SAL: Scaling Data Centers
Using Smart Address Learning

Alexander Shpinerl, Isaac Keslassyl, Carmi Arad?, Tal Mizrahi!2, and Yoram Revah?

ITechnion, {shalex@tx, isaac@ee}.technion.ac.il
Marvell Israel, {carmi, talmi, yoramr} @marvell.com

Abstract—Maulti-tenant data centers provide a cost-effective
many-server infrastructure for hosting large-scale applications.
These data centers can run multiple virtual machines (VMs) for
each tenant, and potentially place any of these VMs on any of the
servers. Therefore, for inter-VM communication, they also need to
provide a VM resolution method that can quickly determine the
server location of any VM. Unfortunately, existing methods suffer
from a scalability bottleneck in the network load of the address
resolution messages and/or in the size of the resolution tables.

In this paper, we propose Smart Address Learning (SAL), a
novel approach that expands the scalability of both the network
load and the resolution table sizes, making it implementable on
faster memory devices. The key property of the approach is to
selectively learn the addresses in the resolution tables, by using
the fact that the VMs of different tenants do not communicate. We
further compare the various resolution methods and analyze the
tradeoff between network load and table sizes. We also evaluate
our results using real-life trace simulations. Our analysis shows
that SAL can reduce both the network load and the resolution
table sizes by several orders of magnitude.

I. INTRODUCTION

Multi-tenant data centers provide an increasingly popular so-
lution for hosting large-scale service applications [1], [2]. Their
appeal comes from their scalability, since they are increasingly
cost-effective as they get larger [3]. To ensure scalability,
data center providers run multiple virtual machines (VMs) per
data center, and can allocate the VMs of a client application
to multiple servers, thus also achieving load balancing, fault
tolerance and power saving. For efficient implementation of
these features, the network has to support unbounded VM
placement and migration such that any VM is able to be
assigned to any server. In particular, it must provide resolution
of the VM location for inter-VM communication: when a new
connection is created between two VMs, the initiating VM
needs to retrieve the location of the other VM. The services
for the physical location resolution of the logical entities have
to be supplied by the data center network infrastructure, e.g.
by network probing, by the forwarding tables, or by some level
of indirection relying on a central database.

Unfortunately, existing location resolution methods often
suffer from scalability issues, especially with the resolution
network load and the forwarding table size. This is because
the network load of the resolution request broadcast messages
increases with the number of VMs [4], [5], while it should be
kept low in order to leave bandwidth for the application data
communication. Moreover, the forwarding-table entries needed

for the ever-increasing number of VMs would not fit anymore
the on-chip memory that is needed to allow fast access and
update times [6], [7]. These issues get especially acute as data
centers grow, and may become critical in future multi-tenant
data centers, which are expected to include millions of VMs
(2], [3].

Several architectures have been proposed to break this scala-
bility bottleneck by using overlay networks [4], [8]-[17]. These
architectures partition the data center network into segments of
broadcast domains, thus solving the problem for intra-segment
VM communication given fixed segment sizes. In addition,
these architectures use network devices called edge bridges
to connect between the segments and the network core. The
edge bridges provide address resolution for inter-segment VM
communication. They can be implemented either in the server
hypervisors or at the top-of-rack switches. Unfortunately, they
still do not solve the scalability problem of inter-segment
address resolution. In fact, [5], [17], [18] state that the overlay
network may still suffer from a bottleneck in resolving target
stations physical address (MAC or IP) at the overlay edge
gateway nodes within the data center. The address resolution
broadcast storms may even cause loss of traffic if the cache
is too small, and may consume significant bandwidth at large
networks.

In this paper, we propose a new address resolution approach
called Smart Address Learning (SAL). SAL enables scaling the
data center while keeping both the resolution table sizes and
the network load low. To do so, we use the fact that VMs of
different tenants do not communicate directly. Thus, the edge-
bridge resolution tables only need to learn addresses of the
VMs that belong to the tenants they serve. For instance, if an
edge bridge serves a local network with VMs of a tenant ¢, it
only needs to follow the location of the other VMs of tenant
i, and can ignore the resolution information of VMs of any
tenant j # 4. This selective learning makes the table usage more
efficient and increases its hit rate. In addition, SAL decreases
the network load, because the VM location updates are only
sent to the tables that serve the same tenant, instead of being
flooded.

The SAL approach can be easily combined in current data
center architectures with any network core routing protocol
and it is distributed, scalable and fault-tolerant. It supports any
common network core protocol and topology. We introduce two
versions of our approach: pull and push, which differ by the

trigger of address learning.

We further provide an analytical model for the evaluation
of the table sizes and the network load under SAL and other
resolution methods. In addition, we compare SAL against
alternative methods using simulations based on synthetic as
well as real-life VM creation, placement and tenancy traces.

To our knowledge, this paper is the first to introduce a model
for comparing address resolution methods in data centers,
as well as the first to evaluate them using real-life trace
simulations.

Our analytical model and simulation results show that SAL
can reduce the network load for a given resolution table size
by up to four orders of magnitude. It also yields a lower update
rate and a higher hit rate in the resolution table, thus potentially
enabling implementation of fast on-chip resolution tables even
for large multi-tenant data centers.

II. RELATED WORK

Commodity techniques of location resolution in small net-
works cannot be directly applied to the large-scale data center
networks. One such technique, ARP over Ethernet layer-2
infrastructure, limits the scalability of the network due to the
high load of the broadcast messages and the large forwarding
tables [19], [20]. For instance, [4] states that address resolution
traffic constitutes more than 88% of the whole broadcast traffic
in the data center networks, and that less than 32,000 hosts
in the same broadcast domain can saturate 100 Mb/s network
links with their peak load ARP traffic. Moreover, the broadcast
domain is recommended to be limited to several hundreds of
nodes. As the network grows, the broadcast messages signifi-
cantly increase the network load, and the forwarding database
tables grow as well, due to a larger number of addresses to
learn.

Another commodity technique, the hierarchical IP-based
layer-3 addressing, mitigates the advantages of VM migration
by limiting it to a specific subnet, because the VM needs to
maintain its IP address during its runtime, which can be difficult
to do while crossing subnets.

In recent years, several overlay network architectures have
been proposed to break this limitations in the data centers
[4], [8]-[16], [21]. In these architectures, the VM packets are
encapsulated in (or rewritten with) the overlay network headers.
The overlay network header is used to route the packet through
the network core, which can be implemented using various
routing protocols such as commodity Ethernet, hierarchical IP
routing, TRILL or MPLS. The encapsulation point, denoted
edge bridge, can be for instance the server hypervisor or the
top-of-the-rack switch.

Table I summarizes the differences between these ap-
proaches, and compares them with our suggested SAL ap-
proach. As mentioned, these methods still lack scalability in
either network load or table sizes when the number of VMs
increases. In addition, the table compares additional desired
properties, including distribution, fault-tolerance, and compat-
ibility with the commodity techniques. The overlay methods
can be roughly divided into three categories:

Central database — The central database approach is
used in VL2 [8] and Portland [12]. The distributed hash table
on the aggregation switches, as used in SEATTLE [11], also
relates to this category. In this approach each VM location is
listed in a unique central consistent database. The edge bridge
resolves the location by sending a unicast request message to
the consistent directory. Note that the edge bridges also hold
a cache table that lists the recently-used resolution entries.
The usage of a central address resolution database has several
drawbacks. These methods may have scalability problems in
large data centers due to frequent resolution updates, unbal-
anced request rates, fault-tolerance issues, and longer delays
for retrieving the information. For instance, [12] states that
for maintaining the resolution requests, approximately 70 pro-
cessing cores are needed, which is beyond the capacity of a
single commodity machine. VL2 [8] replicates the database to
multiple cached servers. However, this raises consistency and
concurrent-replication issues, as well as potential scalability
problems when the update rate is high. Moreover, it requires
maintaining additional servers for backing up the data. It is
also vulnerable to malicious attacks, which lead to service
unavailability if the fabric manager fails to perform address
resolution [22]. In addition, SEATTLE [11] presents potential
fault-tolerance weakness, because the mapping DBs/switches
are not backed up, and in a case of DB/switch failure, all
the associated mapping information is lost. DHT replication
is possible, but generates additional complexity [23].

We next examine two distributed approaches:

Pull — The distributed Pull approach does not rely on
a consistent database, but on broadcasting resolution request
messages over the network and learning the resolution from
the reply. The address resolution is pulled on-demand, meaning,
at the time the resolution is required at the edge bridge. This
approach is used in EtherProxy [4], Diverter [15], OTV [21],
SARP [16] and several other architectures. Unfortunately, this
broadcasting may evolve into a vast flooding of the data center
network core, and therefore cause a prohibitive network load.
Note that here as well, the edge bridges may hold a cache
table that lists the recently used resolution entries, and attempt
to store entries for the active connections. However, these
entries may be inconsistent. Initial VXLAN [9] implementa-
tions configured multicast groups per tenant, and broadcasted
the address resolution request over the tenant multicast group
only. However, the network devices failed to support the
large required number of multicast groups. Thus, the VXLAN
address resolution was moved to be central-DB-managed in
latter implementations [24].

Push — The distributed Push approach relies on sending
address resolution updates with each location change. The
edge bridges learn the VM addresses at each location update,
and manages resolution tables at the edge bridges. Thus,
it avoids request broadcasting, but requires larger resolution
tables. Keeping the location information consistent and close to
the VM allows for a faster start-up time of the new connections
and a lower network load. For instance, this approach is used in
Netlord NL-ARP address learning approach [13]. Netlord repli-

TABLE I
COMPARISON OF THE RESOLUTION METHODS.

Location of the consis- | Cache inconsistency or miss cost Total number of entries Potential hot
tent information spot
Central DB [8], [12] Central DB Request-reply message to DB Minimal Severe
DHT-based DB [11] Distributed Hash Table | Request message to DHT and redirect Minimal Moderate
(DHT)
Pull [4], [15], [21] None Resolution request broadcast (high fre- | As low as needed None
quency)
Push [13] Edge bridge (server or | Resolution request broadcast (less likely to | Maximal None
TOR switch) happen)
SAL + Pull None Resolution request broadcast (medium fre- | As low as needed None
quency)
SAL + Push Edge bridge (server or | Resolution request broadcast (less likely to | Medium None
TOR switch) happen)

cates the resolution database on every server, and therefore uses
a maximal possible number of entries. The edge bridge sends
an update message upon every change of the VM status that it
is responsible of, similarly to the gratuitous ARP mechanism.
Unfortunately, in order to be efficient, this approach requires
large tables. Note that if the table capacity is large enough and
the update messages always arrive within a negligible time,
the push architectures tables are always consistent. Usually, the
Push approach is combined with the Pull approach for resolving
cases with resolution table inconsistency due to table overflow
or resolution packet losses.

In summary, both current centralized and distributed address
resolution approaches in the data center have limited scalability
when the number of VMs increases.

As mentioned before, our suggested approach is based on
selective learning of addresses from the incoming resolution
request messages. A similar idea is used in the selective ARP
learning [25], where an ARP table is configured to learn a pre-
configured specific set of IP addresses. However, the selective
ARP learning approach uses only a passive filtering, without
dynamic adaption to VM re-placement and to tenancy.

III. NETWORK MODEL AND ASSUMPTIONS

We begin by defining the network model, as illustrated in
Figure 1. The model is fairly standard and follows recent
literature [4], [8], [12], [16].

We use the terms application address (AA) and location
address (LA) to define both the addresses in the user VM
address space and in the physical data center address space,
respectively [8]. Note that both those address spaces can be
assigned in Ethernet layer 2, IP layer 3, or any other proprietary
protocol of the data center provider. For example, in VL2 [8]
both AA and LA are IP addresses, while in Portland [12] both
AA and LA are MAC addresses. The VM AA is combined from
a pair of identifiers: the tenant ID within the data center and the
VM ID within the tenant, and thus allows easy association of
the VM to a tenant. By the term resolution we further refer to
the translation of the AA address of a VM into its LA address.

We denote as an edge bridge (EB) the encapsulation point
where the inter-VM data packets are encapsulated in (or rewrit-
ten with) the overlay data center network header. In general,
the encapsulation point can be either the ToR switch, the

4zﬁ/'/—" M"'\—’_

~_ s N s 8

L2 network _":,—t Network Core >— EB Il [) L2networ

 — N J e

_ / et 1 }
erver R \ .

i
AA-LA Resolution Table
VI AR

V
Local VMs Table
VM AA

Server

Dest MAC | Part

VM LA | Update time

EB - Edge Bridge
AA - Application Address
LA - Location Address

Fig. 1. Network Model. The edge bridge (EB) connects the VMs in its
L2 network to the other VMs through the data center network core. The EB
implements overlay network encapsulation. It uses two tables for the address
resolution. The first is a consistent table that lists all the local VMs under
the EB, while the second lists the address resolution of the VMs outside the
network under the EB. In the paper, we focus on the scalability of the second
table.

aggregation switch, or the server hypervisor. We assume for
simplicity that the communication inside the local network
under the EB is L2-protocol based, but other methods would
hold as well.

Incidentally, the server hypervisor typically implements a
virtual switch to connect the hosted virtual machines between
themselves and to the network. The virtual machines use a
virtual network interface to connect to the virtual switch and
believe that they are regular machines connected connected to
the network.

One advantage of this approach is that the VMs in a network
under the EB are interconnected over an L2 network, and do
not necessarily need to send internal messages through the EB.
Furthermore, broadcast ARP-request messages that are injected
by a VM are stopped at the EB and do not propagate to the core
network. For the address resolution requests for VMs outside
the L2 network, the EB replies using an ARP-reply message
with its own MAC address. This common approach is also used
by many other overlay network architectures [4], [8], [12], [16].

Our model supports any common network core protocol and
topology. The routing between the EBs can be implemented
using standard IP routing with ECMP, MPLS or TRILL tunnels,
layer-2 Ethernet with VLANs [26], or any other protocol, as
long as each EB can communicate with each other EB.

Each edge bridge stores an LA-fo-AA resolution table and a
local forwarding table. The LA-to-AA resolution table is used

to resolve the destination AA for a given LA. The next section
introduces SAL, a novel learning scheme for the resolution
entries. In addition, the local forwarding table lists the AAs of
all the VMs under the edge bridge layer-2 network together with
their layer-2 MAC addresses and the output port towards them.
We assume that the placement controller of the data center
keeps the forwarding table consistent.

The time-out mechanism is popular in the conventional ARP
tables, because the tables are stored in a shared memory space
and the timeout mechanism avoids their overflow on the account
of other system processes. Hence, the ARP tables intend to store
the entries for the active entries only. However, in our model,
the EBs use dedicated fast memory to store the resolution
entries in order to allow fast access times and high bandwidth.
So, there is no cost of storing inconsistent entries. On the other
hand, repeatedly acquiring information for the resolution entries
that were removed by the time-out mechanism cost in additional
network load. Therefore, the resolution tables in our model
avoid using the time-out mechanism for the entries. The old,
last recently used, inconsistent entries are overwritten, when a
new resolution information is required to be written to a full
memory.

Finally, in the multi-tenant environment, the VMs are divided
into groups of tenants. The VMs of a tenant are assumed to
communicate only between themselves, and possibly with hosts
outside of the data center, but not with VMs of other tenants.
This is logical, since they belong to different applications.
It also makes sense for security isolation. Therefore, VMs
typically only communicate with a small number of other VMs
[11], [27], [28]. We will leverage this assumption in the paper
to reduce the amount of information that needs to be stored in
the resolution tables. For simplicity, we start by focusing on
internal VM-to-VM communication in this paper, and neglect
the communications to hosts outside of the data center. We
later discuss how the inter-tenant communication support can
be implemented with our approach.

IV. SMART ADDRESS LEARNING (SAL)

The current approaches for address resolution tables on the
overlay network edge simply rely on a list of addresses that
can fit within a table size, without using any optimization
technique to select the most useful addresses. We would like
to present a new approach to improving the usage efficiency
of the resolution tables. This approach should allow usage of
smaller memories for the table storage, as well as lower the
network load of the resolution packets.

The key idea behind our new approach is to selectively learn
the addresses from the received address resolution requests that
are broadcasted over the network. The main question is which
resolution information needs to be stored in the limited EB
tables.

A first approach, which is quite conservative, is to decide
that each EB only learns and updates the resolution entries that
it requested, and not those requested by other EBs.

However, to exploit the bi-directional nature of the commu-
nication, a second approach is to learn also about outside VMs

requesting an inside VM that is located in the EB’s subnet,
since this inside VM will also probably later communicate with
these outside VMs. This method is similar to the scheme used
in conventional ARP messages.

In addition, in a third approach, we can leverage the multi-
tenant nature of the data center to further restrict the number
of learned entries. The inside VMs under a specific EB can
potentially communicate only with outside VMs of the same
tenants. Therefore, when receiving resolution requests, the EB
learns about the VMs of tenants that also have inside VMs —
but it does not learn about VMs from other tenants. This is the
basis of our SAL algorithm.

In Section VI we compare all these approaches using simu-
lations.

A. SAL Overview

This section presents our suggested Smart Address Learning
(SAL) approach. SAL implements a distributed resolution
database, in which the resolution tables are stored on the edge
bridges (EBs).

In SAL, the EB resolution tables only store the addresses of
the VMs that belong to the tenants of the VMs hosted in the EB
network. For example, consider Figure 2. The servers under EB
I host VMs of tenants A and B only. Therefore, the resolution
table of EB I only stores the addresses of VMs of the tenants A
and B. Likewise, the servers under EB III host VMs of tenant
B only, hence the resolution table of EB III would only store
VM addresses for tenant B.

More specifically, any EB that broadcasts an address res-
olution request message will include the AA and LA of its
requesting VM. Upon receiving the message, the other EBs
will selectively learn this AA-to-LA mapping in their resolution
table if and only if their network contains another VM of the
same tenant as the requesting VM. Therefore, EBs without VMs
of this tenant can disregard this message, and as a result their
resolution can typically be smaller than without this selective
learning. The EBs do not need to store any global resolution
information.

In Section V we analyze the scalability properties of SAL
and show that SAL is fully scalable if the number of tenants
increases proportionally to the number of VMs. In other words,
if the number of VMs per tenant is kept fixed as the number
of the VMs in the data center increases, both the network load
and the resolution tables size are kept constant. However, if the
number of VMs increases because each tenant has new VMs,
and not because the data center has more customers (tenants),
then the advantage of the SAL approach diminishes, since the
probability to find at least one VM of a specific tenant on each
rack increases.

This section presents how our suggested SAL algorithm
updates the EB resolution tables following a VM location
update, i.e. following a VM creation, destruction or migration.
We consider two variants of the update method: pull and push.

In the pull version, the location information is pulled by
the EB when this information is required by the encapsulation
process, and is not available in its resolution table. On the other

hand, in the push variant, the location updates are immediately
propagated to other forwarding databases on selected EBs.
Intuitively, the pull version is preferable when the location
update rate is high relative to the address resolution request rate,
and when pushing the updates through broadcasting is costly.
We further analyze the tradeoffs involved in the next sections.

B. Pull Update (On-Demand Update)

In the pull variant, the location information is pulled to the
EB resolution table at the time of resolution request if the
information is unavailable in the table. The update is done by
broadcasting an address resolution request message to all the
other EBs, and receiving a reply from the EB that hosts the
requested VM. The request message also contains the AA and
LA of the source VM that requests the resolution. In SAL, the
smart learning ensures that other EBs that receive this request
message only insert this LA address in their tables if they host
VM of the same tenant. Each EB knows which tenant VMs it
serves using the information from the local VMs forwarding
table.

Figure 2 illustrates the pull variant. It shows how EB I
requests information on VM A.4 by broadcasting a request
message, thus pulling information from the network. It further
emphasizes how only EBs with VMs from tenant will add
information on VM A.1, while other EBs such as EB III
will not. This is the core selection principle behind the SAL
algorithm.

Note that if a VM is migrated during an active connection,
its resolution update can be pushed immediately in order to
avoid a communication disruption by the migration process. In
addition, due to the inconsistent information in the resolution
tables, it may happen that an EB receives a data message that is
destined to the VM that was previously hosted in its network,
but already migrated from it. Then the EB answers the source
EB with an error message, and the source EB will re-initiate
the full address resolutions process. Incidentally, an optional
alternative implementation for the EB is to redirect the packets
to the EB of the updated VM location, and then ask it to inform
back the source EB of the new location.

For simplicity, we assume that each use and update of an
entry in the table refreshes its update timestamp. When the
table fills up, the oldest entry is cleared from the table.

C. Push Update (On-Change Update)

In the push variant, the updates are pushed to the resolution
tables. In our suggested SAL algorithm, in order to reduce
network load, the location update broadcast is replaced with
messages (several unicast or single multicast) to selected EBs
only.

Specifically, upon VM location change, the update is propa-
gated (pushed by either the migration source or the destination
EB) immediately only to the EBs that host VMs of the same
tenant of the VM. Note that SAL does not require the EB to
have a global knowledge on which tenants have clients under
each EB, but only the information of tenant VMs that it serves.
The destination EBs are known to the sending EB, because

it holds the address resolution of all the tenant VMs in its
address resolution table. When an update needs to be sent, the
EB selects from the forwarding database the location addresses
(the destination EBs) of all the VMs of the tenant whose VM
is updated. An easy and fast selection can be achieved by
assigning application addresses (AAs) that contain the tenant
ID in the specific bits, or even better, by logically organizing
the table as a tree with a single node per AA, pointing to the
different VMs. No additional global information about the VM
location is required to be stored.

An alternative implementation is to send the location update
message from a data center controller that decides on the place-
ment of the VMs. This controller manages the VM placement
and thus has a consistent VM location information.

Figure 3 depicts the push process. It shows how EB I
pushes information on newly-created VM A.5 of tenant A, by
selectively sending an update message only to the relevant EBs
that contain VMs from the same tenant A. Thus, the network
load is typically less than in a full broadcast message.

Special treatment is required in the following two cases. First,
when a VM is assigned to an EB network where no other VM
of the same tenant exists, the EB needs to retrieve the location
information of all other VMs of the tenant. This can be done
by broadcasting a request message to all other EBs, or with the
assistance of the data center placement controller.

In a second special case, the last VM of a tenant in an EB
is removed due to deletion or migration to other EBs. In this
case, the EB can remove all the location entries of all other
VMs of this tenant in other EBs. This can be done easily by
the EB itself, by checking the number of remaining VMs of
the tenant in its resolution table after removing a VM.

In order to preserve consistency of the updates, we use a
timestamping mechanism based on synchronized clocks in the
EBs. An update message holds a timestamp of the update time.
Before the table update, the EB validates that the received
message timestamp is newer than the last time the entry was
updated. Each table entry update refreshes its recently used
timestamp. When the table fills up, the oldest entry is cleared
from the table.

Inconsistency of the information in the resolution tables may
still occur with the push variant. It can happen if the message
arrival fails, or if the table is filled up. To overcome this
inconsistency, the pull update mechanism is still preserved in
the push variant. If the requested entry is missing from the
resolution table in the EB, a resolution request is broadcasted
to all the other EBs.

D. Inter-tenant Communication Support

As stated in [29], inter-tenant communication is also possible
in the data centers. Our design can be extended to support it
by reserving entries in the resolution tables for the addresses
of such global tenants that communicate with other tenants. A
combination of different resolution approaches can be used for
the global tenant addresses and the regular tenant addresses. For
example, an EB initiates global inter-tenant resolution request
by broadcasting the request message as in the pull variant,

k{'\f—““ TR
,j/ Ly Address structure:
£ i L\ 2 tenant A
I T
A
o‘?ef) S Y LA - Location Address
\Qg, 065, /- r b EB — Fdge Bridge
(b) check for Laga.a). \&* <0 (e) address Reply: -
AA-LA ; _ i _
. If exists, go to step (f). LA(A.4)=EB Il d) Eai
A else, goto step (c). CATA) (d) Do (d) Learn
= E £ . AA-LA
B (ﬂ Leam AA-LA o :alrn Rgsmf:ol;\ATab\e LA(Al} Resolition Tatile
~ Resolution Table (A1) = o
B LA(A.4) and EBII A EB |
sé\d‘? forward the EB I
B
1 N packet to EB I
\a\h e“o
c (B = e _/’ “\ -
[A] J (]) e (\
A5
|T| m 3 (\ [f-a.a |
B 5 server server server e A
\ server server server server server server

Se ver

Fig. 2. Pull variant of SAL. VM A.1 initializes a connection with VM A.4 and the resolution process starts. (a) A.1 transmits a data packet destined to A.4.
Both VMs belong to tenant A. The packet arrives to EB I, which needs to encapsulate it with the LA of A.4. (b) The LA of A.4 is checked in the resolution
table. If it is absent, (c) the EB creates an address resolution message and broadcasts it to other EBs in the network. The address resolution message contains
the LA information of the source A.1. (d) Upon reception of this address resolution message, each EB that serves VMs of tenant A learns or updates the LA of
A.1. Other EBs do not learn the address in their tables. (e) In addition, EB II that serves the destination A.4, replies by unicast message to EB I with the LA
of A.4. (f) Finally, EB I inserts the LA of A.4 in the resolution table and forwards the data packet from A.1 to A.4.

< ——
. \(;a‘;L NS g Address structure:
¥ oK o
b&‘} < tenant A
& av VM 2
Af-LA \g.)@
Resolution Table \S, bé'& LA - Location Address
A EB — Edge Bridge
(a) New vMm B---
Cf;gt':d (b) Learn A5 LA(A.5) -
and updates in a local table Reslution Table (d) Learn KA
o B LA(A5) Resclution Table
Heloed EB Il Hoos EB Il — -
table of EBI1 ___§

J 00 B &0

SEerver server server server server server server SBTET server

server

server server

Fig. 3. Push variant of SAL. A new VM is created and the resolution update process occurs. (a) The new VM A.5 of tenant A is created in a server under EB
1. (b) The VM location is updated in the local EB table. (c) EB I multicasts an address update message with the LA of A.5 to the other EBs that serve VMs of
tenant A. EB I determines the EBs to multicast using the entries of tenant A VMs in its resolution table. (d) Finally, the multicast EBs insert the new address

in their resolution tables.

even when the intra-tenant resolution uses the push variant.
The received resolution information from the replied message
is stored in the reserved entries for the global tenants addresses.

V. ANALYTICAL MODEL
A. Notations and Assumptions

We would now like to compare the various approaches
by formally analyzing their performance. Unfortunately, the
performance of each approach is sensitive to many parameters,
such as the data center topology, the placement policy, the
number of tenants, the distribution of VMs per tenant, the rate
of VM creations, migrations and destructions, the burstiness
of the application changes, and so on. As a result, to gain
some insight, we are reduced to providing a first model in
significantly simplified settings. In our analysis we compare

the following approaches: Central DB, Push with and without
SAL, and Pull with and without SAL. Note that in our model,
the Central DB results are also valid for the DHT-Based DB.

Table II illustrates the settings for our model. We make
several simplifying assumptions. First, we assume equal-sized
tenants, with a fixed number of VMs per tenant, and a fixed
table capacity at each EB. As well we assume fixed rates of
various VM location update events and VM resolution requests,
each following exponentially-distributed inter-event times. We
further assume links with infinite capacity and zero propagation
time. These assumptions are of course somewhat simplistic,
yet they help us better understand the tradeoffs involved in the
algorithm design.

Additionally, we consider two simple VM placement strate-
gies: packed and round-robin, similarly to [14]. These two

TABLE II
ANALYSIS NOTATIONS

N # of EBs 128
% # of VMs per EB 640
T # of tenants 5000
U # of VMs per tenant (= VN/T) 16
C Active Connections (< VN (U — 1)) 1.2-10°
B EB resolution table capacity 10°
Ae Total VM creation rate (1/sec) 10
Am Total VM migration rate (1/sec) 1

Ad Total VM destruction rate (1/sec) 10
Au Total VM location update rate (l/sec) | 21
As Total resolution request rate (1/sec) 10°

placement strategies are two extremes that typically cause the
best- and worst-performance cases. The best case typically
corresponds to the packed placement, in which VMs of a tenant
are locally packed under the lowest number of EBs as possible.
This placement is typically chosen to minimize the network
load. On the other hand, the worst case typically corresponds
to the round-robin placement, in which VMs of a tenant are
spread equally among the servers. This placement strategy may
be chosen for its fault-tolerance properties.

For each of the placements we impose an additional condi-
tion. We distinguish two cases for each of the placements.
For the packed placement: Case la: If the number of VMs
per tenant is small enough to be placed under a single EB
(U <V or N <T), no intra-tenant VM communication is
passed through EBs.

Case 1b: Otherwise, (U >V or N > T), each tenant occupies
several EBs.

For the round-robin placement: Case 2a: For the round-robin
placement, if the number of VMs per tenant is smaller than the
number of EBs (U < N or V < T), there are no two VMs of
any tenant under the same EB.

Case 2b: Otherwise, if the number of VMs per tenant is larger
than the number of EBs (U > N or V > T), there are VMs
of all T" tenants under each EB, and each EB serves = VMs
of a tenant.

In addition, to quantify our models, as shown in Table II, we
assume some typical values (based on [2], [3], [8], [12], [14],
[30]-[37], as well as private talks to industry engineers). Also,
we assume that the EB is the ToR switch.

B. Resolution Table Length

In this section we evaluate for each of the compared ar-
chitectures the resolution table length (or occupancy), i.e
the required number of resolution entries in the consistent
resolution database tables for minimal resolution network load.
Specifically, in the pull variant, the table length in an EB is the
number of resolution table entries needed to support the active
connections outgoing from the EB. In the push variant, the
table length in an EB is the number of VM addresses that are
stored in the resolution table. In other words, for a general push
architecture it is simply the number of VMs in the data center,
while for the push architecture with SAL it is the number of

VMs of the tenants that have some VMs under the EB. The
local VMs of the EB are not counted. For the central DB, it is
simply the number of VMs in the data center.

Table III provides the resolution table length in each of
the compared methods, as explained in the next paragraphs.
It also provides numerical estimations that are based on the
assumptions of Table II.

1) Central DB: The Central DB architecture maintains a
central resolution data base that provides resolution for all the
VMs, thus the final resolution table length is simply the number
of VMs in the data center, which is V V.

2) Push: In the general push architecture each EB table
stores the resolution entries for all the VMs in the data center,
except the local VMs under EB, thus the resolution table length
is V(N —1).

In the push architecture with SAL, the number of resolution
entries depends on the placement of VMs, as discussed in
Section V-A.

For the packed placement, in Case la, no intra-tenant VM
communication is passed through EBs, thus the resolution
tables are empty. Otherwise, in Case 1b, each resolution table
stores entries for one tenant only, of all VMs of a tenant
besides the ones that are located under the EB, i.e. a total of
U-V= W entries.

For the round-robin placement, in Case 2a, there are no two
VMs of any tenant under the same EB, thus each resolution
table needs to store entries for all other U VMs of a tenant, for
each of its V' VMs, except for a single local VM, i.e. a total of
V(U —1) entries. Otherwise, in Case 2b, there are VMs of all T
tenants under each EB, and each EB serves % VMs of a tenant.
Thus, the resolution table, for each of the tenants, stores entries
of VMs under other EBs, i.e. total of T(U — %) = V(N — 1)
entries.

3) Pull: In the Pull and SAL-Pull architectures the consis-
tency in the resolution tables is kept only for the entries used in
the active connections C'. Therefore, each EB resolution table
stores consistent entries for the connection between its VMs
and VMs under other EBs.

Each tenant has an average of % connections between its
VMs, out of the U(U — 1) possible connections between its U
VMs. Therefore, given a pair of VMs, the probablhty that there
is a connection between them is P.onnect = U(U 1) ~ Vgﬁz

Next, for the evaluation, the previously defined types of
placements are considered.

For the packed placement, we again observe the two cases.
In Case la, there is no connection between the EBs, thus the
resolution tables are empty. Otherwise, in Case 1b, the V' VMs
under EB communicating with other U — V' VMs of the tenant
outside the EB. Thus, the possible number of VMs to connect
to outside of the EB is V(U — V). The probability that an
resolution entry for any VM X outside the EB is needed, is the
probability that exists any VM from the V' VMs under EB that
connecting with this VM X It is equal to 1 — (1 — Peopnect)”
Then, the number of resolution entries in the EB is the product
of the number of all resolution entries for the tenant U — V'

TABLE III
RESOLUTION TABLE LENGTHS (ENTRIES).

[Architecture [[Packed Placement | Estimation [[Round-robin Placement | Estimation |
Central DB VN 8.2-10% VN 8.2-10%
Push V(N —1) 8.2-10% V(N —1) 8.2-10%
SAL-Push Vmax{0.(N-T)} 0 V(min{U, N} — 1) 9.8 103
Pull, SAL-Pull max{0, U~ V}(I— (1~ |0 CHU<N; 94-10°

VZN2
V(N -1 - (1— §L)T)itU>N

by the probability that this entry is needed: (U — V)(1 — (1 —
Pconnect)v) = (U - V)(l - (1 - Vc2v]7\;2)V)

For the round-robin placement, in Case 2a, there are U —
1 potential connections for each for the V' VMs under EB.
Therefore the number of active connections through the EB
is ;555 - V(U — 1) ~ <. Otherwise, in Case 2b, each of
the T tenants has % VMs under the EB. For each tenant, the
possible number of VMs to connect to outside of the EB is

T
U - %, and the probability that the entry for VM is needed is

1—(1- Pcmmect)%. Thus, the number of connections out of
each EB is T(U — ¥)(1 — (1 — Peonneet) T) = T(U — ¥)(1 —
(1-$5%2)7) = V(N -1)(1 - (1 - t5%=)7).

4) Summary: Figure 4 plots the resolution table lengths as a
function of the number N of EBs, based on Table III. Figures
4(a) and 4(b) show the resolution table length as a function
of the number of EBs for the packed and for the round-robin
placement, respectively. The values for SAL and for Pull in
Figure 4(a) are equal to 0 for N < T, therefore they are not
seen in the left side of the graphs. Similarly, Figures 4(c) and
4(d) plot the same table lengths, but assuming that the number
of tenants 7 is scaled such that the ratio % is kept fixed. The
values for SAL and for Pull in Figure 4(c) are equal to O for
all N, therefore they are not seen in the graphs. Figure 4(d) is
interesting since its illustrates the scalability of SAL.

C. Network Load

Next we evaluate the network load of the address resolution
management packets as a function of VM location updates
and address resolution requests rates. The network load is
expressed as the rate of address resolution packets. For ease
of an evaluation, a single multicast or broadcast packet to k
destinations is counted as k packets.

The network load estimation of the resolution architectures
for the packed and round-robin placements is summarized in
Table IV.

1) Preliminary Notations: Before we begin with the analysis
of the network load, we define several probability notations.

First, we denote the P as the probability that the resolution
entry is unknown in the table. We assume a uniform probability
of each entry to store resolution of any VM. For general
Pull or Push method, the P is approximated as Priss =
1—min{1, ;5;}, since B is the table length and V' N is the total
number of VMs to store. Similarly, for SAL-Push approach
Phyiss is approximated as Ppis = 1 — min{1, W;WEB},
because the table stores entries for VMs of the served tenants

only. We consider two types of placement. For the packed
placement, the number of tenants per EB is approximated as

v T : B
max{l, U} = maX{l, ﬁ} (Pmiss =1- mln{l, m})
For the round-robin placement, it is min{V,T} (Puiss =
1 — min{1, 7U,mif{vj} b.

We also define Pyrong as the probability that the resolution
entry in the table is inconsistent. It equals Pyrong = ,\/\j for
Pull. It is equal to O for Push, since the entries in Pus% are
consistent.

We also define the probability Py, omer gg that the resolution
is to another EB and it is calculated as follows. In the packed
placement, each tenant occupies [¥] [EBs, so the
probability to find the resolution destination under another EB
is the complimentary to a probability of finding the destination
under current EB, and is equal to P, otherg = 1 — @ In
the round-robin placement, each tenant has [%] = (%] VMs
under EB. Therefore, for each tenant there are up to [=] VMs
in a specific EB out of its all U VMs, so the probability to find
the connection destination in another EB is the complimentary
to a probability of finding the destination unr(}/e]r a1 specific EB,

TU7 }

2) Central DB: In the Central DB architecture each new
connection retrieves the resolution from central DB. Each new
connection with unknown resolution requires two messages:
one for the request to the DB and one for the reply back. For
the wrong inconsistent resolution entry in the EB table, two
additional messages are required: one for sending to a wrong
destination and another one for error reply.

thus it is equal to Py, other g8 = 1 — min{1,

Therefore the network load for Central DB is:

NL, =
(H
:2)\sPin other EB(Pmiss + 2<1 - Pmiss>Pwrong>-
For the packed placement it is:
NLc—packed =
1 B
2e(1 — ——) - (1 - min{l, —}
(7] VN)
B)\u
2(min{l, —})—————).
+ 2(min{1, VN}))\u n %)

10° || ==Push+SAL
©Pull+SAL
*M:Push

¢ | @ Pull
48 Central DB

Final Table
3
Final Table

10° 10°
Number of EBs

10° 10°
Number of EBs

10° | =h=Push+SAL
©Pull+SAL
“M:Push

5 | @ Pull
4 Central DB

=H=Push+SAL
©Pull+SAL

Final Table
B

10

10° 10° 10° 10°
Number of EBs Number of EBs

(a) Packed Placement. Fixed num- (b) Round-robin Placement. Fixed (c) Packed Placement. Number of (d) Round-robin Placement. Num-

ber of tenants. number of tenants.

tenants is scaled with N. ber of tenants is scaled with N.

Fig. 4. Model. Resolution Table Length as a Function of Number N of EBs.

and for the round-robin placement it is:

Nchroundrobin ~
[F1-1

24 (1 — min{1,
(1 — min{ 7

B

B (1 — min{1, V—N} 3)

Au)

At 7

In DHT-based DB architecture the address resolution is done
by the resolver switches, thus it is similar to Central DB with
the exception that the resolution requests are to the resolution
switches in which the DHT is located. Therefore the network
load of the resolution packets is similar to the load in Central
DB architecture.

3) Push: In the Push architecture each location update
involves broadcasting update messages to all other N — 1 edge
bridges. Also, in the absence of the requested entry from the
table, the EB needs to broadcast the resolution request to N —1
other EBs and receive one reply. Therefore, the network load
in the Push architecture is:

. B
+ 2(min{1, V—N})

NLpush =)\u(N - 1) + AsNRn other EBPmiss~ (4)
For the packed placement it equals:
NLpushfpacked &=
. B &)
RA(N =14+ AN1 — —=)(1— 1, —1}).
and for the round-robin placement it equals:
NLpush—'roundrobin ~)\u(N - 1)+
1%
V1.1 B (6)
+ AsN(1 — min{1, %})(1 — min{1, V—N})

4) SAL-Push: SAL-Push variant is similar to general Push
with the difference that the update messages are sent only to
the selected EBs. In the packed placement, the average number
of EBs under which the VMs of a single tenant VMs are stored
is L%j In Case la it is equal to 0, and no update messages
are required. In Case 1b the network load equals:

NLsfpushfpacked

U
)‘u(_vj - 1) +)\SNPin other EBPmiss =

12

= (L5 -)+ @
1 . B
+ AsN(1 — @)(1 — min{1, m})

In the round-robin placement, in Case 2a, each location
update requires U — 1 messages, one for each other VM of
a tenant. Therefore, the network load equals:

NLsfpushfroundrobinfCase3
)\u(U - 1) +)\szin other EBPmiss =
=AU =1)+

12

B
U - min{V, T} b-
)]
Otherwise, in Case 2b, there is a VM of each tenant on each
EB, and location update requires a message to every other EB.
Therefore, the network load is:

[F1-1

AN (1 — min{l,
+ (min{ i

(1 — min{1,

NLS—push—T'ound7'obin—Case4
~)\u(N - 1) +)\sNPin other EBPmiss =
= A (N = 1)+
v
Y1-1
+ AsN(1 — min{1, %

B

U - min{V,T} b

©))

5) Pull: In Pull architectures the network load consists of

the cost of broadcasting resolution request messages to all other

EBs. The broadcasting happens when the requested entry is not

in the table, or when the entry in the table, but holds the wrong

resolution. The last case can happen if the requested VM has

moved since its last entry update in the table. The network load
for Pull architecture equals:

NLyui = NLs_pun
=)\sN]Din other EB (Pmiss + (1 - Pmiss)Pwrong)-

Using the notations defined in Section V-CI1, with packed
placement, the network load for general Pull equals:

1

H(1 — min{1,

10)

NLPullfpacked =)\SN(]. — ?)
id an
B B A
(= mindl) Cmindl, g D0

and with round-robin placement, the network load for general
Pull equals:
V/T] —1
NLPullfroundrobin =)\SN(]- - %)
Au

B) 12)
TVNTN, + %

. ((1—min{17V£N})+min{l).

S

%0
==Push+SAL

KO PUI+SAL frrrens rvS— TV — FVS— ®
W:Push

| @ Pull
8- Central DB

Network Load
Network Load

10¢ | ==Push+SAL
©Pull+SAL

%

10° . 10°
10! 10 10'

107

10° 10° 10° 10°
Table Capacity Table Capacity

(a) Packed Placement. (b) Round-robin Placement.

Fig. 5. Model. Network Load as a Function of Table Capacity B.

6) SAL-Pull: In continue to Equation 10 the network load
of SAL-Pull with packed placement equals:

NLsfpullfpacked

1 . B

AN =) (= mindl 7ol g e g
, B M

-+ (Hlln{l, U max{17%}}))\u + %)

and for the round-robin placement:

NLSfpullfroundrobin
v/T] -1 . B
N1— 270y - minfl, —————
AsIV(g\ mindl D s
B Au

U.rnin{V,T}})/\u + %)

+ (min{1,

7) Summary: The expressions are next evaluated in Figures
5 and 6.

Figure 5 shows the network load of the resolution packets
as a function of the table capacity B in the packed placement
and the round-robin placement. The packed placement result
is trivial, as resolution packets are sent in the Push architecture
only. The round-robin placement result is explained next. We
can see that for small table capacities, the hit rate is low in
the EBs under all architecture, therefore the Central DB archi-
tecture has lower network load, because the resolution requests
are sent in unicast and not flooded as in other architectures. In
large table capacities, the Push architectures has lower network
load than in other architectures, because the tables are large
enough to store the resolution for all the VMs, the information
is updated instantly and the multiple request broadcasts are
avoided. For Pull, the SAL approach improves the network
load under middle table capacities. For small table capacities,
the difference in the gain of a slightly better hit rate in the
tables is negligible considering the miss cost, and for the large
table capacities, the tables are large enough. Both in Pull with
and without SAL the table hit rate is not bounded by the table
capacity.

Figure 6 shows the network load as function of number of
EBs N in the packed placement and round-robin placement.

Figures 6(a) and 6(b) present the network load for the
packed and round-robin placements, respectively, keeping other
parameters fixed. In the packed placement, the network load for
N < T is equal to 0 in all the architectures besides Push. For
large N, Push with SAL and the Central DB outperform the

=}=Push+SAL
© Pull+SAL
%" Push

& Pull

4= Central DB
1 3 5 7

Resolution Request Rate

Network Load
2-3
b 'S
3

Fig. 7. Model. Network Load as a Function of Resolution Request Rate

other approaches. For the round-robin placement, the Central
DB approach outperforms the distributed approaches. Note that
the Central DB approach has several drawbacks that were
discussed in Section II and are not reflected in the figure.
Figures 6(c) and 6(d) present the network load as function of
number of EBs (V) for the packed and round-robin placements,
respectively, scaling also the number of tenants (1), such that
the ratio N/T is kept fixed. Figure 6(d) is especially interesting
because it illustrates the scalability of the push version of SAL.
Moreover, Figures 6(e) and 6(f) present the network load as
function of number of EBs (/V) for the packed and round-robin
placements, respectively, scaling also the number of tenants (77)
and the rates ., Ay, Aq and Ay with N. Finally, Figures 6(g)
and 6(h) present the network load as function of number of EBs
(V) for the packed and round-robin placements, respectively,
scaling also the number of tenants (7), the rates A., A\, Ag
and A, and the table capacities (B) with V. With the packed
placement, only the Push architecture has a positive network
load, since all the VMs of each tenant are served by a single
EB. With round-robin placement, Push with SAL outperforms
the other approaches. Figures 6(i) and 6(j) present the network
load as a function of the number of EBs (V) for the packed
and round-robin placements, respectively, scaling also the rates
Aes Ams Ag and A, and the table capacities (B) proportionally
to IV, but keeping the number of tenants (7") fixed.

D. Impact of Resolution Request Rate

The choice between Push-based and Pull-based models de-
pends on the ratio between the resolution request rate and the
VM location update rate. Figure 7 shows the change in the
network load as a function of the resolution request rate. All
other parameters are set as in Table II. The network load under
the Push-based schemes does not increase following the change
in the resolution request rate, while it does under the Pull-
based schemes. Therefore, under low resolution requests rates,
the Pull-based schemes are preferable, but under high rates, the
Push-based schemes are preferable.

E. Impact of Number of Tenants

Next, we evaluate how the number of tenants impacts the
system performance. Figure 8 shows the change in the network
load caused by resolution packets as a function of the number
of tenants. For the evaluation we varied the number of tenants

TABLE IV
NETWORK LOAD.

[Architecture [[Packed Placement [[Round-robin Placement
Vi
Central DB 22,1 — @)(1 - min{l, &} + | 2.0 - Bmin{& T12a min{1, &} +
. Xy 2(min{1, &z }) —%—
2(min{1, VLN))‘qu —) (min{1, 7)Au+%)
. . [Yi1-1 .
Push Au(N —1) + AN(1 — [é])(l—mln{L) Au(N—=1)+AsN(1—min{1, ~L7—})(1-min{1, {5 })
Vi
SAL-Push Ml - D+ AW - DO - o0 Au(min{U, N}—1)+ s (N—1)(1—min{1, 2=}y (1—
v . B
min{1, Um%m}) min{l, Frtpry 1)
Pull AN — [iﬁ)((l - min{L, &)+ [AN B %)((1 — min{L, &)+
(min{l,ViN})A ’}r”is) mm{l?W})\lﬂ_%’)
u TN
- V/TT—1 -
SAL-Pull AN — (éw) 1 = min{l, o fppy)) + | ANQ TBT])(QA = min{l, vy)+
. B Au i] u
(mll’l{l, U-max{U,V} }))\u+>\T};) (mm{l, U-min{V,T} }))\u-‘r%\})
10" 10"
==Push+SAL ==Push+SAL =#=Push+SAL
E 2:;uII;SAL E §'°w 2::ul\;‘SAL E‘OW 21?";5,\,_
3 | 5 37 e P R
g 10° 4 Central DB | & g 10° —a— g 48 Central DB e ® g £ Central !35_;
2 o . 2 ©Pull+SAL 2 10° e = 2
- *M:Push x
o o ';‘Z:IrlnralDE _,.--“x‘“
10 1 3 5 7 10 1 3 5 7 1 3 5 7 1 3 5 7
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Number of EBs Number of EBs Number of EBs Number of EBs

(a) Packed placement.

10" [mPush+SAL
© Pull+SAL
*M:Push

& Pull

48 Central DB

10"

Network Load
Network Load

%

10° 10°
Number of EBs

(e) Packed placement. Number of (f) Round-robin placement. Num-

tenants and rates scale with V.
N.

1

Network Load

(b) Round-robin placement.

Vg
o
10"} 4=Push+SAL y 2
© Pull+SAL ’/
“M:Push .
& Pull

10
107 48 Central DB

-

10° 10°
Number of EBs

0" [=Push+SAL
© Pull+SAL
“M:Push

1o Pull

0" 8- Central DB

10° 10°
Number of EBs

(c) Packed placement. Number of (d) Round-robin placement. Num-

tenants scales with V.

X r
=H=Push+SAL Rl
B 10 ©Pull+sAL o B 10"
s “M:Push X S
™ & Pull e ™
S £ Central DB ¢* g
] o k] =H=Push+SAL
z 10° P’ z 10° © Pull+SAL
o «M:Push
Le* @ Pull
4 Central DB
10' 10° 10° 10 10’ 10° 10°
Number of EBs Number of EBs

scale with V. rates scale with V.

=H=Push+SAL
©Pull+SAL
*M:Push

@ Pull

& Central DB

Network Load

10° 10°
Number of EBs

(i) Packed placement. Table capac- (j) Round-robin placement. Table
ity and rates scale with V.

capacity and rates scale with V.

Fig. 6. Model. Network Load vs Number of EBs V.

ber of tenants scales with V.

(g) Packed placement. Number of (h) Round-robin placement. Num-
ber of tenants and rates scale with tenants, table capacity and rates ber of tenants, table capacity and

Network Load

== Push+SAL

2 € Pull+SAL

3% Push

& Pul

g 'E-Cent‘ral DB ‘

10' 10° 10°
Number of Tenants

(a) Packed placement.

Fig. 8.

from T = 1 to T = 10° and set the resolution table size to
B = 10* entries with all other parameters as in Table II. As the
number of tenants increase above 7' = 10% a significant drop
in the network load is observed in our SAL-based algorithms.

VI. SIMULATIONS

In this section, we describe a set of simulation results
evaluating SAL and comparing it to several existing address
resolution methods.

A. Simulator

We implemented an event-driven simulation of the data
center network address resolution system. The simulation in-
cludes VM location update events, i.e. creations, migrations and
destructions, as well as VM address resolution events, which are
initiated by VMs and request for a resolution of other VMs.

In the simulation, tenants are defined as disjoint sets of
virtual machines. The VMs are assigned to the hosting edge
bridges independently of the tenant they belong to. Further-
more, the source and destination VMs of each resolution request
are chosen uniformly within the VMs of each tenant.

We implemented the following address resolution schemes:
Central DB, Push with and without SAL, and Pull with and
without SAL. The Pull scheme consists of three variants besides
SAL. On the figures they are marked by Pull (complete), Pull
(connection) and Pull (conservative). The difference between
these three Pull schemes is the way in which the EB learns
resolution information from the incoming broadcast resolution
requests that are not destined to the EB. In Pull (complete),
the EBs stores information of each incoming resolution request
message. In Pull (connection), only the entries that already exist
in the resolution table are updated, but no new entry is learned.
This method is similar to ARP. Lastly, in Pull (conservative),
the EB learns only from resolution requests it initiated and the
resolution requests that are destined to it.

In all the schemes, the table lengths are limited by a fixed
table capacity. When an entry is added to a full table, the
oldest entry is overwritten. In addition, an entry with a wrong
information is revealed when it is accessed. The wrong entries
and the missing entries are resolved by the broadcast resolution
request messages to all the servers — except for the Central

Network Load
=

=}=Push+SAL
© Pull+SAL
3§ Push
& Pul
4= Central DB
10" 10° 10°
Number of Tenants

(b) Round-robin placement.

Model. Network Load vs Number of Tenants 7.

DB scheme, where the resolution is done by an access to the
central directory.

The output of the simulator includes the number of transmit-
ted resolution messages, as well as the occupancy, the number
of updates, and the hit percentage of the resolution tables. For
simplicity, we neglect the impact of the network topology. Thus,
each unicast message between a pair of VMs is counted as
a single message, and a multicast or a broadcast message is
counted as the number of recipients. For example, a request
broadcast by an EB in a data center with N EBs is counted
as N — 1 messages, since it is sent to N — 1 EBs; and the
unicast reply is counted as a single message. Pulling the address
resolution data base in the Central DB architecture is counted
as two messages: one for the request and one for the reply.
Revealing a wrong entry costs two additional messages: one
for sending a packet to a wrong destination, and the second
for receiving a reply message indicating that the destination is
wrong.

B. Synthetic Trace Simulation Results

We start by running simulations with a synthetically-
generated trace. We use the typical values from Table II, and
vary the table capacity B from 10 to 10° entries. The placement
distribution is uniform, such that at every placement decision,
the edge bridge for each VM is chosen uniformly over all VMs.
New VMs pick uniformly their tenants. The VM chosen for
migration or destruction are also picked uniformly. At the initial
state of the simulations, the data center is full with random
VMs up to its capacity (V - N). The simulations are run until
the steady state.

Figures 9(a), 9(b) and 9(c) show the impact of the resolution
table capacity on the mean resolution packet network load, the
largest mean update rate of a table, and the mean hit rate,
respectively, for each of the architectures. Note that for the
Central DB, the shown table capacity is for the tables in EBs
and not for the central data base.

Specifically, Figure 9(a) confirms our intuition that as ta-
ble capacity increases, the miss rate decreases and therefore
network load decreases, up to a specific large value of table
capacity, beyond which there are no further gains. The result
also supports our insight from the model that for larger table
sizes, the Push architectures perform better than the Pull

[el B @ oLl L0 o I
o 10*
3 10 F 8
©
- i o
¥ ——Push+SAL) = —+—Push+SAL
= -0~ Pull+SAL 2 10” |-0-Pull+SAL
2 10°L " @ Pull (complete) & @ Pull (complete)

=®:Push
=&-Central DB

Pull (conservative)
,| @ Pull (connection)

=#:Push

=&-Central DB
Pull (conservative)

& Pull (connection)

&
=+ Push+SAL
{0~ Pull+SAL
" | e Pull (complete)
= Push
=&-Central DB

Pull (conservative)
@ Pull (connection)

2 4 6

10

10
Table Capacity Table

4 2 4

10 °
Table Capacity

10 10
Capacity

(a) Network Load vs. Resolution Table Capacity. (b) Largest Table Update Rate vs. Resolution (c¢) Mean Table Hit Rate vs. Resolution Table

Table Capacity.

Fig. 9.

architectures, and that the SAL approach for both Push and Pull
reduces the network load for some ranges of table capacities,
while never increasing the network load. The plot can be
divided into three regions of interest: small, medium and large
table sizes. For small table sizes, it seems that the preferred
resolution method is the Central DB. However, it also relies on
a large memory storage with a central data base that holds the
resolution of all the VMs. This large memory is not reflected
in this plot. It has additional drawbacks that were discussed in
Section II. The small-table sizes regions presents the case where
the memory is so small that the distributed approaches must
rely on frequent broadcasts of the resolution request. Thus, the
differences between the push and pull variants are diminished.
On the other side, in the large table region, the memories are
large enough and can store enough entries. The push variant is
preferred over the pull since there is always enough memory to
store the consistent entries. The SAL addition to push decreases
the network load, due to its selective updates instead of the
broadcast. The middle-sized-table region is the most interesting
one, because it reflects the network load saving due to the SAL
addition both to the push and pull variants.

Figure 9(b) presents the update rate of a single table. By
table update, we define each change of the resolution entry in
the table, including the address change in an existing entry,
and an old entry overwrite for a different VM. For the Central
DB architecture, the updates are counted on the central data
base, since it suffers a larger update rate than the EB tables.
Since the central data base is updated upon each VM location
change only, the shown update rate for Central DB is fixed for
any table size in the EB.

Figure 9(c) confirms the intuition that the table hit rate
increases with the table capacity, and that for the Push and
complete Pull architectures, the hit rate is lower than for the
other approaches, since in these architectures the resolution
tables store information about VMs that are irrelevant.

C. Benchmark Trace

Next, we evaluate the system with a benchmark trace from
the IBM Research Compute Cloud (RCCv2), where the cus-
tomer data was anonymized [38]. The extracted events from
the trace are (a) the creation and (b) the destruction times for

Capacity.

Synthetic Event Trace Simulation Results.

38,000 various VMs distributed among 7,000 tenants placed
under 3,000 servers, which we assume to function as edge
bridges in the data center, as well as (c) their placement, and (d)
their tenant assignment. Furthermore, the address resolutions
are randomly added with a ratio of 100 resolution events per
VM location update event. The RCCv2 system does not include
migration, thus the update events only consist of VM creation
and destruction events.

Figure 10 is analogous to Figure 9 of the synthetic trace
simulations. Most algorithms behave similarly. Moreover, since
we now use a slightly higher rate of VM location updates
compared to the resolution request rate, the Central DB ap-
proach presents a lower asymptotic network load than the
Push architectures. This is because a higher location update
rate requires unnecessary location update messages in the Push
architectures, since an update message may be unnecessary in
practice when a VM is moved again before its location reso-
lution is requested by the other EBs. Although the Central DB
architecture slightly outperforms the Push with SAL approach,
it still requires a higher table update rate, as shown in Figure
VI-C. Clearly, higher VM update rates have are detrimental for
Push architectures, other parameters being equal. Lastly, Figure
10(c) shows that the SAL approach also improves the resolution
table hit rate.

D. Placement Strategy Effect

Next we check the effect of the placement strategy on
the resolution packets network load and the resolution table
length. We already discussed in Section V-A the two extreme
placement strategies: packed and round-robin. We simulate
hybrid placement strategies in which, given a parameter p
between 0 and 1, each placement decision picks the packed
placement strategy with probability p, and the round-robin
placement strategy with probability 1 — p. We run simulations
with the hybrid placement strategies by varying p from 0 to 1
in steps of 0.2. The resolution table capacities are chosen as
infinity large so as to evaluate the resolution table length in an
unconstrained manner. Other parameters are chosen based on
the values in Table II.

Figure 11 shows the largest resolution table at the end of the
simulation run vs. the cumulative number of resolution packets

Network Load

=&~ Central DB
Pull (conservative)
& Pull (connection)

10°

10
Table Capacity

4 6

v
bl

Table Updates
=)

——Push+SAL ¥ =—Push+SAL
® .o -0~
4 0=Pull+SAL o ——— — ©0-Pull+SAL
10°F e pull (complete) - . ¢ @ Pull (complete)
=®:Push 0 |=#-Push

-&-Central DB
Pull (conservative)
| '@ Pull (connection)

p =+ Push+SAL
s -0~ Pull+SAL
@ Pull (complete)
= Push
=&-Central DB
Pull (conservative)
3 @ Pull (connection)

Hit Rate

10°

10
Table Capacity

4 2 4

10 °
Table Capacity

10 10

(a) Network Load vs. Resolution Table Capacity. (b) Largest Table Update Rate vs. Resolution (c¢) Mean Table Hit Rate vs. Resolution Table

Table Capacity.

Capacity.

Fig. 10. Benchmark Trace Simulation Results.

o?
o9 Y -
§-O%e, ©*% Push+SAL

. =0-Pull + SAL
- u/f.ﬂ @ Pull (complete)
10° /J

=#:Push
¥ -e-Central DB
Pull (conservative)
& Pull (connection)

Network Load

5

10° 10
Table Length

Fig. 11. Placement Effect on Network Load and Resolution Table Length.
p = 0 is the rightmost point for each architecture. p = 0.8 is the leftmost
point for each architecture. For p = 1(packed placement only) the values are
equal to O, thus are not shown.

sent for the synthetic trace. For each type of architecture the
results from various hybrid placement strategies are connected
by a line. The rightmost point for each architecture line is
for p = 0, and the leftmost point is for p = 0.8. For the
packed placement (p = 1), all the VMs of each of the tenants
are packed under a single EB, thus no resolution request is
exchanged between the EBs and no updates are pushed in SAL.
Therefore, the result for p = 1 is omitted, since all the values
are equal to 0. The only exception is the Push architecture,
in which the updates are still pushed between the EBs and the
network load and table sizes are larger than 0. Also, for the Push
architecture, all the values (including p = 1) are concentrated
in the graph, since it is less affected by the placement strategy.
It appears that the relative performance of diverse approaches
is relatively insensitive to the placement strategy. Therefore, the
main insight is that the impact of the placement strategy is less
significant than we expected before running the simulation.

VII. CONCLUSIONS

In the paper we proposed Smart Address Learning (SAL), a
novel approach that expands the scalability of current address
resolution mechanisms in the data centers, for both the network
load and the resolution table sizes, which makes it possible to
be implemented on faster memory devices. The key property
of the approach is to selectively learn the addresses in the

resolution tables, based on the fact that the VMs of different
tenants do not communicate.

We presented an analytical model of the network load and
resolution table sizes for the presented resolution methods. We
further used the model and simulations to evaluate the tradeoff
of the network load and the resolution table size. Our analysis
showed that both the network load and the resolution table
sizes can be reduced by orders of magnitude depending on the
system parameters.

More generally, to our knowledge, this paper is the first to
introduce a model for comparing address resolution methods
in data centers, as well as the first to evaluate them using real-
life trace simulations. A more advanced analysis of the optimal
address resolution tradeoff in data centers is left for future work.

ACKNOWLEDGMENT

The authors would like to thank Orna Agmon Ben-Yehuda
and Aran Bergman for their helpful comments, as well as
Mariusz Sabath and David Breitgand, IBM WRC, who kindly
shared the data of the IBM Research Compute Cloud (RCCv2)
traces [38]. This work was partly supported by the Hasso
Plattner Institute Research School, the Intel ICRI-CI Center,
the Israel Ministry of Science and Technology, and European
Research Council Starting Grant No. 210389.

REFERENCES
[1] M. Saluan, “Want to Provide Cloud Services? You Need
to Understand Multi-Tenancy,” http://mspmentor.net/blog/

want-provide-cloud-services- you-need-understand- multi- tenancy,

2013.

J. Metzler, A. Metzler, and et al., “The emerging data center LAN,”
Webtorials Analyst Division, Cloud Networking Reports 2010 - 2012.
N. Ilyadis, “The evolution of next-generation data center networks for
high capacity computing,” in VLSI Circuits (VLSIC), 2012.

K. Elmeleegy and A. Cox, “Etherproxy: Scaling Ethernet by suppressing
broadcast traffic,” in IEEE INFOCOM, 2009.

[2]
[3]
[4]

[5] L. Dunbar, S. Hares, M. Sridharan, N. Venkataramaiah,
and B. Schliesser, “Address resolution for large data center
problem statement,” in ARMD BOF, 2011. [Online]. Available:

http://tools.ietf.org/html/draft-dunbar-armd- problem- statement-01

D. Meyer, L. Zhang, and K. Fall, “Report from the IAB workshop on
routing and addressing,” in IETF, RFC 4984, 2007.

G. Hankins, “Pushing the limits, a perspective on router architecture
challenges,” in North American Network Operators Group, NANOG 53,
2011.

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible data
center network,” ser. ACM SIGCOMM, 2009.

M. Mahalingam and et al., “VXLAN: A framework for overlaying
virtualized layer 2 networks over layer 3 networks,” in Network Working
Group Internet Draft, 2011.

M. Sridharan and et al., “NVGRE: Network virtualization using generic
routing encapsulation,” in Network Working Group Internet Draft, 2011.
C. Kim, M. Caesar, and J. Rexford, “Floodless in seattle: a scalable
ethernet architecture for large enterprises,” in ACM SIGCOMM, 2008.
R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable
fault-tolerant layer 2 data center network fabric,” in ACM SIGCOMM,
2009.

J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y. Pouffary,
“NetLord: a scalable multi-tenant network architecture for virtualized
datacenters,” ser. ACM SIGCOMM, 2011.

T. Benson, A. Akella, A. Shaikh, and S. Sahu, “CloudNaaS: a cloud
networking platform for enterprise applications,” in SOCC, 2011.

A. Edwards, A. Fischer, and A. Lain, “Diverter: a new approach to
networking within virtualized infrastructures,” in ACM WREN, 2009.

Y. Nachum, L. Dunbar, I. Yerushalmi, and T. Mizrahi, “Scaling the
address resolution protocol for large data centers (SARP),” in INTAREA
Working Group Internet Draft (work in progress), 2013. [Online].
Available: http://tools.ietf.org/html/draft-nachum-sarp-04

T. Narten, M. Karir, and I. Foo, “Address resolution problems in large
data center networks,” in Internet Engineering Task Force (IETF), 2013.
[Online]. Available: http://tools.ietf.org/html/rfc6820

L. Dunbar, W. Kumari, and I. Gashinsky, “Practices for scaling
ARP and ND for large data centers,” in Network Working Group
Internet Draft (work in progress), 2013. [Online]. Available: http:
/Mtools.ietf.org/pdf/draft-dunbar-armd- arp-nd-scaling- practices-06.pdf

A. Myers, T. E. Ng, and H. Zhang, “Rethinking the service model: Scaling
ethernet to a million nodes,” 2004.

B. Stephens, A. L. Cox, S. Rixner, and T. S. E. Ng, “A scalability study
of enterprise network architectures,” in ACM/IEEE ANCS, 2011.
Cisco, “Overlay transport virtualization (OTV),”
/Iwww.cisco.com/c/en/us/solutions/data-center-virtualization/
overlay-transport- virtualization-otv/index.html.

F. Bari, R. Boutaba, R. Esteves, M. Podlesny, G. Rabbani, Q. Zhang,
F. Zhani, and L. Granville, “Data center network virtualization: A survey,”
IEEE Communications Surveys and Tutorials, 2012.

R. Rodrigues and B. Liskov, “High availability in dhts: Erasure coding
vs. replication,” in Proceedings of the 4th International Conference on
Peer-to-Peer Systems. Berlin, Heidelberg: Springer-Verlag, 2005, pp.
226-239. [Online]. Available: http://dx.doi.org/10.1007/11558989_21

G. Kinghorn, “Cisco VXLAN innovations overcoming
1P multicast challenges,” http://blogs.cisco.com/datacenter/
cisco-vxlan-innovations-overcoming-ip-multicast-challenges/, 2013.

R. Chamarajanagar, P. Hunt, S. Kimble, T. Nguyen, and G. Rashiyamany,
“Selective passive address resolution learning,” in US Patent Application
20080144634, 2008.

J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul, “SPAIN:
COTS data-center Ethernet for multipathing over arbitrary topologies,”
ser. USENIX NSDI’10, 2010.

S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements and analysis,” in ACM IMC,
2009.

P. Bodik, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and
I. Stoica, “Surviving failures in bandwidth-constrained datacenters,” in
ACM SIGCOMM, 2012.

H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena,
and G. O’Shea, “Chatty tenants and the cloud network sharing
problem,” in Proceedings of the 10th USENIX conference on
Networked Systems Design and Implementation. Berkeley, CA,
USA: USENIX Association, 2013, pp. 171-184. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2482626.2482644

R. Katz, “Tech titans building boom,” IEEE Spectrum, vol. 46, no. 2, pp.
40 54, Feb. 2009.

Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of Internet Services and Applications,
2010.

http:

[32]

[33]
[34]

(35]
[36]

[37]

[38]

C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “SecondNet: a data center network virtualization architecture
with bandwidth guarantees,” in ACM Co-NEXT, 2010.

“Amazon web services LLC,” https://aws.amazon.com.

“Microsoft ~ Corporation, an overview of Windows Azure,”
http://www.microsoft.com/downloads/details.aspx ?displaylang=en
&FamilyID=96d08ded-bbb9-450b-b180-b9d1f04c3b7f.

B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “PAST: scalable
ethernet for data centers,” in ACM CoNEXT, 2012.

A. Shieh, S. Kandula, A. Greenberg, and C. Kim, “Seawall: performance
isolation for cloud datacenter networks,” in HotCloud, 2010.

D. Armannsson, G. Hjalmtysson, P. D. Smith, and L. Mathy, “Controlling
the effects of anomalous arp behaviour on ethernet networks,” in ACM
CoNEXT, 2005.

G. Ammons et al., “RC2: A living lab for cloud computing,” IBM, IBM
Research Report RC24947, 2010.

