
Replicate to the shortest queues

Rami Atar∗† Isaac Keslassy ∗ Gal Mendelson∗†

Abstract

This paper introduces a load balancing policy that interpolates between two well known
policies, namely join the shortest queue (JSQ) and join the least workload (JLW), and studies
it in heavy traffic. This policy, which we call replicate to the shortest queues (RSQ(d)), routes
jobs from a stream of arrivals into buffers attached to N servers by replicating each arrival into
1 ≤ d ≤ N tasks and sending the replicas to the d shortest queues. When the first of the tasks
reaches a server, its d − 1 replicas are canceled. Clearly RSQ(1) is equivalent to JSQ, and it
has been shown that RSQ(N) is equivalent to JLW; intermediate values of d provide tradeoff
between good performance measures of JSQ and those of JLW. In heavy traffic, a key property
underlying asymptotic analysis of load balancing policies is state space collapse (SSC). Unlike
policies such as JSQ, where SSC is well-understood, the treatment of SSC under RSQ(d) requires
to address the massive cancellations that highly complicate the queue length dynamics. Our first
main result is that SSC holds under RSQ(d) for possibly heterogeneous servers. Based on this
result we obtain diffusion limits for the queue lengths in the form of one-dimensional reflected
Brownian motion, asymptotic characterization of the short-time-averaged delay process, and a
version of Reiman’s snapshot principle. We illustrate using simulations that, as d increases, the
server workloads become more balanced, and the delay distribution’s tail becomes lighter. We
also discuss the implementation complexity of the policy as compared to that of the redundancy
routing policy, to which it is closely related.

AMS subject classification: 60F17, 60J60, 60K25.

Keywords: Randomized load balancing, replicate to shortest queues, join the shortest queue,
join the least workload, task redundancy, job cancellations, diffusion limits, heavy traffic, state
space collapse

1 Introduction

We consider a queueing model in which a single dispatcher routes incoming jobs to N heterogeneous
servers, each with its own buffer in which a queue can form. Three well known load balancing
algorithms for this model are join the shortest queue (JSQ), redundancy routing (R(d)) and join
the least workload (JLW). In JSQ, jobs are sent to the buffer with the shortest queue. In R(d),
jobs are replicated into 1 < d ≤ N tasks, which are routed into d randomly chosen buffers, and
when the first of the tasks starts service, its replicas are canceled and removed from the system
(this is referred to as early cancellation, as opposed to late cancellation where cancellation occurs
when a task first completes service). In JLW, jobs are sent to the buffer with the least work.
This paper introduces and studies an algorithm that combines elements of JSQ and R(d), that we
∗The Viterbi Faculty of Electrical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
†Research supported in part by the ISF (grant 1184/16)

1

call replicate to the shortest queues (RSQ(d)), where arriving jobs are replicated into d tasks, and
these tasks are routed to the d shortest queues. The cancellation mechanism is as in R(d). This
policy benefits from the good performance offered by both R(d) and JSQ while achieving better
workload balance and lower job completion times (which we refer to as delay). Moreover, as we
argue, RSQ(d) constitutes a range of policies from JSQ (when d = 1) to JLW (when d = N). When
there is significance to the tradeoff between performance and implementation complexity, RSQ(d)
provides a degree of freedom. Depending on the application, d can be chosen not too small so that
delay performance is improved, and not too large so that replication overhead is tolerable. As we
later argue, the implementation complexity of RSQ(d) is not worse than that of R(d). The main
results of this paper are concerned with the analysis of this policy in heavy traffic, establishing state
space collapse and diffusion limits. In addition, simulation results are provided and discussed.

Our motivation for studying RSQ(d) stems from the aforementioned tradeoff related to JSQ and
JLW, but also from several advantages it has over JSQ and R(d). We provide simulation results
showing that this policy improves several performance measures over these policies.

We start with some background on the aforementioned policies and then discuss how RSQ(d)
stands in comparison to them. R(d) has been an active research topic due to its importance in
applications. A large body of research is concerned with characterizing the impact of replicating
jobs on various network performance criteria. Aside from the inherent robustness it offers with
respect to network failures, the use of replication and cancellation in sophisticated schedulers is
shown to reduce the average delay, as well as the tail of the delay distribution (e.g., [1], [2], [17]).
Analytic studies provide conditions under which R(d) is beneficial and characterize various system
performance measures such as mean delay and long time behavior (e.g., [12], [14], [20]). R(d) is
also known to have good balancing properties with respect to workload. See [3] for a comprehensive
review. JSQ is a well studied algorithm that is known to achieve the capacity region [9, 11] and
provides several good performance guarantees, e.g., [3, 7]. It is also widely used in practice [13].
The JLW policy achieves the capacity region [11] and provides excellent performance guarantees
[8, 10, 23].

A significant disadvantage of R(d) (for d < N) is that it does not achieve the capacity region.
That is, when servers are heterogeneous, this policy may be unstable even when the system is sub-
critical [11]. In particular, diffusion limits need not exist [3]. RSQ(1) and RSQ(N) clearly achieve
the capacity region and we show in this paper that the diffusion limits exist for any d. While the
property that RSQ(d) achieves the capacity region for 1 < d < N is not proved in this paper, we
expect that it does, but leave this as an open problem.

While JSQ provides queue length balance, when servers are heterogeneous, the server workloads
are not balanced. This has a negative effect on job completion times, as workload balance reduces
the chance of a large waiting time [12]. Our simulation results indicate that using d as small as 2
leads to a significant improvement in terms of workload balance and job completion times.

As for JLW, in practice, the dispatcher may have no access to workload information. Still, it is
possible to implement JLW by applying R(N). The equivalence of these two policies is heuristically
obvious, and has recently been proved rigorously in [3]. Since RSQ(N) and R(N) are identical
policies, the last comment applies to RSQ(N) as well. However, implementing JLW via R(N) may
incur an intolerable overhead when N is large.

Our goal in this paper is to analyze RSQ(d) in heavy traffic. We obtain diffusion limit results
for the queue length and also extract information on the delay. The model which we study accom-
modates server heterogeneity and allows for general renewal arrivals and service time distributions

2

with finite second moment. The main step towards proving our results is establishing that state
space collapse (SSC) holds for RSQ(d). Denoting by n the heavy traffic parameter, SSC refers to a
balance achieved by the queue lengths at the different buffers that is of order o(n1/2). It is known
since Reiman’s paper [19] that SSC holds for JSQ, and it has been shown to hold under other
policies, and used to establish diffusion limit results (e.g., [3], [6], [7]).

As opposed to policies with no replication and cancellation (e.g., JSQ and JLW) where SSC
is well understood, proving SSC for RSQ(d) presents as a mathematical challenge. In this present
setting, queue lengths correspond to the number of tasks in the buffers, including tasks that are
to be canceled. Because of these cancellations, the dynamics of the queueing processes are highly
complicated. The queue lengths themselves do not constitute a state descriptor even in the special
case where the arrivals follow a Poisson process and the service times are exponential. This is due
to the fact that the state of the system must record the relations among the replicas residing in the
buffers. An analysis of the full state process in heavy traffic appears to be notoriously hard. We
show that despite these difficulties one may analyze the queue length and delay processes. Our first
main result establishes SSC for the queue lengths.

Based on the SSC, we establish several additional results for this model. First we show that
in the heavy traffic limit the queue lengths are given by a one-dimensional reflected Brownian
motion (RBM). Then, toward analyzing the delay, we develop a version of Reiman’s snapshot
principle (RSP). The standard version of this principle asserts that the delay process, normalized
at diffusion scale, converges to a scalar multiple of the normalized queue length limit [18]. Due
to the cancellations involved in RSQ, it does not seem reasonable that RSP is valid in this form.
However, we were able to prove that a short time average version of the delay process does converge
to a process given by a scalar multiple of the normalized queue length limit. This weak version of
the RSP provides, in particular, a characterization of the short time average delay process at the
diffusion limit.

As far as tools for establishing SSC are concerned, we mention well known work by Bramson
[6] and Williams [22] on which numerous papers on SSC for various queueing models have been
based (e.g., [7]). RSQ(d) cannot be treated via these tools because they do not accommodate
task cancellation. The closest reference for the current paper is [3], where it was shown than a
generalization of the SSC property, referred to as sub-diffusivity of the deviation process (SDDP),
holds for several time varying queuing systems (not necessarily in heavy traffic) including JSQ,
R(d) and JLW. In the special case of fixed arrival and service rates, SDDP reduces to SSC. Using
a similar approach, we identify necessary conditions for the deviation of the different queue lengths
from one another to exceed o(n1/2), and argue that they occur with small probabilities. However,
the technical details are model specific, and the development here is completely different from those
of [3]. Specifically, R(d) was treated in [3] via its equivalence to JLW, without any analysis of the
replication and cancellation mechanisms. Our approach is more direct.

The organization of this paper is as follows. This section concludes with the introduction of some
notation that is used in the sequel. In §2 the model is described and the main results are stated.
The proofs appear in §3. §4 contains a discussion of implementation complexity and simulation
results.

Notation. For a, b ∈ R, the maximum (resp., minimum) is denoted by a ∨ b (resp., a ∧ b). For
x ∈ Rk (k a positive integer), ‖x‖ denotes the `1 norm. Denote R+ = [0,∞), and for f : R+ → Rk,

3

‖f‖T = supt∈[0,T] ‖f(t)‖, and, for θ > 0,

wT (f, θ) = sup
0≤s<u≤s+θ≤T

‖fu − fs‖.

For a Polish space S, let CS(0, T) and DS(0, T) denote the set of continuous and, respectively,
cadlag functions [0, T]→ S. Write CS and DS for the case where [0, T] is replaced by R+. Endow
DS with the Skorohod J1 topology. Write Xn ⇒ X for convergence in distribution. A sequence of
processes Xn with sample paths in DS is said to be C-tight if it is tight and every subsequential
limit has, with probability 1, sample paths in CS . For m ∈ R and σ ∈ R, an (m,σ2)-Brownian
motion (BM) is a 1-dimensional BM starting from zero, having drift m and infinitesimal covariance
σ2. Given a time interval J = [t1, t2] ⊂ R+ we write f [t1, t2] = f [J] = f(t2)−f(t1), for any function
f defined on R+.

2 Model and results

A sequence of models indexed by n ∈ N is defined on a probability space (Ω,F ,P) as follows. A
fixed number of servers, N , labeled by {1, . . . , N}, have unlimited buffers, one dedicated to each.
Each server is non-idling and offers service on a first-come-first-served basis. There is a single stream
of arriving jobs. The kth job to arrive (after time zero) is referred to as job k.

Upon arrival, each job is replicated into d (1 < d ≤ N) identical replicas, called tasks, and
sent to those d buffers that contain the least number of tasks at the moment. Ties are broken by
prioritizing buffer i over buffer j if i < j. When a task is called to start service, all of its d − 1
replicas are removed from the system. When the task is completed, it is removed from the system
and this epoch is the time of completion of the corresponding job. Thus each job is processed by a
single server and replication does not increase the total amount of processing work.

The stream of incoming jobs is modeled by a renewal process. Let parameters λn be given,
representing the reciprocal mean inter-arrival time in the nth system. Let a sequence {IA(l), l ∈ N}
of strictly positive i.i.d. RVs with mean 1 and variance 0 < VIA(1) <∞ be given. Define

A(t) = sup{l :
l∑

k=1

IA(l) ≤ t}.

The counting process for arrivals, An, is assumed to be given by An(t) = A(λnt).
Let parameters µni , i = 1, . . . , N , be given, representing the reciprocal mean service times of

server i in the nth system. For i ∈ {1, . . . , N}, let {Ti(l) : l ∈ N} be a sequence of strictly positive
i.i.d. RVs with mean 1 and variance 0 < VTi(1) < ∞. It is assumed that the kth task effectively
served by server i takes Tni (k) := Ti(k)/µni units of time to process.

Denote by Qni the queue length of tasks in buffer i (including the task in service). We emphasize
that this includes tasks that will eventually be canceled. We assume the system starts empty. The
N+1 processes {Ti(·)} and A are assumed to be mutually independent. These processes, the routing
mechanism and the zero initial condition specified above uniquely define the queue length process
Qn = (Qn1 , . . . , Q

n
N).

As for the parameters introduced above, it is assumed that there exist constants λ ∈ (0,∞),
λ̂ ∈ R, µi ∈ (0,∞) and µ̂i ∈ R, i ∈ {1, . . . , N}, such that

lim
n→∞

n−1/2(λn − nλ) = λ̂, (1)

4

and
lim
n→∞

n−1/2(µni − nµi) = µ̂i, i = 1, . . . , N. (2)

Moreover, a critical load condition is assumed. The first order terms in the n-scale arrival rate and
total processing rate are given by λ and

∑N
j=1 µj , respectively. Therefore, criticality corresponds to

λ =
N∑
i=1

µi, (3)

a condition assumed throughout.
Let Q̂ni = n−1/2Qni denote the diffusion scale version of the queue length processes. The main

result of this paper is the following.

Theorem 2.1 (State Space Collapse). As n→∞,

max
1≤i,j≤N

‖Q̂ni − Q̂nj ‖T → 0 in probability.

We now use the SSC result to establish a weak limit result for the queue lengths. The Skorohod
map Γ from D(R+ : R) to itself is defined by

Γ [φ](t) = φt − inf
s≤t

φs ∧ 0, t ≥ 0.

If {βt} is an (m,σ2)-BM for some m ∈ R and σ ∈ (0,∞), then the process {β0t } defined by the
pathwise transformation β0 = Γ [β] is referred to as an (m,σ2)-reflecting Brownian motion (RBM).

Denote m̂0 = N−1(λ̂−
∑

i µ̂i) and σ̂20 = N−2(λVIA(1) +
∑N

i=1 µiVTi(1)).

Corollary 2.2 (Diffusion limit). Let β0 be a (dm̂0, d
2σ̂20)-RBM. Then, as n→∞,

(Q̂n1 , . . . , Q̂
n
N)⇒ (β0, β0, . . . , β0).

Note that the above results hold with no conditions on the µi’s, except the heavy traffic condition
(3).

We next discuss the delay experienced by jobs. Characterizing the behavior of delay under the
current setting, by appealing to the queue length result, Corollary 2.2, is not at all straightforward.
A link between the queue length process and the delay process at the diffusion scale, often used to
compute the latter based on the former, is known as Reiman’s snapshot principle (RSP). It asserts
that the delay process, normalized at diffusion scale, converges to a scalar multiple of the normalized
queue length limit (see [18], and e.g., [4] for a recent application of this approach). However, the
policy studied in this subsection involves massive cancellations, to the degree that it does not seem
reasonable that a strong statement such as RSP is valid. Our goal is to argue that a short time
average version of the delay process does converge to a process given by a scalar multiple of the
normalized queue length limit, and in particular, to characterize this limit process.

Toward defining the average delay process, we need some notation. Recall that jobs are numbered
by their order of arrival. Denote by

αn(k) = inf{t : An(t) ≥ k}, k ∈ N

5

the arrival time of the kth job in the nth system. For integer 1 < d ≤ N , let Bd := {b ⊂
{1, ..., N}, |b| = d} be the set of all d-size subsets of {1, ..., N}. For k ∈ N, denote by Gn(k) a RV
taking values in Bd, representing the collection of d servers to which job k’s tasks were routed. Let
in(k) be a {1, . . . , N}-valued RV indicating the index of the server where the task was completed.
Thus in(k) ∈ Gn(k), and the members of Gn(k) \ {in(k)} are those servers where the corresponding
tasks were canceled. Denote by βn(k) the departure time of job k, that is, the departure time of
job k’s task performed at server in(k). Let Jn(k) = [αn(k), βn(k)] denote the time interval at which
at least one of job k’s tasks are present in the system, and let δn(k) = βn(k) − αn(k) denote job
k’s delay. Our result on delay refers to averaging over jobs that arrive within a short time interval,
defined as follows. Let

Kn(t1, t2) = {k ∈ N : An(t1) < k ≤ An(t2)}

denote the set of jobs to arrive during the interval (t1, t2]. Let

∆n(t1, t2) =

∑
k∈Kn(t1,t2)

δn(k)

|Kn(t1, t2)| ∨ 1
, ∆̂n(t1, t2) = n1/2∆n(t1, t2), 0 ≤ t1 < t2.

Theorem 2.3 (Delay). Fix a sequence an > 0 with an → 0, n1/2an →∞ as n→∞, and denote

∆̂n(t) = ∆̂n(t, t+ an), t ≥ 0.

Let m̌1 = d−1λ−1Nm̂0 = λ−1(λ̂ −
∑

i µ̂i), and σ̌
2
1 = d−2λ−2N2σ̂20 = λ−1VIA(1) + λ−2

∑
i µiVTi(1).

Let β1 be a (m̌1, σ̌
2
1)-RBM. Then, as n→∞,

∆̂n ⇒ β1.

In the above result the value of d does not affect the assumptions nor the limit. Heuristically,
however, one expects that as d grows, the delay process should behave more regularly, because
redundancy acts to balance delay. We leave open the question of how to quantify an improvement
in the behavior of delay with an increase in d.

3 Proofs

In this subsection we analyze the RSQ model and prove Theorem 2.1, Corollary 2.2 and Theorem
2.3. The main difficulty that we face is that the cancellations that take place affect the queue length
enormously but are hard to get control over. Cancellations at a given buffer are triggered by the
state of all other buffers, and their dynamics does not follow a simple mechanism such as FIFO.
Our technique does not rely on analyzing equations that fully characterize the cancellations, but
only on equations that give partial information on them. These include certain balance equations,
namely (7) and (12) below, and a rough bound on cancellation count in terms of departure count,
namely (15) below. It is perhaps surprising that this limited information suffices for our purposes.

First we introduce several processes (such as potential service, departure and cancellation) nec-
essary to write down the dynamics of the queue length process.

The potential service processes are constructed from the task sizes as

Sni (t) = sup
{
l ≥ 0 :

l∑
k=1

Tni (k) ≤ t
}
. (4)

6

The value Sni (t) gives the number of task departures from queue i by the time that the corresponding
server has been busy for t units of time. Note that Sni are renewal processes.

The cumulative idle time of server i at time t is denoted by Ini (t). The non-idling property can
be encoded by the condition ∫

[0,∞)
Qni (t)dIni (t) = 0, i = 1, . . . , N. (5)

Let Θni (t) = t−Ini (t), t ≥ 0 denote the cumulative busy time of server i at time t. By Ani , C
n
i andDn

i

we denote counting processes for task-arrivals into buffer i, number of task cancellations at buffer
i and number of departures from buffer i, respectively. Here, and throughout, the term departure
corresponds to the removal of a task due to service completion (as opposed to cancellation). The
relation between the three processes Dn

i , S
n
i and Θni is expressed by

Dn
i (t) = Sni (Θni (t)), t ≥ 0, i = 1, . . . , N, (6)

and the balance equation for the i-th queue is

Qni (t) = Ani (t)−Dn
i (t)− Cni (t), i = 1, . . . , N. (7)

Scaled (and centered) versions of the arrival and potential service processes are given by

Ân(t) = n−1/2(An(t)− λnt), Ŝni (t) = n−1/2(Sni (t)− µni t). (8)

By the functional central limit theorem, the N + 1 dimensional processes (Ân, Ŝn1 , . . . , Ŝ
n
N) converge

to a BM with drift zero and a diagonal covariance matrix Σ with Σ(1, 1) = λ and Σ(i+ 1, i+ 1) =
µiVTi(1), i ≥ 1 (see Section 17 of [5]).

Fix z ∈ (1,∞) and denote

τn = inf{t : ‖Q̂n(t)‖ ≥ z − 1}. (9)

By definition, ‖Q̂n(t)‖ ≤ z − 1 for all t < τn. Taking into account the fact that the upward jumps
of Q̂n are bounded by cn−1/2, where c is a constant, it follows that ‖Q̂n(t)‖ ≤ z for all t ≤ τn,
where, throughout, one assumes without loss of generality that n is sufficiently large. Fix T . We
prove the queue length processes undergo SSC in [0, T] using a bootstrap argument. Given z, we
prove SSC occurs up to time τn ∧ T using the bound on ‖Q̂n(t)‖ and an upper bound of order
n−1/2 on the delay experienced by jobs (Lemma 3.1 below). We then use this SSC result to show
limz→∞ lim supn P(τn < T) = 0, thus completing the proof. Let

δ̄n = sup{δn(k) : k ≤ An(T)}, δ̄nz = sup{δn(k) : k ≤ An(T ∧ τn)}, (10)

denote the maximal delay among all jobs to arrive during the time intervals [0, T] and [0, T ∧ τn],
respectively. Denote µ∗ = (mini µi)/2 and γz = (z + 1)µ−1∗ .

We first provide a rough bound on the delay experienced by jobs to arrive by time T ∧ τn.

Lemma 3.1. One has
lim
n

P(δ̄nz > γzn
−1/2) = 0.

7

Proof. For k ∈ N, denote

Ωn,k = {αn(k) ≤ T ∧ τn, δn(k) > γzn
−1/2}.

Fix k and consider the event Ωn,k. For simplicity, write αn = αn(k), βn = βn(k), in = in(k) and
Jn = Jn(k). Clearly, server in is busy during the time interval Jn. Hence, on the event Ωn,k,

Θnin(βn)−Θnin(αn) = βn − αn = δn(k) > γzn
−1/2.

Moreover, the number of tasks that depart the queue in during the interval Jn cannot exceed the
queue length at the time of job k’s arrival, αn. Thus on Ωn,k,

Dn
in [Jn] ≤ Qnin(αn) ≤ ‖Qn‖T∧τn ≤ zn1/2.

Using (6), it follows that on the event Ωn,k one has

Snin(Θnin(αn) + γzn
−1/2)− Snin(Θnin(αn)) ≤ zn1/2.

Note that {δ̄nz > γzn
−1/2} = ∪k≥1Ωn,k. Thus, on {δ̄nz > γzn

−1/2}, there exists i ∈ {1, . . . , N} and
σ ∈ [0, T] such that

Sni (σ + γzn
−1/2)− Sni (σ) ≤ zn1/2, (11)

where we used the fact that αn(k) ≤ T on the event Ωn,k. By the definition (8) of the scaled
processes Ŝni , (11) can be written as

Ŝni (σ + γzn
−1/2) + (σ + γzn

−1/2)µni n
−1/2 − Ŝni (σ)− σµni n−1/2 ≤ z.

By (2), for n large enough µni ≥ µ∗n. Hence the above implies

γzµ∗ −max
i
w2T (Ŝni , γzn

−1/2) ≤ z.

Since γzµ∗ − z = 1, we obtain

P(δ̄nz > γzn
−1/2) ≤ P(max

i
w2T (Ŝni , γzn

−1/2) ≥ 1).

Since {Sni } are C-tight, the RHS converges to zero as n→∞, proving the result.

Simple relations between cancellations and departures are as follows. At the time when a task
is called for service, d − 1 tasks are canceled elsewhere in the system. Therefore the number of
cancellations by time t is equal to d − 1 times the number of tasks admitted into service by that
time. Note that the latter is equal to the number of departures plus the number of tasks in service
at that time. Consequently,

N∑
i=1

Cni (t) = (d− 1)
N∑
i=1

Dn
i (t) + (d− 1)Mn(t), (12)

where
Mn(t) =

∑
i

1{Qn
i (t)>0} (13)

8

is the number of non-idle servers at time t. Clearly,

0 ≤Mn(t) ≤ N, t ≥ 0. (14)

During a time interval J = [t1, t2], every cancellation in a server j corresponds to a task that has
either departed another server i or is still being processed there at t2. Hence for every j,

Cnj [J] ≤
∑
i:i 6=j

Dn
i [J] +Mn(t2). (15)

Our main estimate toward proving Theorem 2.1, Corollary 2.2 and Theorem 2.3 is the following.

Lemma 3.2. As n→∞,

max
1≤i,j≤N

‖Q̂ni − Q̂nj ‖T∧τn → 0, in probability.

Proof.
Fix η > 0. Consider the event that there exist two normalized queue lengths that drift 2η apart

by the time T ∧ τn, namely

Ωn = {max
i,j
‖Q̂ni − Q̂nj ‖T∧τn > 2η}. (16)

For any vector v ∈ RN we use the notation v(i) for the ith smallest coordinate of v, counting
multiplicity. That is, {v(i)} satisfy

v(1) ≤ · · · ≤ v(N),

such that for each i ∈ {1, . . . , N}, v(i) = vj for exactly one j. Consider the first time when Q̂n(N)

and Q̂n(d) are η apart,
tna = inf{t : Q̂n(N)(t)− Q̂

n
(d)(t) > η}, (17)

and similarly, the first time when Q̂n(d) and Q̂
n
(1) are η apart,

tnb = inf{t : Q̂n(d)(t)− Q̂
n
(1)(t) > η}. (18)

Then, with
tn2 = min(tna , t

n
b), (19)

it is clear that Ωn ⊂ {tn2 ≤ T ∧ τn}. Hence

P(Ωn) ≤ P(Ωn
a) +P(Ωn

b), Ωn
a = {tnb ≥ tna , tn2 = tna ≤ T ∧ τn}, Ωn

b = {tnb < tna , t
n
b = tn2 ≤ T ∧ τn}.

(20)
The argument proceeds by providing estimates on each of the terms on the RHS of (20). We slightly
simplify the notation by writing τ , ta, tb, t2 for τn, tna , tnb , t

n
2 , respectively.

Step 1: estimating P(Ωn
a). Consider the event Ωn

a . On this event, Q̂n(N) and Q̂
n
(d) are η apart

at time t2, while Q̂n(d) and Q̂n(1) are still η close. Denote by imax the index of the maximal queue
length at t2, that is, the (minimal) i ∈ {1, . . . , N} such that Q̂ni (t2) = Q̂n(N)(t2). Let also

t1 = sup{t < t2 : Animax
(t) < Animax

(t2)}

9

be the last time before t2 when a task arrived at queue imax. Note that on the event Ωn
a , t2 > 0.

By the definition of t2, Q̂nimax
(t2) > η. Since the size of jumps of each Q̂ni is n−1/2 and η > n−1/2 for

large enough n, there must be an arrival to that queue prior to t2. Hence one has 0 ≤ t1 ≤ t2 ≤ T
on the event under consideration. By the definition of t1, a task was sent to queue imax at that
time, by which it follows that

Q̂nimax
(t1) ≤ Q̂n(d)(t1).

Therefore
N∑

i=d+1

(
Q̂n(i)(t1)− Q̂

n
imax

(t1)
)
≥ 0. (21)

Since on Ωn
a , tb ≥ ta = t2, we have Q̂n(d)(t) − Q̂

n
(1)(t) ≤ η for t < t2. It follows that Q̂nimax

(t1) −
Q̂n(1)(t1) ≤ η, and so

d∑
i=1

(
Q̂n(i)(t1)− Q̂

n
imax

(t1)
)
≥ −(d− 1)η. (22)

Summing inequalities (21) and (22) yields∑
i:i 6=imax

(
Q̂ni (t1)− Q̂nimax

(t1)
)
≥ −(d− 1)η. (23)

Next, by the definition of imax,

N∑
i=d+1

(
Q̂nimax

(t2)− Q̂n(i)(t2)
)
≥ 0,

and by the definition of ta,
d∑
i=1

(
Q̂nimax

(t2)− Q̂n(i)(t2)
)
≥ dη. (24)

Hence ∑
i:i 6=imax

(
Q̂nimax

(t2)− Q̂ni (t2)
)
≥ dη. (25)

By the definition of t1 and the right continuity of the sample paths, there are no routings to queue
imax during the time interval J := [t1, t2], and so Q̂nimax

[J] ≤ 0. Combining this with (23) and (25)
gives ∑

i:i 6=imax

Q̂ni [J] ≤ −η. (26)

Using the identity
∑N

i=1A
n
i = dAn and again the fact that there are no routings to queue imax

during J , we have
∑

i:i 6=imax
Ani [J] = dAn[J]. Combining this with (7), (26) and the fact that

Q̂ni = n−1/2Qni gives ∑
i:i 6=imax

Dn
i [J] +

∑
i:i 6=imax

Cni [J]− dAn[J] ≥ ηn1/2.

10

Using (12) and (14), this implies

∑
i:i 6=imax

Dn
i [J] + (d− 1)

N∑
i=1

Dn
i [J] + (d− 1)N − dAn[J] ≥ ηn1/2. (27)

Denote Jni =
[
t1 − Ini (t1), t2 − Ini (t2)

]
. By (6), we have Dn

i [J] = Sni [Jni], hence by (8) and (27) we
obtain

∑
i:i 6=imax

Ŝni [Jni] + (d− 1)
N∑
i=1

Ŝni [Jni]− dÂn[J] + n−1/2(d− 1)N + yn(t2 − t1) ≥ η, (28)

where

yn =
[∑
i:i 6=imax

µni + (d− 1)
N∑
i=1

µni − dλn
]
n−1/2

= −µnimax
n−1/2 + dvn,

vn =
(N∑
i=1

µni − λn
)
n−1/2. (29)

By (1), (2) and (3), vn is a bounded sequence. Moreover, for n large enough, yn < 0.
Fix a sequence rn > 0 such that rn → 0 and n1/2rn → ∞. Let t3 denote the first time after

t1 when all tasks present in the system at t1 have either departed or been canceled. Note that,
on the event {t1 ≤ T ∧ τ}, δ̄nz is an upper bound on t3 − t1. Moreover, it is impossible to have
t3 < t2, because one would then have that during [t3, t2] no tasks are routed to queue imax, by which
Qnimax

(t2) = 0, in contradiction to (24). Therefore t3 ≥ t2, and so t2 − t1 ≤ δ̄n. We obtain

P(Ωn
a ∩ {t2 − t1 ≥ rn}) ≤ P(δ̄nz ≥ rn)→ 0, as n→∞,

by Lemma 3.1.
Next, by (28) and the fact that yn ≤ 0 for large n,

P(Ωn
a ∩ {t2 − t1 < rn}) ≤ P

(
d

N∑
i=1

wT (Ŝni , rn) + dwT (Ân, rn) ≥ η
)
→ 0, as n→∞,

by the C-tightness of {Ŝni } and {Ân}. As a result,

lim
n

P(Ωn
a) = 0. (30)

Step 2: estimating P(Ωn
b). On this event there is a difference of η within the d minimal

normalized queue lengths at t2, however the large N − d ones are still η close.
Denote by imin the (minimal) i for which Q̂ni (t2) = Q̂n(1)(t2). By the definition of tb, we have on

Ωn
b ,

Q̂n(d)(t2)− Q̂
n
imin

(t2) ≥ η, (31)

11

and so ∑
i:i 6=imin

Q̂ni (t2)− (N − 1)Q̂nimin
(t2) =

∑
i:i 6=imin

(
Q̂ni (t2)− Q̂nimin

(t2)
)

≥
N∑
i=r

(
Q̂n(i)(t2)− Q̂

n
imin

(t2)
)

≥ (N − d+ 1)η. (32)

Define
t1 = sup{t < t2 : Q̂n(d)(t)− Q̂

n
imin

(t) < bη}, (33)

where b = (N−1)−1/2. Recalling that the initial condition is zero, it follows that t1 < t2. Moreover,
during the time interval J = [t1, t2] we have Q̂nimin

< Q̂n(d), hence every job arrival results with a
task routed to queue imin during this interval.

Next, recalling again that the size of jumps of the normalized queue length is n−1/2, we have

Q̂n(d)(t1)− Q̂
n
imin

(t1) ≤ bη + n−1/2. (34)

Therefore
d∑
i=1

(
Q̂n(i)(t1)− Q̂

n
imin

(t1)
)
≤ (d− 1)bη + (d− 1)n−1/2. (35)

Since on the event Ωn
b we have ta > tb, it follows that

Q̂n(N)(t1)− Q̂
n
(d)(t1) ≤ η. (36)

Using (34) and (36),

N∑
i=d+1

(
Q̂n(i)(t1)− Q̂

n
imin

(t1)
)
≤ (N − d)(b+ 1)η + (N − d)n−1/2. (37)

Inequalities (35) and (37) yield∑
i:i 6=imin

Q̂ni (t1)− (N − 1)Q̂nimin
(t1) =

∑
i:i 6=imin

(
Q̂ni (t1)− Q̂nimin

(t1)
)

≤ (N − d+ b(N − 1))η + (N − 1)n−1/2. (38)

By combining (32), (38) and substituting the value for b we obtain∑
i:i 6=imin

Q̂ni [J]− (N − 1)Q̂nimin
[J] ≥ η

2
− (N − 1)n−1/2 ≥ η

4
, (39)

provided that n is sufficiently large.
Recall that, on the event Ωn

b , during the interval J , for every arriving job, one out of the d tasks
is routed to queue imin. By this and relation (7), we can write (39) as

NDn
imin

[J]−
N∑
i=1

Dn
i [J] +NCnimin

[J]−
N∑
i=1

Cni [J]− (N − d)An[J] ≥ ηn1/2

4
.

12

Using (12) and (15) to bound from above the fourth and, respectively, third term on the LHS, and
using (14), yields

NDn
imin

[J]−
N∑
i=1

Dn
i [J]

+N
∑

i:i 6=imin

Dn
i [J] +N2 − (d− 1)

N∑
i=1

Dn
i [J] + (d− 1)N − (N − d)An[J] ≥ ηn1/2

4
.

Thus

N∑
i=1

Dn
i [J]−An[J] + 2N2 ≥ η̂n1/2, (40)

where η̂ = η/[4(N − d)].
Similarly to Step 1 we let Jni = [t1 − Ini (t1), t2 − Ini (t2)], and using (6) and (8), write (40) as

N∑
i=1

Ŝni [Jni]− Ân[J] + n−1/22N2 + vn(t2 − t1) ≥ η̂, (41)

where vn is as in (29). Note that n−1/22N2 → 0.
With rn as before, we first estimate P(Ωn

b ∩{t2− t1 ≥ rn}), by a variation on the idea presented
in Step 1 for bounding P(Ωn

a ∩ {t2 − t1 ≥ rn}). That is, with t3 denoting the first time after t1
when all tasks present in the system at t1 are no longer in the system, we argue that it is impossible
to have t3 < t2. Suppose t3 < t2. Again, we use the fact that during the time interval [t1, t2],
for every arriving job, one task is routed to queue imin. Moreover, during [t3, t2], all tasks present
in the system correspond to arrivals between [t1, t2]. Therefore, given any time t ∈ [t3, t2] and
any i ∈ {1, . . . , N} other than imin, every task that is present in queue i at time t must have
arrived after t1 and has not yet departed or been canceled, and thus has a sibling task in queue
imin (corresponding to the same job). This shows that Qimin(t) ≥ Qi(t) for every i ∈ {1, . . . , N},
in contradiction to (31). Therefore, on Ωn

b , we have t3 ≥ t2, and so t2 − t1 ≤ t3 − t1 ≤ δ̄nz . Again,
by Lemma 3.1, this shows

lim
n

P(Ωn
b ∩ {t2 − t1 ≥ rn}) = 0.

Next, consider the event Ωn
b ∩ {t2 − t1 < rn}. Recalling that the sequence vn is bounded, say

by a constant c, we have from (41),∑
i

wT (Ŝni , rn) + wT (Ân, rn) ≥ η̂ − crn ≥
η̂

2
, (42)

for all sufficiently large n. Thus, limn P(Ωn
b ∩ {t2 − t1 < rn}) = 0 by the C-tightness of {Ŝni } and

{Ân}. We thus obtain that limn P(Ωn
b) = 0.

Combined with (30), it follows by (20) that limn P(Ωn) = 0. Since η > 0 is arbitrary, this
establishes the result.

13

Proof of Theorem 2.1 (SSC). In view of Lemma 3.2, it suffices to show that

lim
z→∞

lim sup
n

P(τn < T) = 0, (43)

where we recall from (9) that τn depends on z. To this end, use (7) and (12) to write a balance
equation for the total number of tasks in the system,

‖Qn(t)‖ =

N∑
i=1

Qni (t) =

N∑
i=1

Ani (t)−
N∑
i=1

Dn
i (t)−

N∑
i=1

Cni (t) = dAn(t)− d
N∑
i=1

Dn
i (t)− (d− 1)Mn(t).

Given n and z > 4, if τn < T then there exists σn < τn such that ‖Q̂n(σn)‖ ≤ z/2 whereas
‖Q̂n(t)‖ ≥ z/4 for all t ∈ [σn, τn]. By the definition of τn, ‖Q̂n(τn)‖ ≥ z − 1. For z fixed, the
probability that ‖Q̂ni − Q̂nj ‖T∧τn > 1 goes to zero with n, by Lemma 3.2. Since z/4 > 1 this
shows that for some Ωn with P(Ωn) → 1, on Ωn ∩ {τn < T}, one has Qni (t) > 0 for all i and all
t ∈ J := [σn, τn], with σn as above. Hence there is no idling during J on the indicated event. As a
result,

dÂn[J]− d
N∑
i=1

Ŝni [Jni]− dvn(τn − σn) = ‖Q̂n(τn)‖ − ‖Q̂n(σn)‖ ≥ z

2
− 1 >

z

4
,

with Jni := [σn − Ini (σn), τn − Ini (σn)]. Hence

lim sup
z→∞

lim sup
n

P(τn < T) ≤ lim sup
z→∞

lim sup
n

P
(

2d‖Ân‖T + 2d
N∑
i=1

‖Ŝni ‖T + d|vn|T >
z

4

)
= 0,

where the tightness of the RVs ‖Ŝni ‖T , ‖Ân‖T and the boundedness of vn are used. This shows (43)
and completes the proof.

Proof of Corollary 2.2 (Diffusion limit). For the number of jobs is the system, a proof that
follows the arguments of the proof of Proposition 2.5 of [3] shows convergence to an (a, b)-RBM,
with a = Nm̂0 = λ̂ −

∑
i µ̂i and b = N2σ̂20 = λVIA(1) +

∑
µiVTi(1). For the number of tasks one

multiplies by d, and then arguing via SSC as in Proposition 2.5 of [3] for the number of tasks in
each buffer, one divides by N .

Proof of Theorem 2.3 (Delay). Recall that an is a fixed sequence and ∆̂n(t) = ∆̂n(t, t+ an). Let
us also denote ∆n(t) = ∆n(t, t+an) and Kn(t) = Kn(t, t+an), t ≥ 0. Recall that for k ∈ N, αn(k)
and βn(k) denote the arrival and, respectively, departure time of job k. Note that the set Kn(t)
includes all jobs to arrive during the time interval (t, t+an]. For t ≥ 0, let θt = θn,t = t+an. Given
t, we divide the collection of all jobs that have either arrived or departed during the time interval
(t, θt] into four categories. Namely, we set

Kn
1 (t) = {k : t < α(k) ≤ β(k) ≤ θt}, Kn

2 (t) = {k : t < α(k) ≤ θt < βn(k)},

Kn
3 (t) = {k : αn(k) ≤ t ≤ β(k) ≤ θt}, Kn

4 (t) = {k : α(k) ≤ t ≤ θt < βn(k)}.

Thus

• Kn
1 (t) are jobs that arrived and departed during (t, θt].

14

• Kn
2 (t) arrived during (t, θt], and departed after.

• Kn
3 (t) arrived before (t, θt] and departed within.

• Kn
4 (t) arrived before (t, θt] and departed after.

Note that Kn(t) = Kn
1 (t) ∪Kn

2 (t).
With QnJ(t) denoting the number of jobs in the system at time t, we have∫ θt

t
QnJ(s)ds =

∑
k

∫ θt

t
1{job k is in the system at time s}ds

=
∑

k∈Kn
1 (t)

δn(k) +
∑

k∈Kn
2 (t)

(θt − αn(k)) +
∑

k∈Kn
3 (t)

(βn(k)− t) + an|Kn
4 (t)|.

Thus denoting

Q̂nave(t) = (an)−1
∫ θt

t
Q̂nJ(s)ds,

e2(t) = n1/2|Kn(t)|−1
∑

k∈Kn
2 (t)

(βn(k)− θt), (44)

e3(t) = −n1/2|Kn(t)|−1
∑

k∈Kn
3 (t)

(βn(k)− t), (45)

e4(t) = −n1/2|Kn(t)|−1an|Kn
4 (t)|,

and e(t) = e2(t) + e3(t) + e4(t), we can write the diffusion scale average delay as

∆̂n(t) = n1/2|Kn(t)|−1
∑

k∈Kn
1 (t)∪Kn

2 (t)

δn(k)

= n1/2|Kn(t)|−1
(∫ θt

t
QnJ(s)ds+

∑
k∈Kn

2 (t)

(βn(k)− θt)−
∑

k∈Kn
3 (t)

(βn(k)− t)− an|Kn
4 (t)|

)
= nan|Kn(t)|−1Q̂nave(t) + e(t). (46)

The remaining steps are to show that nan|Kn|−1 and e converge in probability to λ−1 and 0,
respectively, and then that Q̂nave has the same weak limit as d−1

∑
i Q̂

n
i .

Fix T > 0. Using (8),

(nan)−1|Kn(t)| = (nan)−1(An(θt)−An(t)) = n−1/2(an)−1[Ân(θt)− Ân(t)] + n−1λn. (47)

By the tightness of the RVs ‖Ân‖T , the RHS above converges to λ in probability, uniformly in
t ∈ [0, T]. Hence nan|Kn(t)|−1 converges to λ−1 in probability, uniformly in t ∈ [0, T].

We next show that ei ⇒ 0, i = 2, 3, 4. Recall the definitions of δ̄n and δ̄nz from (10). It follows
from Lemma 3.1 that for any z and any sequence {ân} such that n1/2ân →∞, limn P(δ̄nz > ân) = 0.
By (43), lim supn P(δ̄n > δ̄nz) can be made arbitrarily small by selecting large z. As a result,

lim
n

P(δ̄n > ân) = 0. (48)

15

Bound e2 from above by replacing all the partial delays by δ̄n, to get

|e2(t)| ≤ n1/2|Kn(t)|−1δ̄n|Kn
2 (t)|

≤ n1/2|Kn(t)|−1δ̄nQnJ(θt)

≤ n|Kn(t)|−1δ̄n‖Q̂n‖T .

Apply (48) with a sequence {ân} for which ân/an → 0. Then, on events with probability tending
to 1, one has

|e2(t)| ≤ n|Kn(t)|−1ân‖Q̂n‖T = nan|Kn(t)|−1 â
n

an
‖Q̂n‖T .

Thus by the uniform convergence of nan|Kn(t)|−1 and the tightness of the RVs ‖Q̂n‖T , it follows
that ‖en2‖T → 0 in probability.

The proof for en3 uses similar arguments.
As for en4 , we argue that the probability that there exists even a single type 4 job for some

t ∈ [0, T] tends to zero as n→∞. To see this, apply (48) with {ân} = {an}, by which

P(sup
t∈[0,T]

|Kn
4 (t)| > 0) ≤ P(there exists k ≤ An(T) such that δn(k) > an) = P(δ̄n > an)→ 0.

It follows that ‖e‖T → 0 in probability.
Finally, Q̂nave is defined as a running average of the process Q̂nJ . Clearly, ‖Q̂nave − Q̂nJ‖T ≤

wT+1(Q̂
n
J , a

n). The process Q̂nJ is equal to d−1
∑

i Q̂
n
i up to an error bounded by Nn−1/2, which

accounts for the fact that when a task is being processed, its d−1 copies are no longer in the system.
Now, by Corollary 2.2, for each i, Q̂ni converges in distribution to β0, with β0 a (dµ̂0, σ

2
1)-RBM.

It follows that Q̂nJ converges to d−1Nβ0, an (Nµ̂0, d
−2N2σ21)-RBM. By (46) and the convergence

(nan|Kn|−1, e) ⇒ (λ−1, 0), we divide further by λ to get a (µ̌0, σ̌
2
0)-RBM as the weak limit of

∆̂n.

4 Discussion and simulation results

4.1 Implementation complexity of RSQ(d)

In this section we discuss the implementation complexity of RSQ(d) compared to that of R(d) and
JSQ. It is a common argument in the literature that JSQ does not scale to systems where N is
large, due to (a) the time it takes to find the identity of the server with the minimal queue or (b) the
memory required for keeping the state of the queue lengths or (c) the communication overhead of
sampling all queues whenever a job arrives. R(d) is presented as a more scalable solution compared
to JSQ. Since RSQ(d) requires the complete queue length information as JSQ, arguments (a)-(c)
put the scalability of RSQ(d) into question.

Contrary to this, we first argue that (a) has a negligible impact on the implementation com-
plexity and does not affect the scalability of either JSQ or RSQ(d). Second, regarding (b) and (c),
assuming that servers communicate with the dispatcher but not with each other, we argue that if
R(d) can be implemented, so can JSQ and RSQ(d). Note that a similar argument concerning the
communication overhead of JSQ is provided in [15].

16

(a) Finding the minimum: finding the minimum of N numbers, even if N is very large, has a
negligible computational overhead when using an appropriate data structure such as a priority
queue (e.g., Min heap or Fibonacci heap). Finding the minimum results in only a single operation
(i.e., simply looking at the head of the priority queue). For a queue length update operation,
O(log(N)) operations are required in the worst case (e.g., decrease-key operation in a min-heap).
Even with n = 106, just a few operations are required in the worst case per queue length update.
This results in a single commodity core being able to perform tens to hundreds of millions of such
updates per second, hence resulting in negligible overhead.
(b)Memory : R(d) needs to remember the present tasks’ identity and location. The required memory
size depends on how R(d) is implemented. For example, the dispatcher can store the information on
all present tasks or the tasks themselves can store the information on where their copies are. Any
scheme that is used to handle the tasks’ identity and location information in R(d) can be used in
RSQ(d). Thus, compared to R(d), JSQ and RSQ(d) can require up to an additional O(N) memory
to store queue length information. However, even if there are millions of servers, this translates into
a few MB, which is negligible compared to the memory of a single commodity server (typically with
hundreds of GB of memory in DRAM).
(c) Communication overhead : If one assumes that R(d) can be implemented, even if only for d = 2,
then one assumes that for every job, the dispatcher can be notified when the first of the job’s tasks
reaches a server (or finished being processed by a server when applying late-cancellation). Under
this assumption, JSQ can also be implemented in the following way: whenever a server begins
processing a new job, it notifies the dispatcher of its queue length. Thus the dispatcher always has
the current state of the queue lengths and is able to route incoming jobs to the shortest queue.
The communication overhead is only 1 message per job, which does not depend on N and is the
same order of magnitude as other low communication policies such as the-power-of-choice [16] and
join-the-idle-queue [15]. RSQ(d) can be implemented using the same scheme: whenever a server
begins processing a new job, it notifies the dispatcher of the identity of the job and of its queue
length. As in R(d), the dispatcher then sends cancellation messages to the servers containing the
copies of the job. Thus RSQ(d) requires no additional communication overhead compared to R(d).

4.2 Simulations

For simplicity, we simulate a discrete time-slotted system with three heterogeneous servers. The
system is initially empty. A sequence of i.i.d. Bernoulli(λ) RVs determines at which time slots jobs
arrive. Thus the arrival rate is λ. For each server i, a sequence of i.i.d. Geometric(µi) RVs determines
the service duration (measured in time slots) of each job. The service rates are µ1 = µ (the slow
server), µ2 = 3µ (the intermediate server) and µ3 = 10µ (the fast server), where µ is chosen such
that

∑
i µi = 14µ = 0.5 (we choose

∑
i µi to be far from 1 to avoid the case where a job arrives

in almost every time slot). We set λ = 0.99
∑

i µi, i.e., a load of 99%. Note that R(2) is unstable
in this setting. Indeed, under R(2), at least a fraction of 1/3 of the traffic on average is routed to
the pair of servers {1, 2}. Thus the rate at which these servers receive traffic is at least λ/3, or
4.62µ, which is larger than their combined service rate 4µ. We compare three algorithms, RSQ(1)
(JSQ), RSQ(2) and RSQ(3) (JLW). Before running the algorithms, the simulation first determines
the arrival times of jobs. Then, for each job, it calculates its service duration it would require if
it is routed to any one of the three servers. Thus all three algorithms run on the same stochastic
primitives.

17

Figure 1: Queue lengths (first row), effective queue lengths (second row) and workloads (third row)
under RSQ(1) (left column), RSQ(2) (middle column) and RSQ(3) (right column). As d increases,
the workloads are more balanced and the total workload in the system decreases.

Figure 2: The Complementary Cumulative Distribution Function (in log-scale) of the completion
time of jobs in a simulation with 107 time slots. RSQ(2) and RSQ(3) are superior to RSQ(1) with
respect to tail of the distribution, such that the probability of large completion times decreases
much faster for values larger than 300-400 time slots.

18

Our first interest lies in the queue length, effective queue length and workload behaviours. The
queue length corresponds to the number of tasks in the buffer, including the one in service if there
is any. Note that the queue length includes tasks that will be processed as well as tasks that will
be cancelled. Effective queue length includes only those tasks that will be processed by the server.
Note that this necessarily includes the task in service if there is any. Also, under RSQ(1), since there
are no replications, the queue lengths and effective queue lengths coincide. Workload corresponds
to the time it will take the server to complete all of its existing work. The workload is equal to the
sum of the service duration of existing tasks that will be processed by the server, plus the remaining
service duration of the task in service.

Figure 1 shows the results for 105 time slots. Note that queue lengths can only jump by 1
whereas workload jumps are a-priori unbounded. As expected, the queue lengths under RSQ(d) for
d ∈ {1, 2, 3} are balanced. This conforms with our theoretical SSC result. Also, the queue lengths
increase with d, due to the increasing number of replicated tasks. As mentioned, the effective queue
lengths under RSQ(1) coincide with the queue lengths and hence are balanced. However, as d
increases, the effective queue lengths become less balanced. The fast server receives the largest
number of jobs it will actually process, and the slow server the least. In fact, under RSQ(3), the
effective queue lengths are a multiplicative factor away from one another, corresponding to their
service rates (1, 3 and 10), which conforms with RSP. The opposite phenomena occurs with the
workloads. Under RSQ(3) and RSQ(2) the workloads are balanced (under RSQ(2) to a lesser extent
than under RSQ(3)). Under RSQ(1) the workloads are not balanced, and are a multiplicative factor
away from one another corresponding to their service rates, which also conforms with RSP. The
workload in the system decreases substantially as d increases from 1 to 2. This simulation thus
indicates that choosing d larger than one, even if just d = 2, has a dramatic effect on workload
balance and total workload in the system.

Next, we turn to job completion time, defined as the time a job spends in the system, from
arrival until one of its tasks has finished being processed. Figure 2 displays the Complementary
Cumulative Distribution Function (CCDF) of the job completion time in a simulation with 107 time
slots. RSQ(2) and RSQ(3) are superior to RSQ(1) with respect to the tail of the distribution, such
that the probability of a large completion time decreases much more rapidly after completion times
around 300-400 time slots. Moreover, we observe that under RSQ(3) and RSQ(2) the completion
times reach around 800 and 1000 time slots respectively, whereas under RSQ(1) they reach around
3000 time slots. The results indicate that increasing d from 1 to 2 also has a significant effect on
job completion times.

Acknowledgements. The authors are grateful to an AE and two referees for careful reading
and valuable comments.

References
[1] Ananthanarayanan, G., Ghodsi, A., Shenker, S., and Stoica, I. (2013). Effective straggler mitigation: Attack of

the clones. USENIX NSDI (pp. 185-198).

[2] Ananthanarayanan, G., Kandula, S., Greenberg, A. G., Stoica, I., Lu, Y., Saha, B., and Harris, E. (2010).
Reining in the outliers in map reduce clusters using Mantri. OSDI (Vol. 10, No. 1, p. 24).

[3] Atar, R., Keslassy, I., and Mendelson G. (2017). Sub-diffusive load-balancing in time-varying queueing systems.
Preprint.

19

[4] Atar, R., and Saha, S. (2016). An ε-Nash equilibrium with high probability for strategic customers in heavy
traffic. Mathematics of Operations Research.

[5] Billingsley, P. (2013). Convergence of Probability Measures. John Wiley and Sons.

[6] Bramson, M. (1998). State space collapse with application to heavy traffic limits for multiclass queueing networks.
Queueing Systems, 30(1-2), 89-140.

[7] Chen, H., and Ye, H. Q. (2012). Asymptotic optimality of balanced routing. Operations Research, 60(1), 163-179.

[8] Daley, D. J. (1987). Certain optimality properties of the first-come first-served discipline for G/G/s queues.
Stochastic Processes and their Applications, 25, 301-308.

[9] Foley, R. D., and McDonald, D. R. (2001). Join the shortest queue: stability and exact asymptotics. Annals of
Applied Probability, 569-607.

[10] Foss, S. G. (1982). Extremal problems in queueing theory (Doctoral dissertation, PhD thesis, Novosibirsk State
University. In Russian).

[11] Foss, S., and Chernova, N. (1998). On the stability of a partially accessible multi-station queue with state-
dependent routing. Queueing Systems, 29(1), 55-73.

[12] Gardner, K., Zbarsky, S., Doroudi, S., Harchol-Balter, M., and Hyytia, E. (2015). Reducing latency via redundant
requests: Exact analysis. ACM SIGMETRICS Performance Evaluation Review, 43(1), 347-360.

[13] Gupta, V., Balter, M. H., Sigman, K., and Whitt, W. (2007). Analysis of join-the-shortest-queue routing for
web server farms. Performance Evaluation, 64(9-12), 1062-1081.

[14] Koole, G., and Righter, R. (2008). Resource allocation in grid computing. Journal of Scheduling, 11(3), 163-173.

[15] Lu, Y., Xie, Q., Kliot, G., Geller, A., Larus, J. R., and Greenberg, A. (2011). Join-Idle-Queue: A novel load
balancing algorithm for dynamically scalable web services. Performance Evaluation, 68(11), 1056-1071.

[16] Mitzenmacher, M. (2001). The power of two choices in randomized load balancing. IEEE Transactions on Parallel
and Distributed Systems, 12(10), 1094-1104.

[17] Ousterhout, K., Wendell, P., Zaharia, M., and Stoica, I. (2013). Sparrow: distributed, low latency scheduling.
ACM SOSP (pp. 69-84).

[18] Reiman, M. I. (1982). The heavy traffic diffusion approximation for sojourn times in Jackson networks. In Applied
probability computer science: the interface (pp. 409-421). Birkhäuser Boston.

[19] Reiman, M. I. (1984). Some diffusion approximations with state space collapse. In Modelling and performance
evaluation methodology (pp. 207-240). Springer Berlin Heidelberg.

[20] Shah, N. B., Lee, K., and Ramchandran, K. (2016). When do redundant requests reduce latency?. IEEE Trans-
actions on Communications, 64(2), 715-722.

[21] Whitt, W. (1986). Deciding which queue to join: Some counterexamples. Operations research, 34(1), 55-62.

[22] Williams, R. J. (1998). Diffusion approximations for open multiclass queueing networks: sufficient conditions
involving state space collapse. Queueing Systems, 30(1), 27-88.

[23] Wolff, R. W. (1987). Upper bounds on work in system for multichannel queues. Journal of applied probability,
24(2):547–551.

20

