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Implementing Sequential
Machines as Self-Timed Circuits

Ilana David, Ran Ginosar, Member, IEEE, and Michael Yoeli

Abstract— A self-timed finite state machine is described. It
is based on a formally-proven, efficient implementation of self-
timed combinational logic and a self-timed master—slave register.
Temporal behavioral constraints are formalized, and the system
is shown to abide by them. The synthesis method is algorithmic,
and serves as an automatic compiler of self-timed FSM’s. The
method is compared with other approaches.

Index Terms— Asynchronous systems, combinational logic,
delay-insensitive, finite state machines, master—slave register,
self-timed.

I. INTRODUCTION

ELF-TIMED logic provides a method for designing asyn-

chronous hardware circuits such that the correct behavior
of the circuit depends neither on the speed of its components
nor on the delay along its communication wires. In addition,
the circuits can generate a completion signal. The advantages
of self-timed logic, as compared with globally clocked logic,
are discussed, e.g., in [12].

Digital circuits are conveniently classified according to
levels of increasing complexity. At the lowest level, com-
binational logic implements Boolean functions. Next come
sequential finite state machines, which can be described by
regular expressions and other equivalent representations. More
complex designs usually consist of networks interconnecting
combinational logic and finite state machines in various forms.
Traditionally, we have been accustomed to synthesizing com-
puter architectures mostly out of these two types of building
blocks.

While synchronous implementations of such digital circuits
prevail widely, self-timed systems present an attractive alter-
native. However, self-timed design is not as straightforward
as synchronous circuits, as such designs avoid the relaxing
assumptions and external enforcement of timing available
with synchronizing clocks. In an attempt to approach those
problems formally and efficiently, we have designed self-
timed combinational logic and finite state machines in a formal
manner, while stressing efficient implementation. As a result,
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those two levels of building blocks are now available for safe
construction of digital systems of higher complexity.

In a companion paper [3] we have described a method for
implementing any family of Boolean functions as an efficient
self-timed circuit (CL). This paper proposes a general method
for efficiently implementing finite-state machines as self-timed
systems. We start by defining and implementing a self-timed
master—slave register. Subsequently, the self-timed finite state
machine is constructed by connecting a CL module with a
self-timed master—slave register.

The FSM is specified by a state table, similar to the
specification of a Mealy-type synchronous FSM [6]. However,
the synchronizing clock is replaced by sequences of events.
We also impose a set of temporal behavioral constraints on
the FSM, extending the approach taken by Seitz [12] for CL
and as modified by us [3]. The inputs and outputs of the
circuit are ternary. The FSM, similar to our CL [3], produces a
completion signal. The correctness of the FSM can be proven
formally; thus, it can serve as a “correct by construction”
building block for automatic system synthesis.

The next section specifies sequence constraints and the
construction of self-timed master—slave registers. Section III
describes the sequence constraints of the FSM, and Section IV
discusses its construction. In Section V we compare our
approach with others.

II. SELF-TIMED MASTER—SLAVE REGISTER

Our self-timed master—slave (MS) register operates simi-
larly to a conventional master—slave register: it first stores
the data at its input and only later outputs the stored data.
However, it is not controlled by a clock, rather by the sequence
of events.

The ternary n-stage self-timed master—slave register (MS)
is defined as follows:

1) The MS has n three-valued inputs Vi,---,Y, and n
three-valued outputs g1, -, Yn.

Each input and output may assume any value from the
set {0,1,U}. We refer to U as the “undefined” value
and to 0,1 as the “defined” values.

The sequential behavior of the MS and its environment
is constrained by the following cycle of activities:

The E;’s are environment (domain) constraints; the
S;’s are network (functional) constraints. E0 is the
initialization of the MS; thereafter, each cycle starts with
E1 and terminates with S4.

2)

3)
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EO. All inputs are set to "undefined” and all
outputs are set to the initial-state defined
value.

E1. Some (but not all) inputs become defined.

S1. All outputs remain defined.

E2. All inputs become defined.

S2. All outputs become undefined.

The value of the input vector is saved in
the register; an acknowledgment output is
produced.

E3. Some (but not all) inputs become undefined.

S3. All outputs remain undefined.

E4. All inputs become undefined.

S4. All outputs become defined and their value

equals to the stored value of the inputs; an
acknowledgment is produced.

The circuit that implements the self-timed master—slave regis-
ter (MS) is shown in Fig. 1. All the three-valued (input, output,
and internal) lines are implemented by double-rail code as in
the companion paper [3]. For example, Y; is represented by
Y?,Y;!. We now show that the MS circuit (Fig. 1) obeys the
above sequential constraints. The following discussion is given
in lieu of an elaborated formal proof, of the kind developed
in [3].

In the circuit, line “A” becomes 1 once all inputs
Y1, Yz, ...Y,, become undefined, it becomes 0 once all inputs
are defined, and it retains its previous value otherwise. Line
“B” behaves similarly with respect to the outputs §;. The
W1, -, Wy, lines save the input values, to be stored in the
register.

Initially, all Y2,Y;' equal 0, and all §j;’s are defined. It
follows that “A” equals 1, “B” equals 0, and all w?, w} equal
0 (E0). Line “W” equals 1, signaling to the environment that
the inputs may now become defined.

When some (but not all) inputs become defined (E1), “A”
remains 1, y; remain defined, “B” remains 0, all w;’s remain
0, and the output values do not change (S1).

Once all inputs have become defined (E2), line “A” be-
comes 0. Consequently, all the C-elements at the outputs have
their two inputs equal 0, causing their outputs to become all
0 (S2). This makes line “B” turn 1, which “opens” the input
C-elements. As a result, the w;’s get the value of the Y;’s
(S2). Consequently, line “W” becomes 0, signaling to the
environment that the inputs may become undefined.

When some (but not all) inputs become undefined (E3), “A”
remains 0, and the output values remain 0 (S3). “B” remains
1, so the w;’s retain their values.

When all inputs become undefined (£4), line “A” becomes
1. The C-elements at the outputs pass the w;-values to their
outputs; thus, the outputs become defined and their values
equal the stored value of the inputs (S4). As a result, line “B”
becomes 0, and then all the w;’s become 0. Line “W” becomes
1, signaling that the inputs can become defined again.

To summarize, the self-timed MS register informs the en-
vironment when the inputs may be applied and when they
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may be removed by means of the “W” line. Essentially, “W”
indicates when the slave part of the MS register has completed
its transition. Given that the inputs are undefined, only once
“W” becomes 1 may the inputs become defined. Then they
have to remain defined as long as “W” has not changed to 0.

In order to set the circuit to its initial state, we must be able
to preset/clear the CE’s. For this purpose, we add “preset” and
“clear” inputs to the standard CE circuit. The logic diagram
of CE with and without “preset” and “clear” inputs is shown
in Fig. 2.

III. DEFINITION AND SEQUENTIAL CONSTRAINTS
OF SELF-TIMED FINITE-STATE MACHINE

Similarly to the CL, the FSM waits for all its inputs to
become defined before operating. Once all inputs have arrived,
the FSM switches states and produces the corresponding out-
puts. Subsequently, the inputs may be removed. Note that this
is different from the general fundamental-mode asynchronous
sequential machines [6], where a single change in one of the
input lines triggers a state transition. In the version of ST-FSM
described here, all inputs must first become undefined and
then become defined between two successive state transitions.
In this respect, our ST-FSM resembles synchronous FSM’s
(where the clock is replaced by a certain sequence of events)
more than asynchronous ones.

The self-timed FSM is shown in Fig. 3 and is defined as
follows:

1) The ST-FSM consists of an interconnected CL (as
defined in the companion paper [3]) and a MS (as
defined in Section II). A R

2) The ST-FSM has n three-valued inputs Ii,---, I, m
three-valued outputs 01, RN O,,,, k three-valued “next-
state” lines Yl, e ,?k and k three-valued “present-state”
lines g1, -, Jk.

3) Each input, output, and state line may assume any value
from the set {0,1,U}.

4) The sequential behavior of the ST-FSM and its environ-
ment is constrained by the following cycle of activities:
The E,’s are environment (domain) constraints; the
S;’s are network (functional) constraints. EQ is the
initialization of the ST-FSM; Each cycle starts with E'1
and terminates with S4.

EO All inputs and all outputs are set to
“undefined.” The “next-state” is set to
undefined, the “present-state” is defined and its
value equals the initial state.

E1. Some (but not all) inputs become defined.

S1. All outputs remain undefined, the “next-state”
remains undefined and the “present-state”
remains defined.

E2. All inputs become defined.

S2. All outputs and the “next-state” become
defined. Their value is determined by the CL
functions. The “present-state” becomes
undefined. The value of the
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Fig. 1. Self-timed master-slave register. When all the inputs Y become defined, the value is saved inside the register (w), and the outputs y become undefined;
when all the inputs become undefined, all the outputs become defined, assuming the stored value of the inputs.

“next-state” is saved in the register. An
acknowledgment signal is produced.

E3. Some (but not all) inputs become undefined.

S3. All outputs and the “next-state” remain defined.
The “present-state” remains undefined.

FE4. All inputs become undefined.

S4. All outputs and. the “next-state” become
undefined. The “present-state” becomes defined
and its value equals the stored value of the
“next-state.” An acknowledgment signal is
produced.

Similar to the MS register, the FSM also employs an acknowl-

edgment signal to notify the environment when the inputs
may be applied and when they may be removed, as discussed
below.

IV. IMPLEMENTATION AND THE
CORRECT BEHAVIOR OF THE ST-FSM

In order to implement a self-timed FSM, we connect a
self-timed double-rail combinational logic circuit (CL) with a
self-timed double-rail master—slave register (MS), as shown
in Fig. 3. We use the “W” line of the MS (Fig. 1) as
the acknowledgment signal, to provide handshaking with the
environment.

It can be formally proven that the FSM obeys the sequential
constraints formulated above, by reasoning techniques similar
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Fig. 2. A gate-level implementation of the C-element: (a) Without pre-
set/clear inputs, (b) With preset/clear inputs.
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Fig. 3. The self-timed FSM. The self-timed CL implements the Boolean
functions. The self-timed MS serves as the feedback register.

to those employed in [3]. In the following, we describe the
general outline of the proof. The proof relies on the correct
behavior of the underlying CL (as given in [3]) and MS (as
discussed in Section II). The proof consists of the following
two steps:

1) The FSM, as constructed, provides correct environments
to both the CL and the MS. That is, the E; environ-
ment constraints of [3] and Section II, respectively, are
complied with in the order specified thereof.

2) The FSM, as constructed, satisfies the S; constraints of
Section III.

In addition, attention is given to initialization.

The proof is best based on the following description of FSM
operation. Refer to Fig. 3 and to the sequential constraints
of Section IIl. Assume we observe the FSM when all inputs
to CL (I’s and y’s) are zero (undefined). Eventually, all CL
outputs (O’s and Y’s) will also become zero. Consequently,

the present state y will become defined, and “W” will become
1. This is a stable state of the FSM (E0), and it remains so
until the environment chooses to respond to W = 1 by applying
new inputs.

When all inputs I’s become defined, and since the y’s are
already defined, all the CL’s outputs (O’s and Y’s) become
defined. Consequently, MS stores the next state Y, zeroes the
present state y, and resets “W.” This is also a stable state of the
FSM, although it occurs in the middle of the “state transition.”
As long as the inputs remain defined, the FSM stays in this
state, with the outputs O’s defined and with the next state ¥
stored internally in the slave stage of the MS.

When the inputs are removed (by the environment), we
return to the state we started with above. Now let us proceed to
discuss the first step of the proof. To distinguish the different
constraints, we employ a notation such as E;(CL), which is
E; of the sequential constraints of CL, and similarly E;(MS)
and E;(FSM).

Theorem: If the sequential constraints of FSM are satisfied,
then the sequential constraints of CL [3] are satisfied.

Proof: Assume E1(CL) is granted. That is, the FSM’s
inputs I’s and present state y are undefined. According to the
description of operation of FSM above, S1(CL) must occur
before y can be defined, and before “W” turns 1 and allows the
inputs to become defined. Hence, E2(CL) follows S1(CL).
E3(CL) occurs as a consequence of S1(CL); all Y’s and O’s
undefined cause all y’s to become defined, and after “W” turns
1, the environment will turn all inputs defined. Now, the FSM’s
inputs I’s and present state y are defined, E3(CL). According
to the description of operation of FSM above, S3(CL) must
occur before y can be undefined, and before “W” turns 0
and allows removal of the inputs. Hence, E4(CL) follows
$3(CL). E1(CL) will occur as a consequence of S3(CL); all
Y’s and O’s defined will cause all y’s to become undefined,
and after “W” turns 0, the environment will turn all inputs
undefined, £1(CL). Q.E.D.

Theorem: If the sequential constraints of FSM are satisfied,
then the sequential constraints of MS (Section II) are satisfied.

Proof: Assume EO(MS) is granted. That is, all Y’s are
undefined and all y’s are defined. Hence, W = 1 and the FSM’s
environment may now turn the inputs I defined. When all
inputs I’s have become defined, (the y’s are already defined),
Y’s turn defined and E1(MS) holds. Eventually, E2(MS)
holds too. According to the description above, all y’s turn
undefined, thus removing some of the CL’s inputs. Also, “W”
turns 0, and signals the environment that it may remove the
inputs I’s. Only then are all the CL’s input removed, and
subsequently the Y’s become undefined, i.e., S2(MS) pre-
cedes E3(MS). EA(MS) (all Y’s defined) follows E3(MS).
Similarly, all 4’s must turn defined, thus providing some inputs
to the CL, and “W” turns 1, effecting subsequent definition of
the inputs I’s. Only then will the CL generate Y’s. Hence,
S4(MS) precedes E1(MS). Q.E.D.

As to the second part of the proof, we have shown by
describing the operation of the FSM that, given the constraints
on its environment E;(FSM), the S;(FSM) are satisfied. [

The discussion above assumes that the FSM has been
initialized properly. This is not a straightforward assumption,
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because if the FSM starts at some arbitrary state, there is no
guarantee that it will ever reach a legal state, according to the
cycle of activities described above. The most common solution
employs a “sufficiently long” reset signal at initialization. Note
that the memory elements in the FSM, i.e., those that need to
be initialized, are all C-elements. As described in Section II,
those elements may be constructed to include “preset” and
“clear” inputs. We apply the reset signal, at initialization
time, for some predetermined length of time, to the output C-
elements of the MS and to all the C-elements in the CL. The
reset signal is connected either to the clear or to the preset input
of each C-element, as the case may be. The length of the reset
signal is sufficiently long to cause all other C-elements, gates,
and signal wires to settle at the desired initial state. Only after
this step does the system start to behave as a self-timed system,
as formalized in this paper. Incidentally, the reset circuitry can
be simplified even further than proposed here.

Our design employs AND—OR “theoretical” gates. In practice
we can use NAND—NOR gates instead, without significantly
changing the circuits.

The FSM circuit produces an acknowledgment line (“W” in
Fig. 1). This line is handled by the environment, and is used as
a completion signal. We could employ an ack-in line, e.g., for
“train-like” structures, where the ack line is fed from each FSM
to the previous one. The ack-in line can simply be added as
shown in Fig. 1. Whether to use the ack-in line or not to use it
is very dependent on the implementation. The “train” structure
can be efficient in some implementation, e.g., pipeline, where
each subsystem waits for its successor to acknowledge receipt
of the data (or spacer) and then continue its computation.
Other implementations might prefer not to include the ack-
in line, and let the external environment deal with all the
acknowledgment lines in the system (e.g., collecting them in
one big CE).

A fully worked-out example of a self-timed FSM, based on
the traffic-light circuit of [9], can be found in [4].

V. DISCUSSION

The scope and definition of self-timed circuits have been
explained in the companion paper [3]. The limitations of ideal
delay-insensitivity due to forks and assumptions of stability
which are discussed in [3] apply to the design of self-timed
FSM’s as well.

Self-timed systems can be specified in a few different ways.
One example is based on input—output sequences, that is,
specification by means of “accepted language” [2], [10] or
regular expression recognizers [1]. Other specifications are
based on graph models such as the different types of Petri
nets. CSP has also been used to specify self-timed systems
[7], [8]. We use the state transition representation to specify
ST-FSM; this representation is the one most often employed
by engineers to design FSM’s.

Self-timed systems can be employed for implementing
control sections of systems where the control and the data
path sections are separated. We do not enforce this separation.
Indeed, our approach might lead toward dataflow-like designs.

Self-timed FSM’s can be designed in different flavors. Our
FSM resembles synchronous Moore and Mealy machines.
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Other proposals look more like fundamental mode [6] asyn-
chronous sequential machines [2], [10]. Our FSM requires all
inputs to be defined before a state transition can take place.
In addition, in between state transitions all inputs must be
removed (“spacer”). The FSM generates a completion signal
once the transition is over. Outputs can depend on the state
(Moore-type) or on the state and inputs (Mealy type), and
both types can be combined in the same FSM. The inputs
and outputs are ternary (0,1,U) and are implemented with
double-rail codes. The implementation is simple.

The FSM is designed to be formally provable. It is scalable,
in the sense that the design does not depend on contemporary
technological constraints, such as the size of an equipotential
region [12]. No internal delay elements are employed to guar-
antee correct operation, unlike [10]. All self-timed attributes
are guaranteed by means of scalable logic, rather than any
analog feature such as delay properties. As a result, the FSM
design is systematic and yields to formal analysis and proof
of correct behavior. However, the proof depends on certain
stability assumptions [3].

Our goal is proof of correctness, hence our design is modular
and hierarchical. For this purpose we trade off two other
goals, namely space and speed. Alternative designs exist,
that produce more efficient architectures, but either give up
modularity and ease of proof, or relax some of the restrictions
(e.g., make assumptions on relative delays).

Chu [2] develops a method for synthesizing delay-insensitive
control circuits; he synthesizes the circuit from formal graph-
theoretic specifications called Signal Transition Graphs. These
graphs form a subclass of Petri nets, and correspond only to
a subclass of FSM’s. His method requires the separation of
data path and control in the design, losing the nice similarity
between self-timed and data-flow designs. The approach as
presented does not include a complete algorithmic path from
specification to implementation, and hence cannot be fully
automated.

Molnar et al. [10] develop a synthesis method for delay-
insensitive circuits based on Petri net specifications. The
machine is characterized by input—output sequences and not
by a state-table. Their method requires the addition of delay
elements to produce the ready signal, and thus-it is not entirely
delay insensitive.

Martin [7], [8] compiles delay-insensitive circuits from
CSP-like specifications. With this method, the modules are
specified as sequential processes that can be refined into more
detailed descriptions. Finally he replaces these descriptions
with hardware templates that perform the actions required.

Anantharaman [1] proposes a method for synthesizing self-
timed recognizers. Thus, his approach is restricted to single-
input, single-output machines, specified by regular expres-
sions.

Extensive research on the synthesis of delay-insensitive
circuits is also reported in [11], [13], and [5].

VI. CONCLUSIONS

In this paper we describe the specification and implemen-
tation of a self-timed finite state machine. The specification
of our FSM is given by a state table, similar to that of




DAVID et al.: IMPLEMENTING SEQUENTIAL MACHINES AS SELF-TIMED CIRCUITS 17

synchronous machines. The circuit operates according to a
sequence of events that replaces the role of the central clock
in the synchronous FSM. The inputs and outputs of the
circuit are double-rail (or ternary) and the circuit produces a
completion signal. The correctness of the circuit can be proven
formally, and thus self-timed FSM’s can serve as “correct by
construction” building blocks for system synthesis.
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