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Tapping into the Router’s
Unutilized Processing Power

Marat Radan and Isaac Keslassy

Abstract—The growing demand for network programmability
has led to the introduction of complex packet processing features
that are increasingly hard to provide at full line rates.

In this paper, we introduce a novel load-balancing approach
that provides more processing power to congested linecards
by tapping into the processing power of underutilized linecards.
Using different switch-fabric models, we introduce algorithms
that aim at minimizing the total average delay and maximizing
the capacity region. Our simulations with real-life traces then
confirm that our algorithms outperform current algorithms as
well as simple alternative load-balancing algorithms. Finally, we
discuss the implementation issues involved in this new way of
sharing the router processing power.

I. INTRODUCTION

A. Motivation

The emerging and overwhelming trend towards a software-
based approach to networks (through network function vir-
tualization, software-defined networking, and expanded use
of virtual machines) increasingly lets the network managers
configure the packet processing functions needed in their
network. For instance, one network manager may want to alter
video packets by inserting ads or changing the streaming rate,
while another manager may want to filter packets based on a
specific key within the packet payload.

This growing demand for network programmability has
already forced several vendors to integrate full 7-layer pro-
cessing within switches and routers. For example, EZChip
has recently introduced NPS (Network Processor for Smart
networks), a 400Gbps C-programmable NPU (Network Pro-
cessing Unit) [1]. Cisco also promotes its DevNet developer
effort for ISR (Integrated Services Router) [2], and already put
Akamai’s software onto its ISR-AX branch routers.

The processing complexity of the programable features
defined by the network managers is hard to predict, and
can also widely vary from packet to packet. These features
can easily go beyond standard heavy packet processing tasks
such as payload encryption [3], intrusion detection [4], and
worm signature generation [5], [6], which already have a
complexity that can be two orders of magnitude higher than
packet forwarding [7]. Technology improvements can help in
part, in particular through the increase in CMOS technology
density and the growth of parallel architectures [8]. Still, these
new features clearly make it hard for vendors to provide a
guarantee about the packet line rates at which their processors
will process all packets.
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Fig. 1: Generic switch fabric with N linecards. The load-balanced path allows
each packet to be processed at a linecard different from its source linecard,
enabling the source linecard to tap into the router’s unutilized processing
power.

The goal of this paper is to help vendors introduce a new
architectural technique that would enable routers to better
use their processing resources to deal with these emerging
programmable features. We do so by suggesting a novel mul-
tiplexing approach that better utilizes the unused processing
power of the router.

Specifically, Figure 1 illustrates a router with N linecards,
each containing an input and an output. Assume that linecard
1 experiences heavy congestion because its incoming packets
require too much processing. Then its queues will fill up, and
eventually it will drop packets. Meanwhile, the other router
linecards could be in a near-idle state, with their processing
power left untapped. This additional processing power would
be invaluable to the congested linecard.

The main idea of this paper is to tap into the unused
processing power of the idle router linecards. We do so by
load-balancing the packets among the linecards. As illustrated
in the figure, suppose linecard 1 is heavily congested while
linecard k is idle. Then a packet arriving at linecard 1 could
be sent by linecard 1 to linecard k, where it would be
processed, and later switched to its output destination. Using
this technique, linecards with congested ingress paths can send
workload to other linecards through the switch fabric. By
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doing so, the available processing power for the traffic arriving
to a single linecard would potentially expand up to the entire
router’s processing power, depending on the other arrival rates
and on the switch fabric capacity.

Of course, many challenges exist to implement this idea.
For instance, the load-balancing mechanism may require an
update mechanism to collect and distribute the information on
the congestion of each linecard, together with an optimization
algorithm that would take this information and decide when to
load-balance packets. There are also additional considerations
such as potential packet reordering and a more complex buffer
management. We discuss these issues later in the paper.

B. Contributions

The main contribution of this paper is a novel technique for
load-balancing packet processing between router linecards to
achieve better processing performance.

Our goal is to expand the capacity region of the router
by load-balancing and diverting traffic away from congested
linecards. However, load-balancing more and more packets
may also lead to a congestion of the switch fabric. Therefore,
we need to trade off between reducing the processing load at
the linecards, and reducing the switching load at the switch
fabric. To help us develop some intuition about the impact
of the switch fabric architecture on this trade-off, we present
three increasingly-complex queueing models of switch-fabric
architectures:

At first, we neglect the impact of the switch fabric ar-
chitecture, by assuming that the switch fabric has infinite
capacity. We demonstrate that to minimize the total average
delay when linecards have equal service rates, the load-
balancing algorithm should assign the same processing load
to all linecards.

In addition, we want to minimize the overhead associated
with redirecting traffic by minimizing the number of redirec-
tion linecard pairs between sending congested linecards and
receiving uncongested ones. We prove this to be NP-hard by
presenting a reduction from the subset sum problem. We also
provide an efficient algorithm that approximates the optimal
solution within a factor of two.

Second, we model a shared-memory switch fabric with finite
switching bandwidth. We model the entire switch fabric as a
single queue with a finite service rate, representing the finite
rate of memory accesses to the shared memory. Then, we
prove the Karush-Kuhn-Tucker (KKT) conditions for optimal
total average delay in the router. We also present an efficient
algorithm to achieve such an optimal solution, and bound its
complexity. We further show that our load-balancing scheme
significantly increases the capacity region of the router.

Third, we provide the most advanced algorithm, given an
output-queued switch fabric model. In this model, each switch-
fabric output has its own queue, which packets can enter when
the linecard is either their helper (middle) linecard or their
egress (destination) linecard. We build on previous results to
determine the conditions for minimal delay, and quantify the
complexity used to achieve the optimal solution.

In the experimental section, we compare our algorithms to
existing load-balancing algorithms using more realistic set-
tings, including OC-192 Internet backbone link traces [9], and
an input-queued switch fabric based on VOQs (virtual output
queues) with an iSLIP switch-fabric scheduling algorithm [10].
The congestion values of the different linecards are updated
at fixed intervals, and packet processing times are based
on [7]. We confirm that our algorithms significantly extend
the capacity region. In addition, they achieve a lower delay
than existing algorithms and than a simple Valiant-based load-
balancing algorithm.

Finally, we discuss the different implementation concerns,
e.g. buffer management, packet reordering and algorithm
overheads. Our suggested schemes are shown to be feasible
and able to accommodate various features using only limited
modifications, if any, to the existing implementations.

C. Related Work

There is a large body of literature on improving the per-
formance of network processors. Most recent works have
focused on harnessing the benefits of multi-core architectures
for network processing [11]–[17]. However, these approaches
are local to the processors, and therefore orthogonal to ours.
They can be combined for improved performance.

Other efforts have attempted to optimize the switch
fabric architecture, e.g. using Valiant-based load-balanced
routers [18]–[20]. These efforts have focused on providing a
guaranteed switching rate in the switch fabric, while our goal
is to optimize the processing capacity of the linecards. Still,
in this paper, we also introduce Valiant-like load-balancing
algorithms, and show that they often prove to be sub-optimal.

Building on these load-balanced routers, [21] has presented
the GreenRouter, an energy-efficient load-balanced router ar-
chitecture. Instead of load-balancing traffic to all middle
linecards, the GreenRouter only load-balances traffic to a
subset of the middle linecards, enabling it to shut down idle
processing power at other linecards to save power. Therefore,
the GreenRouter always load-balances traffic, while we only
need to do so in case of congestion. Also, it tries to concentrate
traffic into as few processing units as possible, while our goal
is to spread it across all the linecards to increase the capac-
ity region and reduce delay. The architecture is also partly
modelled by the sub-optimal Valiant-based algorithm that we
introduce in the paper, when all linecards are used. Of course,
if needed, the energy-efficient goal could be incorporated into
our load-balancing scheme as well.

[22] suggested distributing the FIB (Forwarding Informa-
tion Base) among linecards to support more content prefixes
in an ICN (Information-Centric Networking) router. They use
static hashing, so only one linecard can provide a given
prefix, essentially forcing a Valiant-like load-balancing. On the
contrary, all our linecards can process any packet, allowing for
more flexibility.

Finally, [23] famously presents the fundamental power of
choice in a supermarket model. It shows how choosing the
least loaded out of 2 random servers significantly reduces the
expected queueing time when compared to a uniform random
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Fig. 2: Notation used to describe the traffic within a linecard.

choice. However, in our case, there is no centralized scheduler.
Also, after packets arrive at their respective ingress queue, they
need to use the switch fabric to be assigned to another queue.
Thus, we need to deal with a cost of switch fabric congestion
that does not exist in the fundamental model.

II. MODEL AND PROBLEM FORMULATION

A. Linecard Model

We start by introducing notations and formally defining the
problem. We consider a router with N linecards connected to a
switch fabric. Each linecard is associated with an independent
exogenous Poisson arrival process. We denote by γi the arrival
rate at linecard i, and by γi,j the arrival rate at linecard i of
traffic destined to egress j.

To load-balance processing tasks, we assume that each
linecard i may choose to redirect a fixed portion pi,j of its
incoming traffic to be processed at linecard j. Thus, each
incoming packet is independently redirected to linecard j with

probability pi,j , with
N∑
j=1

pi,j = 1. For instance, if linecard i

is not redirecting traffic, then pi,i = 1.
As illustrated in Figure 2, we denote by R−i the redirected

traffic away from linecard i, such that R−i =
∑
j 6=i

pi,jγi.

Similarly, we denote by R+
i the redirected traffic into linecard

i, such that R+
i =

N∑
j 6=i

pj,iγj . Note that a packet can be

redirected at most once, immediately upon its arrival.
In addition, we denote by λi the total effective arrival rate

into the processing queue of linecard i, i.e.

λi =

N∑
j=1

pj,iγj = γi +R+
i −R

−
i . (1)

Finally, we assume that the linecard processing time of each
packet is exponentially distributed with parameter µi.

Example 1. Assume N = 2 linecards, with equal service rate
µ1 = µ2 = 1. Further assume that the first linecard is con-
gested with an arrival rate of γ1 = 1.2 and the second linecard
is idle, i.e. γ2 = 0 . Then the first linecard could redirect half of
its incoming traffic to the second linecard, namely p1,2 = 0.5.
Therefore R−1 = R+

2 = 0.6, and the effective arrival rate into
each linecard queue is λ1 = λ2 = 0.6.

B. Switch-Fabric Model

We now propose three different models for the switch-fabric
architecture and the resulting switch-fabric congestion.
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Fig. 3: The single-queue switch-fabric model of a shared-memory router.
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Fig. 4: The N-queues switch fabric model of an output-queued router. The
N output queues represent the switch-fabric delay that depends only on the
packet destination.

In the first model, we assume that the switch fabric has an
infinite switching capacity, such that packets pass through it
without delay. Therefore, the load-balancing algorithm will not
take switch congestion into consideration. This model provides
us with some intuition on the pure load-balancing approach.

As illustrated in Figure 3, the second model represents a
shared-memory switch fabric that relies on a single shared
queue. We model the service time at this shared switch-
fabric queue as exponentially distributed with parameter µSF,
representing the switching capacity of the switch fabric. The

total arrival rate to this queue is λSF =
N∑
j=1

γj +
N∑
i=1

R+
i , i.e.

the sum of the total incoming traffic rate into the router and
the additional rate of redirected packets.

Figure 4 shows the third model, which represents an output-
queued switch fabric as a set of N queues, each queue being
associated with a different switch-fabric output. We denote
by µSF

i the service rate for output queue i. Its arrival rate is

λSF
i =

N∑
j=1

γj,i + R+
i , where

N∑
j=1

γj,i is the total arrival rate

destined towards linecard i.
In all three switch-fabric models, the stationary distribution

of the queue sizes can be modeled as following a product-
form distribution. This can be seen by directly applying either
Kelly’s results on general customer routes in open queueing
networks (Corollary 3.4 of [24]), or by applying the BCMP
theorem, with each flow being a chain, and each redirected
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flow being denoted as a new class after its first passage through
the switch fabric (Fig. 3 of [25]).

C. Delay Optimization Problem

Given a router with linecard arrival rates {γi,j}, our goal
is to find the fixed redirection probabilities pi,j that minimize
the average packet delay. Whenever defined, we assume that
we are in the steady state. We also assume that all the buffers
have infinite size and FIFO policy.

Note that by minimizing the average delay, we also maxi-
mize the capacity region, the group of feasible arrival vectors
with finite expected delay, because outside the feasible region
the steady-state average delay is infinite by definition.

III. INFINITE-CAPACITY SWITCH-FABRIC MODEL

A. Minimizing the Average Delay

To gain some intuition on the delay optimization problem,
we start by studying the first model where the switch-fabric
capacity is infinite.

Our first result shows that to minimize the total aver-
age delay, the load-balancing algorithm should achieve equal
weighted delay derivative for all linecards.

Theorem 1. In the infinite-capacity switch-fabric model with

feasible incoming rates (i.e.
N∑
i=1

γi < N ·µ), the load-balancing

algorithm is optimal for the average delay iff

∀i, j ∈ [1, N ], µi

(µi−λi)
2 =

µj

(µj−λj)2 (2)

Proof: In steady state, we can combine Little’s law
and the above-mentioned product-form distribution for the
stationary distribution of all the queue sizes. As a result, the
average delay for linecard i is the same delay as for an M/M/1
queue with a Poisson arrival rate of λi and a service rate of
µi. The delay-minimization problem can thus be formulated
as:

minimize D({λi}) =
1

N∑
i=1

γi

·
N∑
i=1

λi
µi − λi

subject to
N∑
i=1

λi =

N∑
i=1

γi

λi − µi < 0,∀i ∈ [1, N ]

− λi ≤ 0,∀i ∈ [1, N ].

This is a convex optimization problem, and therefore we will
find the Karush-Kuhn-Tucker (KKT) conditions. The KKT
conditions are the first-order necessary conditions. Since our
goal function and region are convex, the KKT conditions are
also sufficient for a solution to be optimal.

The first constraint,
N∑
i=1

λi =
N∑
i=1

γi, means that all the traffic

that enters the router is also processed by one of the linecards
in the router. The second constraint, λi−µi < 0, requires that
the arrival rates into the linecards’ processing queues be lower
than their service rates. The third constraint, −λi ≤ 0, simply
means that the queue arrival rates must be non-negative.

The relevant KKT conditions for each j ∈ [1, N ] are:

− ∂

∂λj

(
D̄(Λ)

)
=

N∑
i=1

ηi
∂

∂λj
(−λi)

+

2N∑
i=N+1

ηi
∂

∂λj
(λi−N − µi−N )

+ τ0
∂

∂λj

(
N∑
i=1

λi −
N∑
i=1

γi

)
ηi ≥ 0,∀i ∈ [1, 2N ]

ηi(−λi) = 0,∀i ∈ [1, N ]

ηi(λi−N − µi−N ) = 0,∀i ∈ [N + 1, 2N ]

The solution must be within the feasible region, with
µi > λi,∀i ∈ {1, .., N}, therefore ηi = 0,∀i ∈ [N + 1, 2N ].
Developing the conditions for a certain index j ∈ [1, N ] shows
that if λj > 0 then ηj = 0:

µj

(µj − λj)2 = −τ0
N∑
i=1

γi (3)

Otherwise λj = 0:

− 1
N∑
i=1

γi

1

µj
= −ηj + τ0

ηj≥0, 1

µj
≥ −τ0

N∑
i=1

γi (4)

Eq. (3) shows that all of the linecards with incoming traffic
have the same delay derivative, while in Eq. (4) linecards with
slow service rate obtain no incoming traffic.

As expected, since in this model there is no cost to load-
balancing, a corollary is that when all processing rates are
equal, each linecard should obtain the same amount of traffic
to process.

Corollary 2. In the infinite-capacity switch-fabric model with
feasible incoming rates, if all linecards are identical, i.e.
∀i ∈ [1, N ] : µi = µ, then they should have the same rate
of incoming traffic to process, i.e. ∀i ∈ [1, N ] : λi = µ.

Proof: Eq. (3) holds for all linecards, thus ∀j ∈ [1, N ]:

λj = µ−
√√√√√− µ

τ0
N∑
i=1

γi

= Constant.

In other words, as expected, when all linecards are identical,
they have the same rate of incoming traffic to process: ∀i ∈

[1, N ], λi = λavg =

(
N∑
i=1

γi
N

)
.

Load-balancing algorithm. A possible algorithm to achieve
these conditions is quite simple. Linecards with arrival rates
above λavg load-balance their excess arrival rates to helper
linecards. To do so, they simply pick each helper linecard
proportionally to its capacity to help, i.e. to the amount
of traffic that it would need to reach λavg. Formally, each
linecard i sends R−i = max (0, γi − λavg) and receives R+

i =
max (0, λavg − γi) , using load-balancing probability

pi,j 6=i =
R−i
γi
·

R+
j∑N

j=1R
+
j

.
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Example 2. Suppose we have an infinite-capacity switch with
arrival rates γ = (1, 2, 2, 3.5, 4.5, 7, 8), and equal service
rates µi = µ = 5. Then any algorithm that achieves λi = 4
for all i is optimal. In particular, the above algorithm yields
R− = (0, 0, 0, 0, 0.5, 3, 4) and R+ = (3, 2, 2, 0.5, 0, 0, 0).

B. Linecard Pairing Problem

We have several degrees of freedom when assigning values
to the N2 variables pi,j : for each linecard, the total amount
of traffic it receives and redirects is defined using the above
optimality equations, but these equations do not determine how
to split the redirected traffic among linecards. Unfortunately,
redirecting traffic from one linecard to another would require
additional overhead to synchronize variables and allocate
resources. Therefore, we will now study how to minimize the
number of linecard pairings.

We first assume that if a linecard is receiving redirected traf-
fic, then it must not redirect traffic, and vice versa. Intuitively,
this is because we would like to minimize the redirected flow
in the system in order to avoid unnecessarily congesting the
switch fabric, since realistically its capacity is finite.

As a result, the total redirected traffic towards other
linecards must be equal to:

∀i ∈ [1, N ],


R−i =

N∑
j=1,i6=j

pi,jγi = γi − λavg, γi > λavg

R−i =
N∑

j=1,i6=j
pi,j = 0, γi ≤ λavg

and likewise, the total incoming redirected traffic from other
linecards must be equal to:

∀i ∈ [1, N ],


R+
i =

N∑
j=1,i6=j

pj,iγj = λavg − γi, γi < λavg

R+
i =

N∑
j=1,i6=j

pj,iγj = 0, γi ≥ λavg

Definition 1 (Redirection Matrix). A redirection matrix R is
a matrix of N rows and N columns.

R =


r1,1 r1,2 · · · r1,N

r2,1 r2,2 · · · r2,N

...
...

. . .
...

rN,1 rN,2 · · · rN,N


Each element ri,j represents the rate at which linecard i is
redirecting traffic to linecard j.

ri,j =

{
pi,jγi, i 6= j

0, i = j

R+
i , the incoming redirected traffic rate into linecard i,

could now also be defined as the sum on column i of R,
n∑
j=1

rj,i. Similarly, R−i is the sum on row i of R,
n∑
j=1

ri,j .

Therefore the optimization only dictates the sums of the rows
and columns of the redirection matrix, and allows freedom
when assigning individual elements with values.

Definition 2 (LPP). The Linecard Pairing Problem attempts to
minimize the number of pairings. Formally, define an indicator
function:

1i,j :=

{
1, if ri,j > 0,
0, else.

Given the arrival rates into the linecards, we want to find

the redirection probabilities that minimize P =
N∑
i=1

N∑
j=1

1i,j , the

number of non-zero values in matrix R.

For instance, one simple and ineffective assignment is
the Proportional Distribution Pairing Algorithm (PDPA). In
PDPA, each linecard j with below-average flow receives a
portion of the excess flow from linecard i with above-average
flow. The portion size is based on linecard j’s contribution
to the total redirected flow in the system. This achieves
average flow on all linecards. The redirection probabilities are
calculated using the following formula:

∀i, j ∈ [1, N ], γi > λavg, γj < λavg,

pi,j =
γi − λavg

γi

λavg − γj
N∑

k=1,γk<λavg

(λavg − γk)

.

From a practical point of view, the PDPA assignment
is ineffective due to the overhead associated with pairing
linecards. The overhead may consist of resource allocation for
the redirected traffic, or synchronizing state variables such as
patterns for security applications. A better approach in those
cases would be to send the redirected flow from each linecard
to the lowest possible number of linecards.

Example 3. Let’s demonstrate PDPA for the system that ap-
pears in Example 2. We obtain the following traffic redirection
matrix for PDPA:

RPDPA =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0.200 0.133 0.133 0.033 0 0 0
1.200 0.800 0.800 0.200 0 0 0
1.600 1.066 1.066 0.266 0 0 0


This assignment could be also represented as:

RPDPA =
1∑

i

R−i
·R−(R+)T =

1

7.5



0
0
0
0

0.5
3.0
4.0





3.0
2.0
2.0
0.5
0
0
0



T

The pairings are represented by the non-zero values. There-
fore, in total, PPDPA = 12.
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However, in this example, we can find that the optimal
solution yields POPT = 4, using:

ROPT =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.5 0 0 0

3.0 0 0 0 0 0 0
0 2.0 2.0 0 0 0 0


Specifically, linecard 8 redirects to linecards 2 and 3, linecard
7 only redirects to linecard 1, and linecard 6 only redirects to
linecard 5. This is optimal because each linecard with a below-
average flow needs to be paired at least once, and there are
4 linecards with below-average flow in this example.

In fact, in the general case, we are able to prove the
following theorem about LPP, showing that there is no easy
solution to the problem.

Theorem 3. LPP is NP-hard.

Proof: If we had an efficient solution to LPP, we would
have an efficient solution to the subset sum problem, known
to be NP-complete. In the subset sum problem, we are given
a set of integers S and an integer k. The problem is to find a
non-empty subset of S which sums up to k.

In order to reduce the subset sum problem to LPP the set
of integers S would represent the size of the overflow in the
overflown linecards, the integer k would be the underflow in

one linecard and
(∑
i∈S

si − k
)

would be the underflow in

another linecard.
If the algorithm returns an assignment with size(S) pairs

it means that there is a non-empty subset which sums up
to k, the overflow values of the linecards paired with the k-
value underflow linecard. Otherwise, if the algorithm returns
an assignment with size(S) +1 pairs, it means that there is not
a non-empty subset which sums up to k. Therefore LPP is an
NP-hard problem.

This reduction is illustrated in Figure 5, λavg and µ are
chosen to be large enough to accomodate an underflow of

size max

(∑
i∈S

si − k, k
)

and an overflow of max
si∈S

(si)

We now introduce a simple heuristic algorithm, which
we denote (SLPA (Simple Linecard Pairing Algorithm), to
approximate the solution of LPP. SLPA randomly chooses a
congested linecard, and iteratively pairs it with uncongested
linecards, redirecting as much traffic as possible, until it has
reached the desired arrival rate.

Algorithm 1 provides the pseudo-code for SLPA. RminusP
is the index of the linecard with traffic being redirected away
from and RplusP is the index of the linecard receiving the
redirected traffic. The algorithm at each iteration redirects the
maximal amount of traffic it can and advances the different
counters accordingly.

Example 4. Since SLPA processes linecards from N to 1
regardless of their incoming flow, its performance varies
depending on the exact flows. An SLPA algorithm run for the
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Fig. 5: Subset sum problem reduction to the linecard pairing problem.

Algorithm 1: SLPA algorithm
Input : Vectors R− and R+ of length N
Output: Matrix RSLPA

1 RminusP = N ;
2 RplusP = 1;
3 RSLPA = 0N,N ;
4 while RminusP ≥ 1 do
5 if R−[RminusP] > 0 then
6 if R−[RminusP] > R+[RplusP] then
7 R−[RminusP] −= R+[RplusP];
8 RSLPA[RminusP][RplusP] = R+[RplusP];
9 R+[RplusP] = 0;

10 RplusP += 1;
11 else
12 R+[RplusP] −= R−[RminusP];
13 RSLPA[RminusP][RplusP] = R−[RminusP];
14 R−[RminusP] = 0;
15 RminusP −= 1;

16 else
17 RminusP −= 1;

18 return RSLPA;

system that appears in Example 2 is as follows: Suppose the
algorithm begins with linecard 7 with γ7 = 8, redirects the
most it can to linecard 1 before it reaches the average flow,
3, and remains with an overflow of 1. It then redirects the
remainder to linecard 2. Linecard 6 continues the same way
and redirects to linecard 2 and 3, and linecard 6 redirects to
linecard 5. The resulting redirection matrix would be:

RSLPA =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.5 0 0 0
0 1.0 2.0 0 0 0 0

3.0 1.0 0 0 0 0 0
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In total PSLPA = 5. In this example the input vectors were
sorted, but this does not help achieve the optimal solution. The
worst-case scenario for the SLPA algorithm, in this example
a reversed arrival-rate vector, would be PSLPA = 6, since at
each iteration we create one pairing and at least one non-zero
value in R+ and R− is zeroed. At the final iteration R+ and
R− become zero vectors. There are seven non-zero values in
R+ and R− in this example, and therefore there would be at
most 7− 1 = 6 iterations for the SLPA algorithm.

Theorem 4. PSLPA < 2 · POPT.

Proof: Let M+ and M− denote the group of linecards
with above- and below-average congestion, respectively. The
minimum number of pairings is at least max (|M+|, |M−|)
since each linecard in each group needs to be paired at least
once.

Using SLPA, the number of linecard pairings is upper-
bounded by |M+|+ |M−|−1. This is because at each pairing,
either the most congested linecard’s rate has been decreased
to equal the average or the least congested linecard’s rate has
been increased to equal the average. At the final pairing, both
the linecards’ rates are equal to the average and therefore the
number of pairings is at most the size of both groups minus
one.

Since |M+| + |M−| − 1 < 2 ·max(M+,M−), the upper-
bound of SLPA’s pairings solution is smaller than twice the
lower-bound of the optimal solution.

The ratio in this bound is tight. Suppose we have N = 2k
linecards, half of the linecards with above-average flow and
half below-average flow. In addition there exists a symmetry
of the flows, ∀i ∈ [1, k], γk+i−λavg = λavg−γk−i+1, and a
single linecard has an overflow equal to the sum of all the other
overflows in the system, γN = λavg+

∑
i∈[k+1,N−1]

(γi − λavg).

POPT in this case is k, due to symmetry. PSLPA could
possibly pair all the small underflow linecards with the great
overflow linecard, and pair the remaining small overflow
linecards with the great underflow linecard, for a total of
2k−2 pairing. Therefore, in this example, the ratio is equal to
2k−2
k , and as there are more linecards in the system the ratio

converges to 2.

IV. SINGLE-QUEUE SWITCH-FABRIC MODEL

A. Minimizing the Average Delay

We now want to start taking into account the congestion at
the switch fabric when deciding whether to load-balance traffic
to reduce processing congestion. As illustrated in Figure 3, we
model a shared-memory switch fabric using a single shared
queue. Therefore, using the product-form distribution, the
average total delay D(R+, R−) of a packet through the router
can be expressed as:

D = 1
N∑

i=1
γi



 N∑
i=1

Linecard Delay︷ ︸︸ ︷
λi

µi − λi

+



Switch Fabric Delay︷ ︸︸ ︷
N∑
i=1

(
γi +R+

i

)
µSF −

N∑
i=1

(
γi +R+

i

)





i.e., as the sum of the average delay through the linecards and
through the switch fabric, averaged over all the traffic. The
linecard delay is simply the delay through a queue with an
arrival rate λi (from Eq. (1)) and service rate µi. Likewise,
the switch-fabric delay is simply the delay through a queue
with an arrival rate

∑
i

(
γi +R+

i

)
and service rate µSF.

As a result, the optimization problem is given by:

minimize D(R+, R−)

subject to
N∑
i=1

R+
i −

N∑
i=1

R−i = 0

N∑
i=1

γi +

N∑
i=1

R+
i − µ

SF ≤ 0

γi +R+
i −R

−
i − µi ≤ 0, i ∈ [1, N ]

−γi−R+
i +R−i ≤ 0,−R+

i ≤ 0,−R−i ≤ 0, i ∈ [1, N ]

where the first condition expresses flow conservation, the next
two conditions signify that the queues are stable, and the last
three conditions keep the flows non-negative. Note that for-

mally, we further substitute
N∑
i=1

R+
i by 1

2

(
N∑
i=1

R+
i +

N∑
i=1

R−i

)
for symmetry in the expressions of the derivative value, and
also replace λi in the expression of D(R+, R−) by the
expression in Eq. (1).

We find that in our load-balancing scheme, an arrival vector
γ is feasible when both the processing and switching loads are
feasible, i.e. (a) the combined service rate of the linecards is
greater than the total arrival rate, and (b) the switch-fabric
service rate is greater than the total arrival rate combined with
the second pass of redirected traffic. Formally,

N∑
k=1

γk <
N∑
k=1

µk

N∑
k=1

min(γk, µk) + 2 ·
N∑
k=1

max(γk − µk, 0) < µSF

We obtain the following result for an optimal load-balancing:

Theorem 5. A solution to the average delay minimization
problem for the single-queue switch fabric model is optimal if
and only if the arrival rate vector is feasible and there exists
a constant τ0 such that for each linecard j, if R+

j > 0 :

µj(
µj − γj −R+

j +R−j
)2 =

− τ0
N∑
i=1

γi −
1

2

µSF(
µSF −

N∑
i=1

γi − 1
2

(
N∑
i=1

R+
i +

N∑
i=1

R−i

))2

(5)

If R−j > 0 :
µj(

µj − γj −R+
j +R−j

)2 =

−τ0
N∑
i=1

γi +
1

2

µSF(
µSF −

N∑
i=1

γi − 1
2

(
N∑
i=1

R+
i +

N∑
i=1

R−i

))2

(6)
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Proof: Once again, the Karush-Kuhn-Tucker conditions
are the first order necessary conditions, which in our case of
convex function and region are also sufficient conditions, for
a solution to be optimal.

The KKT multipliers are: ηi, i ∈ {1, .., 4N + 1}, τ0. There
are 4N +1 constants, ηi, one for each inequality constraint of
the problem. τ0 is used for the single equality constraint. The
stationarity equations are for all j:

− ∂

∂R
+/−
j

(
D̄(R+, R−)

)
=

N∑
i=1

ηi
∂

∂R
+/−
j

(−γi −R+
i +R−i )

+

2N∑
i=N+1

ηi
∂

∂R
+/−
j

(−R+
i−N )

+

3N∑
i=2N+1

ηi
∂

∂R
+/−
j

(−R−i−2N )

+

4N∑
i=3N+1

ηi
∂

∂R
+/−
j

(γi−4N

+R+
i−4N −R

−
i−4N − µi−4N )

+ ηi
∂

∂R
+/−
j

(
−µSF +

N∑
k=1

γk +
1

2

(
N∑
k=1

R+
k +

N∑
k=1

R−k

))

+ τ0
∂

∂R
+/−
j

(
N∑
i=1

R+
i −

N∑
i=1

R−i

)

The dual feasibility and complementary slackness equations
are:

ηi ≥ 0,∀i ∈ {1, .., 4N + 1}
ηi(−γi −R+

i +R−i ) = 0,∀i ∈ [1, N ]

ηi(−R+
i−N ) = 0,∀i ∈ [N + 1, 2N ]

ηi(−R−i−2N ) = 0,∀i ∈ [2N + 1, 3N ]

ηi
(
γi−4N +R+

i−4N −R
−
i−4N − µi−4N

)
= 0,

∀i ∈ [3N + 1, 4N ]

η4N+1

(
−µSF +

N∑
k=1

γk +
1

2

(
N∑
k=1

R+
k +

N∑
k=1

R−k

))
= 0

If the traffic is feasible, the service rates of the linecards and
switch fabric are greater than the arrival rate into the linecard
queues, thus η3N+j = 0, ∀j ∈ [1, N ], and η4N+1 = 0. For
a certain linecard j, if γi + R+

i − R−i > 0, meaning it is
processing packets, then ηj = 0. If R+

j > 0 then ηN+j = 0
and we obtain:

µj(
µj − γj −R+

j +R−j
)2 =

− τ0
N∑
i=1

γi −
1

2

µSF(
µSF −

N∑
i=1

γi − 1
2

(
N∑
i=1

R+
i +

N∑
i=1

R−i

))2

Similarly for R−j > 0:
µj(

µj − γj −R+
j +R−j

)2 =

− τ0
N∑
i=1

γi +
1

2

µSF(
µSF −

N∑
i=1

γi − 1
2

(
N∑
i=1

R+
i +

N∑
i=1

R−i

))2

Intuitively, we define the (weighted) delay derivative of a
linecard i as µi

(µi−λi)
2 . Then Theorem 5 states that the delay

derivative of all linecards that receive traffic must equal the
same value in Eq. (5). Similarly, the delay derivative value of
redirecting linecards with excess traffic must equal the same
value in Eq. (6). The difference between Eq. (5) and Eq. (6)
is the delay derivative of the switch fabric. This is expected
because the switch fabric acts as a penalty for redirecting
traffic. Also, as expected, R+

j > 0 and R−j > 0 cannot both
be true for a specific linecard j.

Moreover, an interesting result is that it is possible for a
linecard not to participate in the load-balancing. Specifically,
if for a linecard j, µj

(µj−γj)2 is between the two values in
Eq. (5) and Eq. (6), then R+

j = 0 and R−j = 0. Intuitively, the
linecard is not congested enough to send traffic and congest the
switch fabric, but also not idle enough to gain from receiving
traffic that would further congest the switch fabric.

The algorithm needed to achieve the KKT optimality con-
ditions is relatively simple. It orders all linecards by their
delay derivative, and progressively sends more flow from the
linecard(s) with the highest delay derivative to the linecard(s)
with the lowest, until it achieves the conditions specified in
Theorem 5.

In Algorithm 2 we first initialize the different variables:
ni, si, ri are the weighted delay derivative values of the
linecards that are not participating in the load-balancing,
sending linecards, and receiving linecards respectively. Γmax

(resp. Γmin) is the set of linecards with the maximal (resp.
minimal) weighted delay derivative. ∆ is the weighted delay
derivative value of the switch fabric. Bmax

i and Bmin
i are used

to keep the values of the linecards in Γmax and Γmin equal at
each iteration, respectively.

Then at each iteration of the while loop, either a linecard
joins one of the groups Γmax /min or the algorithm halts.
Calculating the distance from Γmax or Γmin to the closest
linecards is trivial:

µi

(µi − γi −R+
i +R−i )

2 =
µj

(µj − γj)2

√
µi

(µi − γi −R+
i +R−i )

=

√
µj

(µj − γj)√
µi
√
µj

(µj − γj)− (µi − γi) = −R+
i +R−i

Distributing the redirected traffic to the linecards in Γmax

and Γmin while maintaining equal value is also easily achieved.
We begin with i, j ∈ Γmax /min, µi

(µi−γi)2 =
µj

(µj−γj)2 , we need
to distrbute the redirected traffic such that:

µi

(µi − γi +Ri)
2 =

µj

(µj − γj +Rj)
2
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Linecard
1
2
3
4
5
6
7

λ=γ

1.0
2.0
2.0
3.5
4.5
7.0
8.0



delay derivative

0.31
0.55
0.55
2.22
20.0
−
−


∆=0.714

(a),

λ

2.0
2.0
2.0
3.5
4.5
7.0
7.0



delay derivative

0.55
0.55
0.55
2.22
20.0
−
−


∆=0.972

(b),

λ

3.5
3.5
3.5
3.5
4.5
4.75
4.75



delay derivative

2.22
2.22
2.22
2.22
20.0
80.0
80.0


∆=15.55

(c),

λ

3.58
3.58
3.58
3.58
4.5
4.58
4.58



delay derivative

2.64
2.64
2.64
2.64
20.0
28.4
28.4


∆=25.94

Fig. 6: Successive steps of the algorithm in the single-queue switch-fabric model, based on Example 5. At first, each linecard receives some traffic, and
assumes there is no load-balancing. It also computes its resulting processing delay derivative. Then, in step (a), linecard 7 (with an infinite derivative and
the highest amount of traffic) load-balances one unit of flow to linecard 1 (which has the lowest derivative). Next, in step (b), saturated linecards 6 and 7
send 4.5 units of flow to linecards 1, 2 and 3. Finally, in step (c), all derivatives are finite. Linecards 6 and 7 send 0.34 additional units of flow to linecards
1, 2 3 and 4. The amount in the final step (c) is found using a binary search, other steps use a simple calculation on the derivatives. The algorithm stops,
since the difference between the heavy and light derivatives is ∆, the switch fabric delay derivative value, i.e. reducing the processing congestion will already
deteriorate too much the switch congestion. Also, for this reason, linecard 5 does not participate in the load-balancing. The underlined values are the final
weighted derivative values of the linecards in Γmin(top) and Γmax(bottom).√

µi
µj

=
µi − γi +Ri
µj − γj +Rj[

µi

(µi − γi)2 =
µj

(µj − γj)2 ,

√
µi
µj

(µj − γj) = µi − γi

]
√
µi
µj

(µj −γj +Rj) = µi−γi+Ri|
√
µi
µj

(µj −γj) = µi−γi

Rj√
µj

=
Ri√
µi
, B

max /min
i =

√
µi∑

k∈Γmax / min

√
µk

Let’s provide an intuitive example to show how it works,
as further illustrated in Figure 6.

Example 5. Consider the same arrival rates as in Example 2,
together with a finite-capacity switch fabric of switching rate
equal to the sum of the linecard processing rates, i.e. µSF =
5 · 7.

As shown in Figure 6, the algorithm progressively decides to
load-balance more and more flows. We can see how at the end
of the algorithm, the resulting arrival rates into the linecard
queues are not all equal to λavg, as they were in Example 2.
It is because the switch fabric is limiting the amount of
redirected traffic. This illustrates the tradeoff between switch-
fabric congestion and linecard processing congestion. In fact,
linecard 5 ends up not participating in the load-balancing.

The following result shows that the algorithm complexity is
relatively low.

Theorem 6. The complexity of reaching the optimal solution
within an error bound of ε is O(N + log2( 1

ε ·
∑

i∈[1,N ]

µi)).

Proof:
The algorithm adds linecards to Γmax and Γmin for at most

N − 2 iterations, because the groups are initialized to contain
at least one member. At the last iteration, the gap between the
values of si and ri is smaller than ∆, therefore the algorithm
does not perform it. Instead it searches for a redirected traffic
size such that:

i∈Γmax︷︸︸︷
si =

j∈Γmin︷︸︸︷
rj +∆

Algorithm 2: Single-Queue algorithm

Input : Vectors {γi} and {µi} of length N and µSF

Output: Vectors R− and R+ of length N
1 R− = 0N ;
2 R+ = 0N ;
3 R = 0;
4 ∀i : ni = µi

(µi−γi)2 (neutral);
5 Γmax = {i : ni = max

i
(ni)};

6 Γmin = {i : ni = min
i

(ni)};

7 B
max /min
i =

√
µi∑

k∈Γmax / min

√
µk

;

8 ∆ = µSF

(µSF−
N∑

i=1
γi− 1

2 (
N∑

i=1
R+

i +
N∑

i=1
R−i )−R)

2 ;

9 ∀i ∈ Γmax : si = µi

(µi−γi+R−i +Bmax
i R)

2 (sending);

10 ∀i ∈ Γmin : ri = µi

(µi−γi−R+
i −Bmin

i R)
2 (receiving);

11 ∀i ∈ Γmin ∪ Γmax : remove ni;
12 while min({ri}) + ∆ < max({si}) do
13 Update Γmax,Γmin, B

max /min
i ;

14 ∀i ∈ Γmax : R−i += Bmax
i R;

15 ∀i ∈ Γmin : R+
i += Bmin

i R;
16 distMax ← Find R: max({si}) == max({ni});
17 distMin ← Find R: min({ri}) == min({ni});
18 R = min(distMax, distMin);
19 Update {si}, {ri},∆;

20 Find R : min({ri}) + ∆ = max({si});
21 ∀i ∈ Γmax : R−i += Bmax

i R;
22 ∀i ∈ Γmin : R+

i += Bmin
i R;

23 return R−, R+;

µi

(µi − γi +R−i +Bmax
i R)

2 =

µi

(µj − γj −R+
j −Bmin

j R)
2 +

µSF(
µSF −

N∑
k=1

γk − 1
2

(
N∑
k=1

R+
k +

N∑
k=1

R−k + 2R

))2

This is solvable using the bisection method on the possible
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values of R, from 0 to min

(
µj−γj−R+

j

Bmin
i

,
−γi+R−i
Bmax

i

)
, this is the

bound on R to maintain a feasible flow in both the sending
and receiving linecards. This value is bounded by the maximal
redirected flow in the router

∑
i∈[1,N ]

µi − min
i∈[1,N ]

µi, the total

processing capacity minus the minimal local processing capac-
ity that will not be redirected. Hence the upper-bound on the

complexity of the bisection method is log2

(
1
ε ·

∑
i∈[1,N ]

µi

)
.

The complexity is therefore at most N − 2 iterations for the

N − 2 linecards joining Γmax /min, and log2

(
1
ε ·

∑
i∈[1,N ]

µi

)
for the bisection method, which is the worst case for root-
finding methods.

B. Capacity Region.

We define the capacity region as the set of all non-negative
arrival rate vectors {γi} that are feasible (as in [26], [27]). We
want to compare the capacity region of our algorithm against
that of a basic Current scheme without load-balancing, and of
a Valiant-based load-balancing scheme that we now introduce
(based on [28]).

The capacity region of each linecard without load-balancing
is bounded by its own processing capability, regardless of the
traffic in other linecards. Using the load-balancing scheme, we
can expand the capacity region based upon the total available
processing power of the router.

Definition 3 (Valiant-based load-balancing). Let the Valiant-
based algorithm be defined as an oblivious load-balancing
scheme where each linecard i automatically load-balances a
uniform fraction 1

N of its incoming traffic to be processed at
each linecard j (and processes locally 1

N as well), regardless
of the current load in the different linecards.

Theorem 7. The capacity region using the different algorithms
is as follows:

i) Current: ∀i : γi < µi, and
∑
i

γi < µSF.

ii) Valiant: ∀i :

∑
i γi
N

< µi, and
2N − 1

N
·
∑
i

γi < µSF.

iii) Single Queue (ours):
∑
i

γi <
∑
i

µi, and

processed locally︷ ︸︸ ︷∑
i

min(γi, µi) +2 ·

redirected traffic︷ ︸︸ ︷∑
i

max(γi − µi, 0) < µSF.

Proof: (i) The result for the current implementation is
straightforward, since it cannot redirect traffic.
(ii) This derives from the fact that Valiant load-balancing
uniformly redirects N−1

N of the arrival rate of each linecard to
all other linecards.
(iii) Finally, in our scheme, the first equation derives from the
processing multiplexing, and the second equation states that
the switch-fabric arrival rate is smaller than its service rate.

Figure 7 illustrates the theorem results. It plots the capacity
region when either N = 2 or N = 10, using a uniform

0.0 0.5 1.0 1.5 2.0
γ1

0.0

0.5

1.0

1.5

2.0

γ
2

Current
Valiant
S-Queue

(a) Capacity region with N = 2
linecards.

0 1 2 3 4 5 6
γ1

0

1

2

3

4

5

6

γ
2

Current
Valiant
S-Queue

(b) Capacity region with N = 10,
only 2 linecards have incoming traffic.

Fig. 7: Single-Queue switch fabric model with µSF = N . The colored fills
represent the simulation results for the current scheme without load-balancing
(dark grey) and our Single-Queue delay-optimal scheme (light grey). The
plotted borders represent the theoretical values for the two schemes and for
the Valiant-based scheme. We can see how our scheme achieves a larger
capacity region in both cases, since the Current scheme does not do load-
balancing, and the Valiant scheme performs oblivious and sometimes harmful
load-balancing.

service rate µi = 1, µSF = N , and assuming that only
two linecards have arrivals. We can see how when one of
the linecards is idle, the feasible processing rate of the other
linecard can significantly increase using our load-balancing
scheme. The two other schemes appear sub-optimal, since the
Current scheme does not do load-balancing, and the Valiant
scheme relies on an oblivious and sometimes harmful load-
balancing. The performance gain with respect to Current is
especially large when there is dissymmetry between linecard
rates, and against Valiant when there is symmetry and load-
balancing becomes harmful.

V. N-QUEUES SWITCH-FABRIC MODEL

We now consider a more accurate switch-fabric model,
where the congestion in the switch fabric depends on the
destination. As illustrated in Fig. 4, we model an output-
queued switch fabric by assigning a queue at each output.
This helps us capture output hot-spot scenarios.

A. Minimizing the Average Delay

As in the previous sections, we want to minimize the
average delay of packets in the router, which equals the sum
of the delays through all queues, weighted by the flows going
through these queues, and normalized by the total incoming
exogenous flow. We obtain a similar result on the average-
delay minimization problem.

The average delay of a packet in the system consists of the
flow through each queue multiplied by the delay of the queue
and finally normalized with the total flow in the system.

minimize D(R+, R−) =
1

N∑
i=1

γi

(
N∑
i=1

γi +R+
i −R

−
i

µi − γi −R+
i +R−i

+

N∑
i=1

N∑
j=1

γj,i +R+
i

µSF
i −

N∑
j=1

γj,i −R+
i
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subject to
N∑
i=1

R+
i −

N∑
i=1

R−i = 0

− γi −R+
i +R−i ≤ 0, i ∈ [1, N ]

γi +R+
i −R

−
i − µi ≤ 0, i ∈ [1, N ]

−R+
i ≤ 0,−R−i ≤ 0, i ∈ [1, N ]

− µSF
i +

N∑
j=1

γj,i +R+
i ≤ 0, i ∈ [1, N ]

Theorem 8. A solution to the average-delay minimization
problem for the N-queues switch fabric model is optimal iff
(i) the flows are feasible, and
(ii) there exists a constant τ0 such that for each linecard j, if
R+
j > 0 :

µj

(µj−γj−R+
j +R−j )

2 +
µSF
j(

µSF
j −

N∑
i=1

γi,j−R+
j

)2 = −τ0
N∑
i=1

γi;

and if R−j > 0 :
µj

(µj−γj−R+
j +R−j )

2 = −τ0
N∑
i=1

γi.

Proof: We will write the KKT conditions, which are the
necessary and sufficient conditions for a solution to be optimal
in our case of convex function and region.

The KKT multipliers are: τ0, ηi, i ∈ {1, .., 5N}. There are
5N constants, ηi, one for each inequality constraint of the
problem. τ0 is used for the single equality constraint.

The stationarity equations are, for all j:

− ∂

∂R
+/−
j

D(R+, R−) =

N∑
i=1

ηi
∂

∂R
+/−
j

(−γi −R+
i +R−i )

+

2N∑
i=N+1

ηi
∂

∂R
+/−
j

(−R+
i−N )

+

3N∑
i=2N+1

ηi
∂

∂R
+/−
j

(−R−i−2N )

+

4N∑
i=3N+1

ηi
∂

∂R
+/−
j

(
−µSF

i−3N

+

N∑
k=1

γk,i−3N +R+
i−3N

)

+

5N∑
i=4N+1

ηi
∂

∂R
+/−
j

(
γi−4N +R+

i−4N

−R−i−4N − µi−4N

)
+ τ0

∂

∂R
+/−
j

(
N∑
i=1

R+
i −

N∑
i=1

R−i

)

The dual feasibility and complementary slackness equations
are:

ηi ≥ 0,∀i ∈ {1, .., 5N}
ηi(−γi −R+

i +R−i ) = 0,∀i ∈ [1, N ]

ηi(−R+
i−N ) = 0,∀i ∈ [N + 1, 2N ]

ηi(−R−i−2N ) = 0,∀i ∈ [2N + 1, 3N ]

ηi(−µSF
i−3N +

N∑
k=1

γk,i−3N +R+
i−3N ) = 0,

∀i ∈ [3N + 1, 4N ]

ηi(γi−4N +R+
i−4N −R

−
i−4N − µi−4N ) = 0,

∀i ∈ {4N + 1, .., 5N}

Similarly to before, if the traffic is feasible, the service rate
of the linecards and switch fabric is greater than the arrival
rate into their queues, thus η3N+j = 0 and η4N+j = 0, ∀j ∈
[1, N ]. For a certain linecard j, if γi+R+

i −R
−
i > 0, meaning it

is processing packets, then ηj = 0. If R+
j > 0 then ηN+j = 0:

µj

(µj−γj−R+
j +R−j )

2 +
µSF
j(

µSF
j −

N∑
i=1

γi,j−R+
j

)2 = −τ0
N∑
i=1

γi

If R−j > 0, then η2N+j = 0: µj

(µj−γj−R+
j +R−j )

2 =

−τ0
N∑
i=1

γi.

From the optimization conditions, it is easy to deduce an
algorithm that works quite similarly to the algorithm in the pre-
vious section. The algorithm solves the optimization problem
by performing a binary search on the possible values of R+

k ,
where k is the linecard with the smallest combined (linecard
and switch fabric) delay derivative. At each step of the binary
search, all the linecards with a lesser (respectively, greater)
combined derivative are considered to belong to the minimal
(maximal) derivative group, and have traffic redirected to them
(away from them) until their combined derivative value equals
that of linecard k.

In Algorithm 3 we first initialize the different algorithm
variables. The main difference from Algorithm 2 is seen in the
Γmin definition, with the added contribution of the switch fabric
to the calculation. The algorithm performs a binary search on
the redirected traffic size into the minimal congestion valued
linecard, at each step recalculating the Γmin and Γmax groups.

The index k denotes the linecard with minimal congestion,
the linecard that allows the maximal redirected traffic into it.
All the linecards that fulfill ni > rk+∆k belong to Γmax since
it is beneficial for them to redirect traffic into linecard k. All
the linecards that fulfill rk + ∆k > ni + ∆i belong to Γmin
since their derivative value is lower than that of linecard k and
therefore they will also receive redirected traffic.

After we have calculated Γmax and Γmin we compare the
total redirected traffic and the total received traffic at each
group. If the redirected traffic is greater, linecard k needs to
receive more traffic, if the redirected traffic is smaller then
linecard k needs to receive less.

Theorem 9. The complexity of reaching the optimal solution
within an error bound of ε is O(N · log2(µε )2).
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Proof: The above formula assumes equal
service rate linecards, the general complexity term is

O

(
max
i∈[1,N ]

(log2(µi

ε )) ·
∑

i∈[1,N ]

log2(µi

ε )

)
.

Algorithm 3: N-Queues algorithm (short)

Input : Vectors {µi} and {µSF
i } of length N

Matrix N ×N {γi,j}
Output: Vectors R− and R+ of length N

1 R− = 0N ;
2 R+ = 0N ;
3 ∀i : ni = µi

(µi−γi)2 (neutral);
4 ∀i ∈ Γmax : si = µi

(µi−γi+R−i )
2 (sending);

5 ∀i ∈ Γmin : ri = µi

(µi−γi−R+
i )

2 (receiving);

6 ∀i : ∆i =
µSF
i

(µSF
i −

N∑
k=1

γk,i−R+
i )

2 ;

7 Γmax = {i : ni = max
i

(ni)};
8 Γmin = {i : ni + ∆i = min

i
(ni + ∆i)};

9 ∀i ∈ Γmin : R∗i = min(µi − γi, µSF
i −

N∑
k=1

γk,i);

10 k = arg max
i

(R∗i );

11 iter = 1;
12 sign = 1;
13 R+

k = 0;
14 while R∗k

2iter > ε do
15 R+

k += sign · R
∗
k

2iter ;
16 ∀i 6= k : R+

i = 0;
17 R− = 0N ;
18 Update {ni},∆i;
19 ∀i : ni > rk + ∆k,Find R−i : si = rk + ∆k

∀i : rk + ∆k > ni+ ∆i,Find R+
i : rk + ∆k = ri+ ∆i

20 R−total =
∑
R−;

21 R+
total =

∑
R+;

22 if R−total > R+
total then

23 sign = 1;
24 else
25 sign = −1;

26 return R−, R+;

In the previous sections the switch fabric was shared be-
tween all linecards and therefore simplified the calculations. It
is no longer possible to extract a simple Bmin

i expression, the
expression used to maintain equal value across all linecards
in Γmin as we redirect traffic to them. Bmax

i on the other
hand still fulfills the equation Bmax

i =
√
µi∑

k∈Γmax

√
µk

since the

maximal expression remains the same. A significant change
is required to the algorithm presented at the previous section.
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Fig. 8: Capacity region using the N-Queues switch fabric model, µSF
i = 1. The

plotted borders are the theoretical values and the colored fill is the simulation
result.

This is due to the fact that at each step:

∀i, j ∈ Γmin,

µi

(µi − γi)2 +
µSF
i(

µSF
i −

N∑
k=1

γk,i

)2 =

µj

(µj − γj)2 +
µSF
j(

µSF
j −

N∑
k=1

γk,j

)2

The algorithm needs to find R+
i and R+

j such that∑
k∈Γmin

R+
k =

∑
k∈Γmax

R−k and:

µi

(µi − γi −R+
i )

2 +
µSF
i(

µSF
i −

N∑
k=1

γk,i −R+
i

)2 =

µj

(µj − γj −R+
j )

2 +
µSF
j(

µSF
j −

N∑
k=1

γk,j −R+
j

)2

There are at most max
i∈[1,N ]

(log2(µi

ε )) while loop

iterations. Each iteration requires a binary search
for each linecard in Γmax and Γmin, at most∑
i∈[1,N ]

log2(µi

ε ) iterations. Therefore the total complexity is

O

(
max
i∈[1,N ]

(log2(µi

ε )) ·
∑

i∈[1,N ]

log2(µi

ε )

)

B. Capacity Region.

Similarly to the single-queue model, we again plot the
capacity region. We assume the same settings, and also assume
that the packet destinations are uniformly distributed and that
the output queue services rates are equal to µSF

i = 1. As
illustrated in Figure 8, the results are largely similar, although
the two load-balancing algorithms now slightly suffer from
the increased switch fabric congestion, since the service rate
of the switch fabric is now split between N queues.
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VI. SIMULATION RESULTS

In this section we compare the performance of our suggested
algorithms to the existing algorithms. We first simulate the
N -Queues switch-fabric queuing architecture using synthetic
traces. Afterwards, we simulate an iSLIP input-queued switch-
fabric scheduling algorithm with traces from high-speed Inter-
net backbone links.

To clarify, we compare all algorithms on the same architec-
ture, but each algorithm determines its load-balancing policy
based on its own switch-fabric model. Thus, the algorithm
model is not necessarily identical to the simulated architecture.

A. N-Queues Switch Fabric Algorithm

Figure 9 simulates all algorithms on the output-queued
switch-fabric architectural model that appears in Figure 4.
The figures plot the performance of five algorithms: (i) the
baseline Current algorithm without load-balancing, (ii) the
Valiant-based algorithm, (iii) our load-balancing algorithm that
assumes an infinite switch-fabric service rate, (iv) our single-
queue switch-fabric algorithm, and (v) our N-queues switch-
fabric algorithm, which is expected to outperform since its
model is closest to the architecture. The service rates are
∀i ∈ [1, N ], µi = µSF

i = 1. The destination linecard is chosen
uniformly.

Figure 9(a) confirms the capacity region in Figure 8(b),
where two linecards have positive incoming arrival rates
and the other linecards are idle. As expected, the Current
algorithm cannot accommodate an arrival rate that is larger
than the service rate of a single linecard. Furthermore, as in
Figure 8(b), the capacity region for the Valiant-based load-
balancing is capped at γ1,2 = 2.5, and for our algorithm at
γ1,2 = 2.8.

Figure 9(b) shows the delays when five out of ten linecards
have an equal arrival rate and the rest are idle. The Valiant-
based load-balancing performs significantly worse due to the
fact that now 4

N = 40% of all the redirections it performs
are redundant and towards active linecards, whereas with two
active linecards only 10% of the redirections were redundant.
An interesting result is at the low arrival rates, where the
Valiant-based algorithm, and to a lesser degree our Infinite
algorithm, perform poorly and have a larger average delay
than without load-balancing. The reason is that the switch
fabric service rate is split between N = 10 queues, therefore
each packet experiences a larger delay when passing through
the switch fabric and these algorithms have many redundant
redirections at low arrival rates. On the other hand, our optimal
algorithm decides at these low arrival rates not to redirect.

In Figure 9(c) the arrival rates are assumed to be distributed
linearly at equal intervals. For instance, when the x-axis is at
1.8, the arrival rates to the linecards are (0.0, 0.2, 0.4, . . . , 1.8).
The result appears similar.

Incidentally, note that while our Infinite algorithm performs
slightly worse than our more accurate algorithms, it may
be interesting when complexity is an issue. In addition, it
is possible to artificially improve the infinite switch fabric
algorithm by simply preventing it from redirecting when the
maximal load below a certain constant. This will not add to

the complexity of the algorithm, and it would even prevent its
redundant full calculation at low loads.

B. Real Traces
We now simulate a real input-queued switch fabric with

VOQs and an implementation of the iSLIP [10] scheduling
algorithm. Upon arrival at the switch fabric, each packet is
divided into evenly-sized cells and sent to a queue based on its
source and destination linecards. At each scheduling step, the
iSLIP scheduling algorithm matches sources to destinations,
and the switch fabric transmits cells based on these pairings.
The destination linecard must receive all of the packet’s cells
before the packet can continue.

For this simulation we rely on real traces from [9], which
were recorded at two different monitors on high-speed Internet
backbone links. One of the traces has an average OC192 line
utilization of 24%, and the other 3.2%.

Note that in these simulations, all the arrival rates into the
linecards are positive, while in reality many router linecards
are simply disconnected. Thus, in real-life, we would expect
load-balancing schemes to be even more beneficial.

The switch fabric rate is set to be equivalent to OC192
per matching. The processing time is calculated based on the
packet size using the number of instructions and memory-
accesses estimate from [7] for header and payload processing
applications. Memory access times are assumed to be constant
at 4ns.

The algorithms in previous sections require several adjust-
ments to accommodate the more realistic features of this
simulation. The average arrival rates at each linecard are no
longer known in advance, and no longer constant. Instead,
the algorithm performs periodic updates. At each interval
the algorithm measures the arrival rates to all linecards, and
based on previous intervals it predicts the arrival rates in the
next interval and calculates the required load-balancing policy
based on this prediction. In this section the updates were made
at thousand-packet intervals.

Additionally, the linecards’ processing time depends on
the number of instructions and memory accesses, which are
derived from the packet’s payload size, while the packet’s
time at the switch fabric depends directly on the total packet
size. In contrast, the load-balancing algorithms assume the
switch fabric consists of a single queue or N queues, therefore
a simple conversion of the actual switch fabric rate to the
algorithm’s simplified switch fabric model rate is required.

Figure 10(a) shows a comparison between the Current
implementation, Valiant-based load-balancing, and our algo-
rithms. The packet arrival times were divided by two to
simulate a more congested network with 48% and 6.4%
OC192 line utilization. There are N linecards in the system,
five of which are connected to the relatively highly utilized line
rates and the remaining linecards are connected to the lower
arrival rate links. The x-axis shows the average processing
load of the most congested line card. The change in the x-
axis only affects the service rate of the line cards while the
switch fabric rate and the arrival rates stay constant.

The Valiant-based delay is high, even at low loads. This is
due to the significant additional congestion at the switch fabric.
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(a) Two linecards out of ten have incoming traffic.
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(b) Five linecards out of ten have incoming traffic.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Processing Load

2
4
6
8

10
12
14
16
18
20

La
te

nc
y 

[s
]

Current
Valiant
Infinite
S-Queue
N-Queues

(c) Arrival rates into linecards distributed at equal
intervals between 0 and x-axis value.

Fig. 9: N-Queues switch fabric model, with N = 10 and a Poisson arrival model.

This delay is somewhat constant up to very high loads, where
the delay begins to be mostly influenced by the congested
linecards. Our algorithm does not redirect traffic at low loads
and maintains a delay similar to the delay without load-
balancing. However, for a small range around a processing
load of 0.6, it has a slightly higher delay, because it redirects
traffic earlier than it should due to inaccurate arrival rate
estimation. Significantly, our algorithm almost doubles the
capacity region of the most congested linecard in the system
when compared to the Current algorithm. Of course, load-
balancing algorithms with less accurate models perform with
slightly higher delays.

Figure 10(b) shows the same comparison, but now the ser-
vice rates of the linecards are constant while the arrival rates
are variable. The N-queues algorithm performs significantly
better than the other algorithms in this scenario because it
takes into consideration the different loads at the switch fabric
queues. As the arrival rate increases, the switch fabric delay
grows along with the processing delay in the linecards.

Figure 11 shows the total utilization of the processing
resources in the router, defined as the fraction of the time
the linecard processors are busy. Figure 11(a) shows how
for a constant arrival rate and a variable processing rate, the
utilization of the Current implementation falls off at higher
loads, while the Valiant-based algorithm performs similarly to
the more complex algorithms. The reason for this is due to
the switch fabric being able to withstand the additional load
of the Valiant algorithm. On the other hand, in Figure 11(b),
with a variable arrival rate and a constant processing rate,
both Current and Valiant perform worse. In particular, at high
arrival rates, the switch fabric limits the Valiant algorithm, and
therefore its utilization of the processors does not scale as well
as our algorithms.

VII. DISCUSSION

A. Queue-Length-Based Algorithms

Our algorithms balance the traffic load based on the arrival
rates to the linecards. A different approach would be to
load-balance based on the queue lengths. For instance, if
the switch-fabric capacity were infinite, as in our first switch
architecture, and the queue lengths were known at all times,
then a simple redirect to the shortest queue approach would
be optimal [29]. However, such global and constantly updated
knowledge would of course be costly to maintain across all the
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(a) Constant arrival rate, variable
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Fig. 10: Simulation with OC-192 Internet backbone link traces [9], iSLIP
switch fabric scheduling algorithm [10] and packet processing times based
on [7], comparing our three algorithms with the Current and Valiant algo-
rithms.
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Fig. 11: Simulation with same settings as Figure 10, comparing the utilization
of the algorithms.

linecards, and therefore updates regarding the current queue
lengths would be sent periodically, similarly to the updates of
the arrival rates.

Based on the power of two choices [30], we introduce
two simple algorithms. First, in the 2-Choices algorithm, each
packet compares the queue sizes at two random linecards and
is redirected to the shortest one. Second, in the 2-Modified
algorithm, each incoming packet only compares the queue
sizes of its ingress linecard and of another random linecard,
and chooses the linecard with the smallest queue.

Figures 12(a) and 12(b) compare the different algorithms.
Figure 12(a) uses a constant arrival rate and variable service
rates at the linecards, while Figure 12(b) assumes a variable
arrival rate and constant service rates at the linecards. The
2-Modified algorithm performs better than 2-Choices at low
processing loads, since it needs less redundant redirects. In
any case, our N-Queues algorithm seems to outperform both.
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Fig. 12: Simulation with same settings as Figure 10, comparing the perfor-
mance of our best algorithm with queue-length-based algorithms.

Memory Complexity
No L-B - -

Valiant-Based - O(1)
2 Choices O(N) O(1)
Infinite SF O(N) O(N)

Single Queue SF O(N) O(N + log2(Nµ
ε

))

N-Queues SF O(N) O(N · log2(µ
ε

)2)

TABLE I: Comparison of the different algorithm requirements.

B. Implementation

We initially had several significant implementation concerns
regarding our algorithms, in particular regarding (a) buffer
management and (b) reordering. However, these concerns were
alleviated following discussions with industry vendors.

First, our algorithms may cause problems if redirecting
traffic requires to first reserve the buffer at the helper linecard.
But this is not significantly different from reserving the buffer
at the output, and therefore seems reasonable. The algorithms
could also bypass the buffer at the input linecard when
redirecting, unlike what is currently done. But this is simply
about updating the implementation, and does not appear to
cause any fundamental issues.

A second potential concern is that our algorithms may cause
reordering, thus damaging the performance of TCP flows [31].
But there are many papers and vendor implementations that
address this concern [21], [32], [33]. For instance, it is possible
to change the granularity of the load-balancing from a per-
packet decision to a per-flow decision. In fact, we reran our
simulations based on OC192 traces, with over 107 different
flows appearing at each second in each linecard, and found
that this change did not influence the performance (within
an approximation of 10−5). This is expected because the
granularity of the load-balancing with this number of flows
is fine enough for any practical use. An alternative technique
would be to maintain reordering buffers at the egress paths,
although this would of course require additional memory [33].
In addition, [21], [32] have found that in the millisecond level,
only hundreds or thousands of flows are active, being pro-
cessed or buffered, out of millions of alive flows. Allowing us
to redirect packets mid-flow without causing reordering when
the inter-packet gap is larger than the maximal processing time
of a packet.

More minor concerns are about the algorithm overhead.
Our algorithms need to periodically collect information about
the various linecards and in addition incur computational

Memory Complexity
No L-B - -

Valiant-Based - O(1)
2 Choices O(N) O(1)
Infinite SF O(N) O(N)

Single Queue SF O(N) O(N + log2(Nµ
ε

))

N-Queues SF O(N) O(N · log2(µ
ε

)2)

TABLE II: Comparison of the different algorithm requirements.

complexity and memory overheads. However, in the worst
case every linecard transmits an update to every other linecard.
Assuming N = 64 linecards, 1,000 updates per second and
32 bits representing the flow size, yields a total overhead
of 131Mbps, which is negligible in routers with total rates
of over 100 Gbps. In addition, our algorithms incur other
overheads, including complexity and memory overheads. The
complexity overhead of our most complex algorithm is roughly
of the same order of magnitude as running a typical payload
processing application on several packets based on [7]. This
computation is done every update interval, i.e. every 10,000
packets over the whole switch in most of our simulations, and
therefore the amortized per-packet additional computation is
less than 0.1%. Also, the required memory per linecard is
at most 2N · 32 = 3, 200 bits to represent the redirection
probabilities and congestion values per linecard. Therefore,
we find that these overheads appear quite reasonable.

VIII. CONCLUSION

In this paper, we have introduced a novel technique for
tapping into the processing power of underutilized linecards.
Given several switch-fabric models, we introduced load-
balancing algorithms that were shown to be delay-optimal
and throughput-optimal. We also illustrated their strong per-
formance in simulations using realistic switch architectures.

Of course, there remain many interesting directions for
future work. In particular, we are interested in exploring
the possibility for router vendors of adding helper linecards
with no incoming traffic, with the unique goal of assisting
existing linecards to process incoming traffic. In addition, this
idea may be merged with the recent NFV (Network Function
Virtualization) proposals: such helper linecards may in fact
contain multi-core processors that would also be devoted to
additional programmable tasks, thus avoiding the need to send
these tasks to remote servers.
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