUC scores of
RADE in comparison to its coarse-grained model – that is, by allowing the coarse-grained
model to classify all queries disregarding their confidence. Formally, we compare between:

– RF(10,5) and RADE(RF(10,5),RF(25,20),0.8,0.9).
– XGB(10,3) and RADE(XGB(10,3),XGB(30,3),0.8,0.8).

The results are summarized in Table 6. It is evident how both scores are consistently and
significantly higher for RADE. Indeed, this means that the aforementioned small fractions
of test data in Table 5 that are passed to the fine-grained models are misclassified by the
coarse-grained model but are correctly classified by the fine-grained models that are trained
to be experts for such particular situations.

Finally, we look at how a different choice of hyperparameters affects RADE’s perfor-
mance. Specifically, we use our default RADE configuration and a RADE model with +0.1
to the default CCT and TCT values. That is, we compare between:

– RADE(RF(10,5),RF(25,20),0.8,0.9)
and
RADE(RF(10,5),RF(25,20),0.9,1.0)

– RADE(XGB(10,3),XGB(30,3),0.8,0.8)
and
RADE(XGB(10,3),XGB(30,3),0.9,0.9)

The results are depicted in Table 7.
Increasing the default CCT and TCT results in bigger subsets of the dataset used by

fine-grained models during training and forwarded to them during classification. As a result,
an increase in the classification and training times is expected, while the Macro F1 and
AUC scores might be increased since the fine-grained models handle a higher fraction of the
dataset. However, our evaluation demonstrates how such a further increase in the thresholds
results in similar Macro F1 and AUC scores while consuming considerably more resources.

Indeed, we found our default configuration to be favorable over a variety of tests. It offers
a good balance between the coarse-grained and the fine-grained models, such that RADE
achieves competitive Macro F1 and AUC scores with relatively low resource consumption.

20 Shay Vargaftik et al.

Classifier Dataset Model Training Time [sec] Classification Latency [sec] Model Size [MB]

RF

covertype Monolithic 140.1±7.2 4.6534±0.1354 1.7±0.05
RADE 29.1±0.3 (4.8x) 0.5636±0.0061 (8.3x) 0.38±0.03 (4.4x)

kddcup99 Monolithic 47.3±0.8 2.0941±0.0208 0.62±0.02
RADE 6.4±0.8 (7.3x) 0.2696±0.0069 (7.8x) 0.06±0.01 (10.6x)

creditcardfraud Monolithic 1045.7±43.9 8.0629±0.184 1.82±0.09
RADE 51.1±0.2 (20.5x) 0.4813±0.0021 (16.8x) 0.14±0.01 (13.4x)

seismic Monolithic 1.6±0.0 0.0563±0.0006 1.88±0.04
RADE 0.5±0.1 (3.0x) 0.0067±0.0002 (8.4x) 0.27±0.02 (7.1x)

mammography Monolithic 3.3±0.1 0.1898±0.0019 1.51±0.07
RADE 1.2±0.0 (2.8x) 0.0155±0.0002 (12.3x) 0.19±0.01 (7.9x)

communities Monolithic 1.7±0.0 0.0391±0.0011 0.38±0.01
RADE 0.5±0.0 (3.7x) 0.0113±0.0003 (3.4x) 0.08±0.0 (5.0x)

XGBoost

covertype Monolithic 459.3±5.9 1.7061±0.0251 0.07±0.0
RADE 54.0±0.1 (8.5x) 0.8791±0.0043 (1.9x) 0.05±0.0 (1.5x)

kddcup99 Monolithic 105.0±2.6 0.6846±0.0317 0.06±0.0
RADE 9.5±1.0 (11.1x) 0.2794±0.0102 (2.4x) 0.02±0.0 (3.7x)

creditcardfraud Monolithic 1147.6±12.9 2.2038±0.0405 0.12±0.0
RADE 83.2±0.1 (13.8x) 0.5758±0.0034 (3.8x) 0.04±0.0 (2.7x)

seismic Monolithic 1.3±0.0 0.0204±0.0003 0.13±0.0
RADE 0.2±0.0 (5.1x) 0.0047±0.0002 (4.4x) 0.03±0.0 (4.1x)

mammography Monolithic 3.0±0.0 0.0721±0.0017 0.12±0.0
RADE 0.8±0.0 (3.9x) 0.0084±0.0001 (8.6x) 0.05±0.0 (2.7x)

communities Monolithic 2.6±0.1 0.0229±0.0005 0.05±0.0
RADE 0.5±0.0 (5.2x) 0.0176±0.0004 (1.3x) 0.03±0.0 (1.6x)

Table 8: Evaluation over Raspberry Pi 3 B+ device.

3.9 Evaluation over other environments

We evaluate RADE over other environments to cover different processors, memory sizes and
operating systems. More specifically, in the following we compare RADE to the monolithic
DTEMs over:
(1) An edge-device environment by Raspberry Pi 3 Model B Plus Rev 1.3 with 1-GB RAM
running Ubuntu 20.04 LTS; and
(2) A cost-effective environment by a a1.medium AWS EC2 instance with single vCPU (a
custom built AWS Graviton Processor with 64-bit Arm Neoverse core) and 2-GB memory,
running Amazon Linux 2.

Tables 8 and 9 compare the training time, classification time and memory size of RADE
and the monolithic models, for the same DTEMs and datasets, as in Tables 3 and 4. As can
be seen, the resource savings by RADE over these environments repeat the same trend as
presented in Table 4. Again, it is evident how the resource savings gap increases for the
larger datasets (i.e., covertype, kddcup99, and creditcardfraud).

To summarize, RADE achieves resource savings on different environments, including
general-purpose, cost-saving and edge-device.

4 Related Work

We next overview related work, including anomaly detection over edge-devices, DTEM
optimizations techniques, related ML models and, finally general ML optimization tech-
niques. For comprehensive anomaly detection techniques survey beyond our DTEM scope
the reader is referred to [16, 89].

RADE: Resource-Efficient Supervised Anomaly Detection 21

Classifier Dataset Model Training Time [sec] Classification Latency [sec] Model Size [MB]

RF

covertype Monolithic 23.0±1.2 0.8415±0.0193 1.7±0.06
RADE 8.5±0.1 (2.7x) 0.1086±0.0016 (7.7x) 0.39±0.03 (4.3x)

kddcup99 Monolithic 121.0±6.2 3.1705±0.0668 0.66±0.04
RADE 18.7±0.2 (6.5x) 0.4662±0.0024 (6.8x) 0.07±0.0 (9.5x)

creditcardfraud Monolithic 268.5±11.7 1.4155±0.0325 1.82±0.1
RADE 15.1±0.1 (17.8x) 0.0945±0.0004 (15.0x) 0.14±0.01 (12.7x)

seismic Monolithic 0.5±0.0 0.0119±0.0002 1.89±0.05
RADE 0.2±0.0 (2.8x) 0.0014±0.0 (8.5x) 0.27±0.02 (7.0x)

mammography Monolithic 1.1±0.0 0.0421±0.0008 1.51±0.07
RADE 0.5±0.0 (2.3x) 0.0038±0.0001 (11.1x) 0.2±0.01 (7.6x)

communities Monolithic 0.7±0.0 0.0074±0.0001 0.39±0.01
RADE 0.2±0.0 (3.7x) 0.002±0.0 (3.6x) 0.08±0.0 (4.8x)

XGBoost

covertype Monolithic 64.0±0.9 0.514±0.0106 0.07±0.0
RADE 12.3±0.0 (5.2x) 0.26±0.0014 (2.0x) 0.05±0.0 (1.5x)

kddcup99 Monolithic 206.9±6.0 2.0517±0.0591 0.06±0.0
RADE 34.3±4.8 (6.0x) 0.8053±0.011 (2.5x) 0.03±0.01 (2.3x)

creditcardfraud Monolithic 156.4±3.8 0.8468±0.0141 0.12±0.0
RADE 16.6±0.1 (9.4x) 0.1652±0.0032 (5.1x) 0.04±0.0 (2.9x)

seismic Monolithic 0.3±0.0 0.0081±0.0001 0.13±0.0
RADE 0.1±0.0 (4.4x) 0.0013±0.0 (6.1x) 0.03±0.0 (4.1x)

mammography Monolithic 0.7±0.0 0.0277±0.0005 0.13±0.0
RADE 0.3±0.0 (2.4x) 0.0026±0.0 (10.5x) 0.04±0.0 (2.9x)

communities Monolithic 0.8±0.0 0.0071±0.0002 0.05±0.0
RADE 0.2±0.0 (5.1x) 0.0048±0.0001 (1.5x) 0.03±0.01 (1.7x)

Table 9: Evaluation over a1.medium AWS EC2 instance.

4.1 Anomaly detection over edge-devices

Several works target anomaly detection over edge devices. For instance, [91] introduces the
importance of anomaly detection for edge health-care analytics. [68] presents SVELTE, an
intrusion detection solution for edge devices, specifically designed for securing 6LoWPAN
networks.

These works present a ML-based solution for a specific use-case, whereas in RADE we
aim at a resource-efficient framework that supports many use-cases (as we demonstrate via
the evaluation) and that can augment any DTEM classifier for better resource efficiency.

4.2 DTEM optimizations

There exist several approaches that aim at optimizing the memory layout of bagging DTEMs
and in particular RFs. For instance, in [92] proposes achieving deterministic classification
time by constructing random forests composed of many small trees rather than fewer deep
trees. Some studies, e.g., [2, 10] optimize memory-layouts of RFs, which, in turn, reduces
the cache misses and accelerates classification time.

Much effort has been made to address the drawbacks of boosting methods as well. For
instance, advanced implementations of the tree-based gradient boosting idea include: XG-
Boost [18] that supports parallelism and uses pre-sorted and histogram-based algorithms
for computing the best split; LightGBM [43] that uses Gradient-based One-Side Sampling
(GOSS) to filter out the data instances for finding a split value; CatBoost [64] that imple-
ments ordered boosting, a permutation-driven alternative to the classic algorithm and an
innovative algorithm for processing categorical features.

For Adaptive boosting (i.e., AdaBoost), some recent approaches targeting to accelerate
its slow training [19, 60, 77]. For instance, [77] uses a new sampling strategy (WNS) that

22 Shay Vargaftik et al.

selects a subset of the data at each iteration and by that reducing the number of data points
onto which AdaBoost is applied.

Both the aforementioned bagging and boosting optimization techniques are orthogonal
to RADE and can be used as building blocks for RADE’s coarse-grained and fine-grained
models to form even less resource consuming models (e.g., in our evaluation, we use XG-
Boost and RF as building blocks).

4.3 Related ML models

Cascading. Cascading models are mainly used for object detection (e.g., image, video) with
increasing complexity feature extraction and evaluation stages (i.e., DNN) [27, 79, 93]. Re-
cently, such methods were proposed for ranking [46], anomaly detection [58], medicine
[41, 95] and more. The main target of cascading models is fast classification. The price for
this speed is usually a resource-consuming and long training as well as increased memory
footprint (in a cascading model, many models are built, and numerous parameters are jointly
optimized towards an optimization target).

Conversely, RADE’s design, while it is in the spirit of a cascading model, concentrates
not only on fast classification but also on low memory footprint and fast training resulting
in the ability to run such models on resource-constrained devices.
Stacking. Stacking [7, 35, 90, 96] is an ensemble method that can also be viewed as a cas-
cading model. It mainly differs from bagging and boosting by considering heterogeneous
weak learners and combining them using a meta-model.

RADE inherently differs from the stacking approach, since RADE’s fine-grained models
are trained by fractions of the original dataset, while in stacking, the i+1’th model is trained
using the classification output of the i’th model.
DNN approaches. Some ML works introduce approaches that aim at reducing certain re-
source consumption in the context of DNNs. BranchyNet [87] presents a deep neural net-
work (DNN) architecture with an additional side branch classifiers, such that some queries
can be correctly classified by early layers. This work mainly targets fast classification. [44]
presents partitioning of a deep network between the edge and host platforms, such that it
aims at the tradeoff between the required compute over the edge device and the required
throughput between the edge and the host. [88] presents a similar hierarchical Neural Net-
work approach, with the additional support for aggregating information from different edge
devices to the cloud. RADE, on the other hand, allows employing the entire model over the
edge-device, without the need for additional remote host/cloud computation.

[75] presents an approach to anomaly detection that uses auto-encoders, deployed on
each edge device, to perform analytics and identify anomalous observations in a distributed
fashion. A centralized server aggregates the updated models and distributes them back to the
edge devices when a connection is available. However, this architecture requires bandwidth
and connectivity between the edge devices and a central server which is used also for training
synchronization. RADE, on the other hand, targets local training.
Delegation. [28] presented the concept of delegating classifiers and is mostly related to our
work. Indeed, there are similarities between RADE and the general structure of the method
proposed by [28]. Nevertheless, in addition to many technical details that target resource ef-
ficient anomaly detection by DTEMs, there are also few key conceptual differences between
RADE and [28]: (1) We use two expert models on the same ”delegation” level and not a
single one as suggested by [28]. Each of these experts is responsible for capturing different
concepts ”delegated” by the small model. This is tailored for the binary class problem that

RADE: Resource-Efficient Supervised Anomaly Detection 23

we consider; (2) [28] consider a strict delegation rule. To quote: ”The same threshold is used
for training and for prediction (the delegating decision rule). The question arises on how
to determine this threshold.”. We found this to be extremely limiting and often insufficient
for our use-case. RADE introduces two thresholds, for training and classification (TCT and
CCT); (3) The delegation rule suggested by [28] delegates a certain percentage of the harder
labeled instances (this is also the case for the imbalanced case). This causes classification
inconsistency of the resulting classifier. In particular, training the classifier with the same
hyperparameter, the same data, and the same random seed still results in different classifica-
tion results. This happens, for example, when training data is introduced in batches. RADE,
on the other, results in consistent classification results.

4.4 General ML optimizations

Feature selection. Feature selection [23, 47, 85] methods are used to select a subset of fea-
tures that are sufficient for classification. Feature selection may even improve accuracy via
noise reduction as well as to reduce the training time by decreasing the size of the dataset.
RADE is orthogonal to feature selection and can leverage it to meet specific system require-
ments (e.g., further reducing the memory footprint of the coarse-grained model).
Sampling. A common technique to reduce the training complexity is to use progressive
sampling [49, 62, 65]. These methods systematically increase the sample size until spe-
cific performance criteria are met. Additionally, stratified sampling techniques [12, 17, 98]
can be employed to that end. For example, Instance hardness (IH) was recently presented
[15,40,81–83,94,99] that mainly targets to alleviate the class imbalance problem. Such sam-
pling techniques are orthogonal to any classifier, and hence applicable to RADE as well by
subsampling the entire training data before training a RADE model or only filtered subsets
of the datasets when training RADE’s fine-grained models.

5 Conclusions and Future Work

This paper presents RADE, a resource efficient DTEM anomaly detection framework. RADE
augments standard monolithic DTEM classifiers. System-wise, RADE improves the model
memory footprint (by up to 12×), training time (by up to 20×) and classification time (by
up to 16×), as compared to the monolithic models. ML-wise, RADE offers competitive
anomaly detection capabilities.

Due to its properties, RADE is an appealing fit for employing ML-based anomaly de-
tection in resource-constrained settings. RADE alleviates the memory-bound problem of
bagging methods, and the compute-bound problem of the boosting methods. More specif-
ically, the size of RADE’s coarse-grained model (up to 40KB in our evaluation) allows it
to be entirely stored in the cache, and serve most of the classification queries. Furthermore,
the reduction of the training and classification times by RADE is an indication that it re-
quires less compute and memory operations. In turn, this suggests that RADE requires less
power [33], which is important for battery-based or power-constrained devices.

To conclude, we point out several important directions for future work. We have tested
the RADE framework on three different platforms and over two different DTEM classifiers.
Nevertheless, it is of interest to test RADE over other system environments and real-world
scenarios. Furthermore, this paper demonstrates how RADE is built using either a random

24 Shay Vargaftik et al.

forest or an XGBoost as a building block. However, other DTEMs, including boosted ran-
dom forests [56], can be used and evaluated as building blocks as well. Such a broader
investigation may introduce or reveal new challenges that are not captured by our evalua-
tion. Finally, while we consider a static scenario where the training data is available offline,
it is of interest to investigate whether the RADE approach can include dynamic updates,
such as done by [84] for streaming scenarios.

6 Declarations

Funding

This work was partly supported by the Israel Science Foundation (grant No. 1119/19), the
Hasso Plattner Institute Research School, the Technion Hiroshi Fujiwara Cyber Security
Research Center, and the Israel Cyber Bureau.

Conflict of interest/Competing interests

The authors declare that they have no conflict of interest.

Availability of data and material

The data used for the simulation results are available online, see Section 3.3 for more details.

Code availability

The code is available in [78].

References

1. Appel, R., Fuchs, T., Dollár, P., Perona, P.: Quickly boosting decision trees–pruning underachieving
features early. In: International conference on machine learning, pp. 594–602 (2013)

2. Asadi, N., Lin, J., De Vries, A.P.: Runtime optimizations for tree-based machine learning models. IEEE
Transactions on Knowledge and Data Engineering 26(9), 2281–2292 (2014)

3. Ashfaq, R.A.R., Wang, X.Z., Huang, J.Z., Abbas, H., He, Y.L.: Fuzziness based semi-supervised learn-
ing approach for intrusion detection system. Information Sciences 378, 484–497 (2017)

4. Banerjee, M., Ding, Y., Noone, A.M.: Identifying representative trees from ensembles. Statistics in
medicine 31(15), 1601–1616 (2012)

5. Blackard, J.A.: Comparison of neural networks and discriminant analysis in predicting forest cover
types. (2000)

6. Breiman, L.: Arcing classifiers (technical report). University of California, Department of Statistics
(1996)

7. Breiman, L.: Stacked regressions. Machine learning 24(1), 49–64 (1996)
8. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
9. Bridges, S.M., Vaughn, R.B., et al.: Fuzzy data mining and genetic algorithms applied to intrusion

detection. In: Proceedings of 12th Annual Canadian Information Technology Security Symposium, pp.
109–122 (2000)

10. Browne, J., Tomita, T., Mhembere, D., Burns, R., Vogelstein, J.: Forest packing: Fast, parallel decision
forests. arXiv preprint arXiv:1806.07300 (2018)

RADE: Resource-Efficient Supervised Anomaly Detection 25

11. Buitinck, L., Louppe, G., Blondel, M., et al.: API design for machine learning software: experiences
from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine
Learning, pp. 108–122 (2013)

12. Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: Safe-level-smote: Safe-level-synthetic minor-
ity over-sampling technique for handling the class imbalanced problem. In: Pacific-Asia conference on
knowledge discovery and data mining, pp. 475–482. Springer (2009)

13. Carcillo, F., Dal Pozzolo, A., Le Borgne, Y.A., Caelen, O., Mazzer, Y., Bontempi, G.: Scarff : a scalable
framework for streaming credit card fraud detection with spark. Information Fusion 41 (2017). DOI
10.1016/j.inffus.2017.09.005

14. Carcillo, F., Le Borgne, Y.A., Caelen, O., Kessaci, Y., Oblé, F., Bontempi, G.: Combining unsupervised
and supervised learning in credit card fraud detection. Information Sciences (2019). DOI 10.1016/j.
ins.2019.05.042

15. Cavalcanti, G.D., Soares, R.J.: Ranking-based instance selection for pattern classification. Expert Sys-
tems with Applications 150, 113269 (2020)

16. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM computing surveys (CSUR)
41(3), 1–58 (2009)

17. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling
technique. Journal of artificial intelligence research 16, 321–357 (2002)

18. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery and data mining, pp. 785–794. ACM (2016)

19. Chu, F., Zaniolo, C.: Fast and light boosting for adaptive mining of data streams. In: Pacific-Asia
conference on knowledge discovery and data mining, pp. 282–292. Springer (2004)

20. Cohen, J.: A coefficient of agreement for nominal scales. Educational and psychological measurement
20(1), 37–46 (1960)

21. Dal Pozzolo, A.: Adaptive machine learning for credit card fraud detection (2015)
22. Dal Pozzolo, A., Caelen, O., Johnson, R., Bontempi, G.: Calibrating probability with undersampling

for unbalanced classification (2015). DOI 10.1109/SSCI.2015.33
23. Dash, M., Liu, H.: Feature selection for classification. Intelligent data analysis 1(1-4), 131–156 (1997)
24. Dhanabal, L., Shantharajah, S.: A study on nsl-kdd dataset for intrusion detection system based on

classification algorithms. International Journal of Advanced Research in Computer and Communication
Engineering 4(6), 446–452 (2015)

25. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision
trees: Bagging, boosting, and randomization. Machine learning 40(2), 139–157 (2000)

26. Dua, D., Graff, C.: UCI machine learning repository (2017). URL http://archive.ics.uci.
edu/ml

27. Felzenszwalb, P.F., Girshick, R.B., McAllester, D.: Cascade object detection with deformable part mod-
els. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.
2241–2248. IEEE (2010)

28. Ferri, C., Flach, P., Hernández-Orallo, J.: Delegating classifiers. In: Proceedings of the twenty-first
international conference on Machine learning, p. 37 (2004)

29. Freund, Y., Schapire, R.E., et al.: Experiments with a new boosting algorithm. In: icml, vol. 96, pp.
148–156. Citeseer (1996)

30. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Annals of statistics pp.
1189–1232 (2001)

31. Gama, J., Rocha, R., Medas, P.: Accurate decision trees for mining high-speed data streams. In: Pro-
ceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data min-
ing, pp. 523–528. ACM (2003)

32. Gan, X.s., Duanmu, J.s., Wang, J.f., Cong, W.: Anomaly intrusion detection based on pls feature ex-
traction and core vector machine. Knowledge-Based Systems 40, 1–6 (2013)

33. Garcı́a-Martı́n, E., Rodrigues, C.F., Riley, G., Grahn, H.: Estimation of energy consumption in machine
learning. Journal of Parallel and Distributed Computing 134, 75–88 (2019)

34. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine learning 63(1), 3–42 (2006)
35. Graczyk, M., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of bagging, boosting and stacking

ensembles applied to real estate appraisal. In: Asian conference on intelligent information and database
systems, pp. 340–350. Springer (2010)

36. Habeeb, R.A.A., Nasaruddin, F., Gani, A., Hashem, I.A.T., Ahmed, E., Imran, M.: Real-time big data
processing for anomaly detection: A survey. International Journal of Information Management (2018)

37. Hasan, M.A.M., Nasser, M., Pal, B., Ahmad, S.: Support vector machine and random forest modeling
for intrusion detection system (ids). Journal of Intelligent Learning Systems and Applications 6(01),
45 (2014)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

26 Shay Vargaftik et al.

38. Hastie, T., Tibshirani, R., Friedman, J.: Unsupervised learning. In: The elements of statistical learning,
pp. 485–585. Springer (2009)

39. Jin, Y., Chuang, J.: Medium corporation. tree Boosting with XGBoost. Why Does XGBoost Win Ev-
ery Machine Learning Competition? https://bit.ly/2TVWit1 (2017). [Online; accessed 7-
September-2019]

40. Kabir, A., Ruiz, C., Alvarez, S.A.: Mixed bagging: A novel ensemble learning framework for supervised
classification based on instance hardness. In: 2018 IEEE International Conference on Data Mining
(ICDM), pp. 1073–1078. IEEE (2018)

41. Karegowda, A.G., Jayaram, M., Manjunath, A.: Cascading k-means clustering and k-nearest neighbor
classifier for categorization of diabetic patients. International Journal of Engineering and Advanced
Technology 1(3), 147–151 (2012)

42. Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Selecting features for intrusion detection: A
feature relevance analysis on kdd 99 intrusion detection datasets. In: Proceedings of the third annual
conference on privacy, security and trust, vol. 94, pp. 1723–1722 (2005)

43. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.: Lightgbm: A highly
efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, pp.
3146–3154 (2017)

44. Ko, J.H., Na, T., Amir, M.F., Mukhopadhyay, S.: Edge-host partitioning of deep neural networks
with feature space encoding for resource-constrained internet-of-things platforms. arXiv preprint
arXiv:1802.03835 (2018)

45. Kruegel, C., Vigna, G.: Anomaly detection of web-based attacks. In: Proceedings of the 10th ACM
conference on Computer and communications security, pp. 251–261. ACM (2003)

46. Kveton, B., Szepesvari, C., Wen, Z., Ashkan, A.: Cascading bandits: Learning to rank in the cascade
model. In: International Conference on Machine Learning, pp. 767–776 (2015)

47. Kwak, N., Choi, C.H.: Input feature selection for classification problems. IEEE transactions on neural
networks 13(1), 143–159 (2002)

48. Lebichot, B., Le Borgne, Y.A., He, L., Oblé, F., Bontempi, G.: Deep-Learning Domain Adaptation
Techniques for Credit Cards Fraud Detection, pp. 78–88 (2020). DOI 10.1007/978-3-030-16841-4 8

49. Leite, R., Brazdil, P.: Improving progressive sampling via meta-learning on learning curves. In: Euro-
pean Conference on Machine Learning, pp. 250–261. Springer (2004)

50. Li, M., Andersen, D.G., Park, J.W., Smola, A.J., Ahmed, A., Josifovski, V., Long, J., Shekita, E.J., Su,
B.Y.: Scaling distributed machine learning with the parameter server. In: OSDI, vol. 14, pp. 583–598
(2014)

51. Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R news 2(3), 18–22 (2002)
52. Liu, S., Xiao, J., Liu, J., Wang, X., Wu, J., Zhu, J.: Visual diagnosis of tree boosting methods. IEEE

transactions on visualization and computer graphics 24(1), 163–173 (2017)
53. Machine Learning Group - ULB: Credit Card Fraud Detection Dataset. https://www.kaggle.

com/isaikumar/creditcardfraud (2013). [Online; accessed 26-August-2019]
54. Machine Learning Repository - UCI: Forest Cover Type Dataset. https://archive.ics.uci.

edu/ml/datasets/Covertype (1998). [Online; accessed 26-August-2019]
55. Machine Learning Repository - UCI: KDD Cup 1999 Dataset. http://kdd.ics.uci.edu/

databases/kddcup99/kddcup99.html (1999). [Online; accessed 26-August-2019]
56. Mishina, Y., Murata, R., Yamauchi, Y., Yamashita, T., Fujiyoshi, H.: Boosted random forest. IEICE

Transactions on Information and systems 98(9), 1630–1636 (2015)
57. Moustafa, N., Hu, J., Slay, J.: A holistic review of network anomaly detection systems: A comprehen-

sive survey. Journal of Network and Computer Applications (2018)
58. Muniyandi, A.P., Rajeswari, R., Rajaram, R.: Network anomaly detection by cascading k-means clus-

tering and c4. 5 decision tree algorithm. Procedia Engineering 30, 174–182 (2012)
59. Obradovic, Z., Vucetic, S.: Challenges in scientific data mining: Heterogeneous, biased, and large sam-

ples. Tech. rep., Citeseer (2004)
60. Olson, M.: Jousboost: An r package for improving machine learning classifier probability estimates

(2017)
61. Oza, N.C., Russell, S.: Experimental comparisons of online and batch versions of bagging and boosting.

In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 359–364. ACM (2001)

62. Parthasarathy, S.: Efficient progressive sampling for association rules. In: 2002 IEEE International
Conference on Data Mining, 2002. Proceedings., pp. 354–361. IEEE (2002)

63. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,
Duchesnay, E.: Scikit-learn: Machine Learning in Python . Journal of Machine Learning Research 12,
2825–2830 (2011)

https://bit.ly/2TVWit1
https://www.kaggle.com/isaikumar/creditcardfraud
https://www.kaggle.com/isaikumar/creditcardfraud
https://archive.ics.uci.edu/ml/datasets/Covertype
https://archive.ics.uci.edu/ml/datasets/Covertype
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

RADE: Resource-Efficient Supervised Anomaly Detection 27

64. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: Catboost: unbiased boosting
with categorical features. In: Advances in Neural Information Processing Systems, pp. 6638–6648
(2018)

65. Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In: Proceedings of the fifth ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 23–32. ACM (1999)

66. PyPI, XGBoost: XGBoost. https://pypi.org/project/xgboost/ (2018). [Online; ac-
cessed 7-September-2019]

67. Ravanshad, A.: Medium corporation. gradient boosting vs random forest. https://bit.ly/
2lT5IZ4 (2018). [Online; accessed 7-September-2019]

68. Raza, S., Wallgren, L., Voigt, T.: Svelte: Real-time intrusion detection in the internet of things. Ad hoc
networks 11(8), 2661–2674 (2013)

69. Resende, P.A.A., Drummond, A.C.: A survey of random forest based methods for intrusion detection
systems. ACM Computing Surveys (CSUR) 51(3), 48 (2018)

70. Right to explanation: Wikipedia, the free encyclopedia (2019). URL https://en.wikipedia.
org/wiki/Right_to_explanation. [Online; accessed 26-August-2019]

71. Roe, B.P., Yang, H.J., Zhu, J.: Boosted decision trees, a powerful event classifier. In: Statistical problems
in particle physics, astrophysics and cosmology, pp. 139–142. World Scientific (2006)

72. Roe, B.P., Yang, H.J., Zhu, J., Liu, Y., Stancu, I., McGregor, G.: Boosted decision trees as an alternative
to artificial neural networks for particle identification. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 543(2-3), 577–
584 (2005)

73. Sabhnani, M., Serpen, G.: Application of machine learning algorithms to kdd intrusion detection dataset
within misuse detection context. In: MLMTA, pp. 209–215 (2003)

74. Schapire, R.E.: The boosting approach to machine learning: An overview. In: Nonlinear estimation and
classification, pp. 149–171. Springer (2003)

75. Schneible, J., Lu, A.: Anomaly detection on the edge. In: MILCOM 2017-2017 IEEE Military Com-
munications Conference (MILCOM), pp. 678–682. IEEE (2017)

76. Scikit - RF: sklearn.ensemble.randomforestclassifier. https://scikit-learn.org/
stable/modules/generated/sklearn.ensemble.RandomForestClassifier.
html#sklearn.ensemble.RandomForestClassifier (2019). [Online; accessed 7-
September-2019]

77. Seyedhosseini, M., Paiva, A.R., Tasdizen, T.: Fast adaboost training using weighted novelty selection.
In: The International Joint Conference on Neural Networks, pp. 1245–1250. IEEE (2011)

78. Shay Vargaftik, Yaniv Ben-Itzhak: RADE’s code. https://research.vmware.com/
projects/efficient-machine-learning-classification (2019)

79. Shen, H., Han, S., Philipose, M., Krishnamurthy, A.: Fast video classification via adaptive cascading of
deep models. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
3646–3654 (2017)

80. Singh, K., Guntuku, S.C., Thakur, A., Hota, C.: Big data analytics framework for peer-to-peer botnet
detection using random forests. Information Sciences 278, 488–497 (2014)

81. Sleeman IV, W.C., Krawczyk, B.: Bagging using instance-level difficulty for multi-class imbalanced
big data classification on spark. In: 2019 IEEE International Conference on Big Data (Big Data), pp.
2484–2493. IEEE (2019)

82. Smith, M.R., Martinez, T.: A comparative evaluation of curriculum learning with filtering and boosting
in supervised classification problems. Computational Intelligence 32(2), 167–195 (2016)

83. Smith, M.R., Martinez, T., Giraud-Carrier, C.: An instance level analysis of data complexity. Machine
learning 95(2), 225–256 (2014)

84. Tan, S.C., Ting, K.M., Liu, T.F.: Fast anomaly detection for streaming data. In: Twenty-Second Inter-
national Joint Conference on Artificial Intelligence (2011)

85. Tang, J., Alelyani, S., Liu, H.: Feature selection for classification: A review. Data classification: Algo-
rithms and applications p. 37 (2014)

86. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.: A detailed analysis of the kdd cup 99 data set. In:
Symposium on Computational Intelligence for Security and Defense Applications (CISDA), pp. 1–6.
IEEE (2009)

87. Teerapittayanon, S., McDanel, B., Kung, H.: Branchynet: Fast inference via early exiting from deep
neural networks. In: Pattern Recognition (ICPR), 2016 23rd International Conference on, pp. 2464–
2469. IEEE (2016)

88. Teerapittayanon, S., McDanel, B., Kung, H.: Distributed deep neural networks over the cloud, the edge
and end devices. In: Distributed Computing Systems (ICDCS), 2017 IEEE 37th International Confer-
ence on, pp. 328–339. IEEE (2017)

https://pypi.org/project/xgboost/
https://bit.ly/2lT5IZ4
https://bit.ly/2lT5IZ4
https://en.wikipedia.org/wiki/Right_to_explanation
https://en.wikipedia.org/wiki/Right_to_explanation
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://research.vmware.com/projects/efficient-machine-learning-classification
https://research.vmware.com/projects/efficient-machine-learning-classification

28 Shay Vargaftik et al.

89. Thudumu, S., Branch, P., Jin, J., Singh, J.J.: A comprehensive survey of anomaly detection techniques
for high dimensional big data. Journal of Big Data 7(1), 1–30 (2020)

90. Ting, K.M., Witten, I.H.: Stacking bagged and dagged models (1997)
91. Ukil, A., Bandyoapdhyay, S., Puri, C., Pal, A.: Iot healthcare analytics: The importance of anomaly de-

tection. In: Advanced Information Networking and Applications (AINA), 2016 IEEE 30th International
Conference on, pp. 994–997. IEEE (2016)

92. Van Essen, B., Macaraeg, C., Gokhale, M., Prenger, R.: Accelerating a random forest classifier: Multi-
core, gp-gpu, or fpga? In: 20th International Symposium on Field-Programmable Custom Computing
Machines, pp. 232–239. IEEE (2012)

93. Viola, P., Jones, M., et al.: Rapid object detection using a boosted cascade of simple features. CVPR
(1) 1(511-518), 3 (2001)

94. Walmsley, F.N., Cavalcanti, G.D., Oliveira, D.V., Cruz, R.M., Sabourin, R.: An ensemble generation
method based on instance hardness. In: 2018 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE (2018)

95. Wang, Y., Patrick, J.: Cascading classifiers for named entity recognition in clinical notes. In: Proceed-
ings of the workshop on biomedical information extraction, pp. 42–49. Association for Computational
Linguistics (2009)

96. Wolpert, D.H.: Stacked generalization. Neural networks 5(2), 241–259 (1992)
97. Xuan, S., Liu, G., Li, Z., Zheng, L., Wang, S., Jiang, C.: Random forest for credit card fraud detection.

In: Networking, Sensing and Control (ICNSC), 2018 IEEE 15th International Conference on, pp. 1–6.
IEEE (2018)

98. Yen, S.J., Lee, Y.S.: Cluster-based under-sampling approaches for imbalanced data distributions. Expert
Systems with Applications 36(3), 5718–5727 (2009)

99. Zhang, J., Wang, T., Ng, W.W., Zhang, S., Nugent, C.D.: Undersampling near decision boundary for im-
balance problems. In: 2019 International Conference on Machine Learning and Cybernetics (ICMLC),
pp. 1–8. IEEE (2019)

100. Zhang, J., Zulkernine, M.: Network intrusion detection using random forests. In: PST. Citeseer (2005)
101. Zhao, Z., Mehrotra, K.G., Mohan, C.K.: Online anomaly detection using random forest. In: Interna-

tional Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems,
pp. 135–147. Springer (2018)

102. Zheng, Z., Cai, Y., Li, Y.: Oversampling method for imbalanced classification. Computing and Infor-
matics 34(5), 1017–1037 (2016)

	Introduction
	RADE
	Evaluation
	Related Work
	Conclusions and Future Work
	Declarations

