
Design and Implementation of the Linpack Benchmark

for Single and Multi-Node Systems Based on Intel R© Xeon Phi
TM

Coprocessor

Alexander Heinecke∗, Karthikeyan Vaidyanathan†, Mikhail Smelyanskiy‡,

Alexander Kobotov§, Roman Dubtsov§, Greg Henry¶, Aniruddha G Shet ‖, George Chrysos‖, Pradeep Dubey‡

∗Department of Informatics, Technische Universität München, Munich, Germany
†Parallel Computing Lab, Intel Corporation, Bangalore, India
‡Parallel Computing Lab, Intel Corporation, Santa Clara, USA

§Software and Service Group, Intel Corporation, Novosibirsk, Russia
¶Software and Service Group, Intel Corporation, Hillsboro, USA

‖Intel Architecture Group, Intel Corporation, Hillsboro, USA

Abstract—Dense linear algebra has been traditionally used to
evaluate the performance and efficiency of new architectures.
This trend has continued for the past half decade with the
advent of multi-core processors and hardware accelerators.
In this paper we describe how several flavors of the Linpack

benchmark are accelerated on Intel’s recently released Intel R©

Xeon Phi
TM 1 co-processor (code-named Knights Corner) in

both native and hybrid configurations. Our native DGEMM
implementation takes full advantage of Knights Corner’s
salient architectural features and successfully utilizes close
to 90% of its peak compute capability. Our native Linpack
implementation running entirely on Knights Corner employs
novel dynamic scheduling and achieves close to 80% efficiency
— the highest published co-processor efficiency. Similarly to
native, our single-node hybrid implementation of Linpack
also achieves nearly 80% efficiency. Using dynamic scheduling
and an enhanced look-ahead scheme, this implementation
scales well to a 100-node cluster, on which it achieves over
76% efficiency while delivering the total performance of 107
TFLOPS.

Keywords-HPL; SIMD; TLP; LU factorization; panel factor-
ization; hybrid parallelization; Xeon Phi

I. INTRODUCTION

A. Introduction

The current fastest computer in the TOP500 is the Titan

system which delivered 17.59 PFLOPS on the Linpack

benchmark in November 2012 [19]. The HPC community

expects to deploy the first 100 PFLOPS machine by 2014,

paving the way for the first ExaFLOP system at the end

of the decade [13]. To fuel such growth in computational

power, the current trend is to couple commodity processors

with various types of computational accelerators, which

offers dramatic increases in both compute density and energy

efficiency.

In this paper, we describe the implementations and tuning

of several flavors of the Linpack benchmark for Intel’s

1Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in
the U.S. and/or other countries.

recently announced Intel R© Xeon Phi
TM

coprocessor “Knights

Corner”. Achieving high Linpack performance on modern

hybrid many-core system requires careful tuning of BLAS

sub-routines, hiding communication latency and balancing

the load across devices of variable processing capabilities.

To this end, this paper makes the following contributions:

• We propose a Knights Corner-friendly matrix format

which enables our DGEMM kernel to achieve 89.4%
efficiency, which corresponds to 944 GFLOPS of per-

formance.

• We extend the dynamic scheduling technique proposed

in Buttari et al. [4] to scale to the large number

of cores on Knights Corner. Using this extension as

well as highly optimized panel factorization, our native

Linpack implementation achieves 78.8% efficiency –

the highest published coprocessor efficiency running

Linpack directly on the card.

• We enhance advanced offload DGEMM as well as

the advanced look-ahead scheme proposed by Bach

et al. [3] to improve performance and efficiency of

our hybrid Linpack implementation. With the help of

this scheme, our hybrid implementation running on

both Intel R© Xeon R© Processor E5-2670 (formerly code-

named Sandy Bridge) and Knights Corner achieves

79.8% efficiency on a single node, and scales up to 107

TFLOPS on a 100-node cluster, which corresponds to

76.1% efficiency.

The rest of the paper is organized as follows. Section II

introduces the hardware architectures used in this study:

the Intel R© Xeon R© Processor E5-2670 and the Intel R© Xeon

Phi
TM

coprocessor. Section III describes our optimized im-

plementation, results and analysis of DGEMM. In Sec-

tion IV, we present implementation details and performance

of the native Linpack, which runs entirely on Knights

Corner. We describe our hybrid Linpack implementation

and its performance in Section V. Our methods and results

2013 IEEE 27th International Symposium on Parallel & Distributed Processing

1530-2075/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPS.2013.113

126

Intel R© Xeon R© E5-2670 Intel R© Xeon Phi
TM

co-processor

Sockets × Cores × SMT 2 × 8 × 2 1 × 61 × 4
Clock (GHz) 2.6 1.1

Single Precision GFLOPS 666 2148
Double Precision GFLOPS 333 1074
L1 / L2 / L3 Cache (KB) 32 / 256 / 20,480 32 / 512 / -

DRAM 128 GB 8 GB GDDR
STREAM Bandwidth [14] 76 GB/s 150 GB/s

PCIe Bandwidth 6 GB/s
Compiler Version Intel R© v13.0.1.117
MPI Version Intel R© v4.1.0.027

Table I
SYSTEM CONFIGURATIONS OF SANDY BRIDGE EP AND KNIGHTS

CORNER. NOTE L1 AND L2 CACHE SIZES ARE LISTED PER CORE.

are compared with previous work in Section VI, and we

conclude in Section VII.

II. HARDWARE PLATFORMS

Our experimental test-bed consists of a dual-socket Intel R©

Xeon R© E5-2670 and Intel R© Xeon Phi
TM

coprocessor de-

scribed next.

A. Hardware Platforms

Intel R© Xeon R© E5-2670 “Sandy Bridge EP”: This is an

x86-based multi-core server architecture featuring a super-

scalar, out-of-order micro-architecture supporting 2-way hy-

per threading. In addition to scalar units, it has a 256 bit-

wide SIMD unit that executes the AVX instruction set.

Separate multiply and add ports allow for the execution of

one multiply and one addition instruction (each 4-wide in

double-precision, or 8-wide in single-precision) in a single

cycle.

Intel R© Xeon Phi
TM

coprocessor “Knights Corner”: This

architecture features many in-order cores 2 on a single die;

each core has 4-way hyper-threading support to help hide

memory and multi-cycle instruction latency. To maximize

area and power efficiency, these cores are less aggressive,

i.e., they have lower single-threaded instruction throughput

than Sandy Bridge EP cores and run at a lower frequency.

However, each core has 32 vector registers, 512 bits wide,

and its vector unit executes 8-wide double-precision SIMD

instructions in a single clock. Each core further has two

levels of cache: a single-cycle access 32 KB first level

data cache (L1) and a larger 512 KB second level cache

(L2), which is globally coherent via directory-based MESI

coherence protocol.

Knights Corner is physically mounted on a PCIe slot and

has dedicated GDDR memory. Communication between the

host CPU and Knights Corner is therefore done explicitly

2Last core is always reserved by the operating system and is typically
not used for computation. To understand inherent hardware efficiency, in
the case of native DGEMM and native HPL (Section III-A and IV,
respectively), we report efficiency with respect to peak performance of all
but the last core. For offload DGEMM and hybrid HPL (Section V), we
report efficiency with respect to all available cores

through message passing. However, unlike many other co-

processors, it runs a complete Linux-based operating system,

with full paging and virtual memory support, and features

a shared memory model across all threads and hardware

cache coherence. Thus, in addition to common programming

models for co-processors, such as OpenCL, Knights Corner

supports more traditional multiprocessor programming mod-

els such as pthreads and OpenMP. Additional details can be

found in Table I.

Knights Corner has a rich ISA that supports many flavors

of scalar and vector operations, including fused multiply-

add. Most vector operations can take one of their operands

from memory; this reduces instruction footprint. In addition,

Knights Corner has a dual-issue pipeline which allows

prefetches and scalar instructions to co-issue with vector

operations in the same cycle. Such a feature removes these

instructions from the critical path, especially in loops with

limited unrolling, and is particularly useful in DGEMM

operation.

Examples of several flavors of Knights Corner instructions

used in our DGEMM implementation (see Section III)

are demonstrated in Figure 1a and Figure 1b. Figure 1a

shows fused vector multiply-add operations with the sec-

ond operand broadcast from memory. There are two types

of broadcasts; the 1to8 broadcast takes a single double-

precision element and replicates it eight times, while the 4to8

broadcast, shown in the Figure 1a, replicates four double-

precision elements twice. In addition, a register operand can

be swizzled in-flight. SWIZZLEi replicates the ith element

of the 4-element lane four times in each lane. Figure 1b

shows example of SWIZZLE2.

The L1 cache has two ports: one for read and the other

for write. As a result, a vector instruction with one memory

operand and a vector store can be co-issued in the same

cycle. Knights Corner provides prefetches for both levels

caches: L1 and L2. The high-level behavior of L1 prefetch

issued for the line located in L2 cache but missing in L1 is

shown in Figure 1c. As a cache line arrives from L2 cache,

a victim cache line has to be evicted from L1 cache and a

new line will be filled in. This operation requires both L1

ports. If in a given cycle, one of the ports is busy, which can

happen, for example, when another instruction (e.g., vector

multiply-add with a memory operand) is accessing L1, the

fill cannot happen and is deferred until the next cycle. The

cache port availability is checked every cycle. If the port

becomes available, prefetch operation completes. If the port

is not available after a certain number of threshold cycles,

the core pipeline is stalled for a few cycles to let the prefetch

operation complete.

III. NATIVE DGEMM

A. Implementation

In this section, we describe our design and implementation

of the double-precision general matrix-matrix multiplication

127

����� ��� ��� ���	
��

�� � ��� ��� ���	

�� �� �� ��

��	
 ��	�����

����� �� �� �� ��

����� �� �� �� ��
(a) 4to8 memory broadcast from @A into
vector register v0.

��� �����	
 �� �
��� 	��

����� ��� ��� ��	

������

	��
� �� �� �� ��

	��
� �� �� �� ��

��������

	��
� �� �� �� ��

	��
� �� �� �� ��
(b) Swizzling a second element of each 4-
element lane within v2.

�����
���	

� ��		���
�����	�	�

� �����
��������	

�	�

���	�����
	��		�	�

��

��

�	�

(c) L1 prefetch high level behavior.

Figure 1. Introduction to operations supported by Knights Corner.

�

��

��

��

�

�

�

��

��

��

��

��

��

�� �� ��

�

(a) Shared memory parallelization using four
hardware threads per core.

��� ��� �� � ��
�	�
� ���� �������� ���������� ����������
��
�� ��� ���� ��������������
�
��
�� ��� ���� �������������� ���������� ����������
��
�� ��� ���� �������������� ���������� ����������
��
�� �	� ���� ����� �������� ���������� ��������!��
��
�� �
� ���� �����!�������� ���������� �������"���
�
��
�� ���� ���� # ���������

������

(b) Basic Kernel 1: multiplies column of a by
row of b.

��� ��� �� � ��
������	�
��� ���� ��	�
	�
�
�������� ��	�
	�
� ���������� ��	���
	�
�
����� ��� ��� ��	�
	�
������� ���������� ��	���
	�
�
����� ��� ���� � !""#$�%���&� ���������� ��	���
	�
�
����� �	� ��� ��	�
	'
������� ���������� ��	���
	�(
�
����� �
� ��� ��	�
	(
������� ���������� ��	���
)�
�
����� ��� ���� � !""#$�%���& �
����� ��� ���� � !""#$)%���&�
����� ��� ���� � !""#$%���&�
*
����� ���� ���� ��	�
)+
�

������

(c) Basic Kernel 2: relieves L1 pressure at the
expense of broadcast.

Figure 2. Basic DGEMM kernel on Knights Corner.

(DGEMM) kernel, C = αAB + βC, where A, B, and C
are M × K, K × N , and M × N matrices, respectively,

while α and β are scalars. DGEMM is part of the “Basic

Linear Algebra System” (BLAS), which is a common inter-

face for matrix/vector operations [1]. Our DGEMM kernel

assumes that all three matrices are in row-major format 3.

Our implementation breaks this general DGEMM kernel

into a sequence of outer products (aka rank-k updates):

C = α
∑K/k

i=0
AiBi + βC. Here Ai is M × k column block

sub-matrix of A, while Bi is k × N row block sub-matrix

of B. In the rest, we describe our optimized implementation

of this outer product. While our focus is on DGEMM, we

apply the same optimizations to SGEMM as well.

1) Cache Blocking: Most optimized DGEMM implemen-

tations block the matrices to fit into one or more levels of

caches on a given architecture. The objective is to reduce the

bandwidth requirements to be under the limit the architecture

can deliver. Our implementation blocks matrices in each

core’s private 512 KB L2 cache, as described next.

We conservatively require all three matrix blocks, Ab, Bb,

and Cb of dimensions, m×k, k×n and m×n, respectively,
to fit into L2 cache. which results in the following inequality:

3Column-major (CM) DGEMM is easily derived from row-major (RM)
DGEMM by transposing both sides of the equality C(CM) = A(CM) ·
B(CM), to get C(RM) = B(RM) · A(RM)

8 bytes · (m · n + m · k + k · n) < 512KB. Note that better
approximations exist [21], but the one above is sufficient

for our purposes. To compute m × n block Cb each cores

requires a minimum of m·n·k/(8 vmadds/cycle) cycles, and
fetches 8 bytes·(2·m·n+m·k+k·n) bytes of data from main

memory to bring in all three blocks into L2 cache. The factor

2 in front of m·n is due to the fact that m×n output Cb block
is both read and written. The required memory bandwidth

is the ratio between the memory traffic and compute time

and is equal to 64 · (2/k + 1/n + 1/m) bytes/cycles per

core. This bound is conservative, as it accounts for no cache

sharing among cores. If this sharing is taken into account,

further bandwidth reductions are possible. Similar to Goto

et al. [10], we choose m and k such that m × k block Ab

occupies the largest fraction of L2 cache, while leaving some

room for Bb and Cb blocks. In practice, there are additional

considerations that factor into choosing a value of k, as
shown later. For large values of N , the overhead of bringing

Ab into L2 cache is amortized. As a result, required memory
bandwidth does not depend on n and can be approximated

as 64 · (2/k + 1/m) bytes/cycles per core. For example,

choosing m=120, n=32 and k=240, results in 1.1 bytes/cycle
of bandwidth per core, or 74 GB/s on our system with 60

cores at 1.1GHz. This is well within the limits of Knights

Corner’s achievable STREAM bandwidth of 150 GB/s (see

128

Table I).

2) Basic Matrix-Matrix Multiply Kernels: To get the

highest efficiency, our basic matrix-matrix multiply kernel

is hand-coded in assembly language. Figure 2a shows the

matrix decomposition used by the kernel. Specifically, each

of four hardware threads on a given core multiplies 31 × k
matrix a by k × 8 matrix b and stores the result into m× 8
matrix c. Note that a, stored in column-major format, and

b, stored in row major formats, are the packed tiles of the

original matrices. Packing is described in Section III-A3. a
is shared between four threads, while each thread accesses

its own b and c. Sharing a between four threads provides

reuse in L1 cache, since a line of a accessed by one of

the threads is likely to remain in L1 for the other three

threads, as long as all threads are synchronized. To ensure

this, we enforce frequent fast inter-thread synchronization,

which keeps all four hardware threads coherent. Figure 2b

shows the main loop of the basic kernel (Basic Kernel

1), which iterates k times. Each iteration multiplies a 31-

element column of a, by an 8-element column of b and

stores the result into 31 intermediate registers v0 − v30.
Specifically, we first load a row of b into a temporary

register v31, followed by 31 vector multiply-adds of v31
with corresponding element of a, which is 1to8 broadcast

from memory. When the loop completes, we update 31 rows

of the original matrix C (not shown) with the values stored

in the registers v0− v30. Recall that Knights Corner has 32
vector registers (see Section II). Blocking 31 rows of c rows
in all but one registers, amortizes overhead of loading a row

of b. As the result, this kernel has the theoretical efficiency
of 96.9%(= 31/32), because there are 32 vector instructions
in the loop iteration, out which 31 are vector multiply-adds.

A small overhead comes from updating C with the values

in v0 − v30. This overhead gets amortized and decreases

linearly with k. For example, for k = 240 it is less than

0.5%.

Figure 2b also shows the L1 prefetches required to hide

L1 cache miss latency. We also insert L2 prefetches, not

shown, to bring the data into the core’s local L2. Since local

L2 cache hit latency is under 25 cycles, we prefetch for

the next iteration of the loop, i + 1. In our case, since k
is large (to both reduce memory bandwidth and to reduce

overhead of updating C, as described earlier), neither a nor

b fits into L1 and thus are streamed from L2. Note that each

thread accesses five cache lines per loop iteration: one line

to access 8-element row of b and four lines to access 31-

element column of a. Since a is shared among four threads,

the four lines are only brought in only once from L2 into L1

by one of the threads. Therefore, on average, each iteration

of the kernel requires two cache lines to be brought from

L2 into L1. Since each vector operation in the inner loop of

Figure 2b accesses memory every cycle, two L1 prefetches

issued for these two lines will cause L1 port conflict and

result in core stalls, as described in Section II. As few as

�

��

��

(a) packing Ai into 30 × k tiles:
each tile is in column-major format.

�

�

�

�

(b) packing Bi into k×8 tiles: each
tile is in row-major format.

Figure 3. Packing Ai and Bi matrices into tiles.

two stall cycles in the tight inner-loop will reduce overall

efficiency down to 91% = (31/(32 + 2 cycles).

To address this challenge, we propose an enhanced Basic

Kernel 2, shown in Figure 2c. Namely, we add broadcast in-

struction, which load-broadcasts first four elements of a into

v30 (see Figure 1a). Furthermore, instead of broadcasting

elements 0, 1, 2 and 3 of column of a from memory, as was

done in Basic Kernel 1, these elements are swizzled out of

the vector register v30, as shown by four highlighted vmadd
instructions. As these instructions do not access memory,

this creates four “holes” for every thread in the pipeline,

during which L1 ports can be exclusively accessed by L1

prefetch. Given that each thread only brings on an average

two cache lines from L1, as explained earlier, four ”holes”

are sufficient to significantly reduce core stalls due to port

conflicts. With this approach, the peak theoretical efficiency

of Basic Kernel 2 is 93.7%(= 30/32), because there are

32 vector instructions in the loop, out which 30 are vector

multiply-adds, compared to 31 vector multiply-adds in Basic

Kernel 1. While the broadcast instruction, which uses one

extra register (v30), reduces the number of vector multiply-
adds in the inner loop, it also enables conflict-free access to

L1 and as a result improves overall efficiency.

3) Packing into Knights Corner-friendly Data Layout:

Multiplying matrices stored in row or column-major format

may result in performance degradation, due to TLB pressure

and cache associativity conflicts, especially when these

matrices have large leading dimensions [10]. As a result,

most DGEMM implementations pack matrices into a special

tiled format, best suited for a given architecture [12]. Small

leading dimensions of the tiles mitigates the above problems.

If well optimized, packing has small overhead because its

quadratic complexity (w.r.t. matrix dimension) is amortized

by the computation that has cubic complexity. Thus prior

to performing an outer product, we pack both Ai and Bi

matrices into a novel Knights Corner-friendly format, using

a temporary storage. Specifically, as shown in Figure 3a, Ai

is packed into block row-major format that consists of 30×k
tiles; each tile is stored in column-major. The latter allows

contiguous access to each column of a in the basic kernel

as discussed earlier, and simplifies address calculation for

129

prefetching, as discussed in Section III-A2(a) and (b). Matrix

Bi is also packed into block row-major format that consists

of 8×k tiles, where each tile is stored row-major, as shown

in Figure 3b. Our packing routines are highly optimized and

achieve bandwidth-bound performance for medium to large

size matrices.

4) Other Optimizations: Other optimizations, such as

tuning of L2 prefetch distance, fast inter-thread synchroniza-

tion and parallelization are similar to how they are done by

Deischer et al [5].

Finally, while our design and implementation of DGEMM

kernel is based on [10], there are number of differ-

ences. First, we transpose packed tiles of Ai to spread

out prefetches more uniformly. Second, we choose tile

dimensions based on Knights Corner’s specific architectural

and micro-architectural considerations, such as register file

size, cache sizes and bandwidth between different levels of

memory hierarchy.

B. Performance Results

k 120 180 240 300 340 400

SGEMM
Efficiency 88.3 89.3 90.1 90.4 90.6 90.8
Performance 1866 1886 1902 1910 1914 1917

DGEMM
Efficiency 86.7 88.6 89.1 89.4 89.3 88.9
Performance 915 935 941 944 943 943

Table II
SGEMM AND DGEMM PERFORMANCE AND EFFICIENCY AS FUNCTION

OF k FOR N = M = 28, 000.

Table II shows performance and efficiency for both

DGEMM and SGEMM, as we vary k from 120 to 400,

while M and N remain fixed at 28, 000. We see that the

efficiency improves as k increases for both kernels. This is

due to the fact that the basic kernel overhead of updating c
decreases as k increases. However, as k becomes larger the

improvements diminish. There is even a slight degradation in

performance in case of DGEMM for k = 340 and k = 400.
This is due the fact that as k increases, L2 block sizes

also increase and eventually falls out of L2 cache. Overall,

in case of SGEMM the best efficiency of 90.8% (1,917

TFLOPS) is achieved for k = 400, while in the case of

DGEMM the best efficiency of 89.4% (944 GFLOPS) is

achieved for k = 300. We see that DGEMM is 4% below

its projected efficiency of 93.7%. The 4% loss is due to the

three overheads unaccounted by the performance projection:

(i) updating c tile, (ii) packing matrix into the tiles (see

Figure 4), and (iii) scalar instructions overhead required to

drive DGEMM parallel distribution of work.

Figure 4 shows DGEMM performance comparison on

Sandy Bridge EP using Intel MKL 11.0 BLAS [2] and

Knights Corner using our implementation for a range of

matrix sizes. As bottom curve shows, Sandy Bridge EP

���

���

���

���

���

���

���

���

���

���

���

	��

	��

��

��

����

�� �� �� �� �� �� �� 	�
� ��� ��� ��� ��� ��� ��� ��� ��� ��� �	�

�
��

��

�

������� ������ ����� �!"# ��� ��$�% &' � (�) * (+" �,�(+"

��!!"+ -+�)�.! /"+�"# �� ��* 0& (�) � �� ��*�1+�"�)#2 1�+3(!4 ' �5���

��!!"+ -+�)�.! ������� ��*' �5���

�$��6

	
$�6

	
$	61�+3(!���
�7"+8"()

Figure 4. Native DGEMM performance comparison on Sandy Bridge EP
and Knights Corner for different problem sizes.

achieves up to 90% efficiency. For Knights Corner we show

several results. The middle curve shows performance of

the outer product kernel for k=300 using Knights Corner-

friendly format – no overhead of packing is included. This is

the key kernel in our hybrid Linpack implementation, which

performs data packing on CPU, as discussed in Section V.

As shown in Table II, k=300 results in the best DGEMM

efficiency. We see that kernel performance is high even for

sizes as small as 5K for which it reaches 88% efficiency.

The top curve shows performance of the DGEMM which

executes the same outer-product, but includes overhead of

packing the input matrices into our Knights Corner-friendly

format. We see that this overhead decreases from 15% for

1K matrices down to less than 0.4% for matrices larger than

17K The packing overhead is under 2% starting from 5K

matrices.s Note also that the performance of square matrices

(not shown) is similar to outer-product DGEMM. This is

expected – as described in the beginning of this section,

square DGEMM is composed of the sequence of outer-

products.

IV. NATIVE LINPACK

In this section, we describe design and implementation

of native Linpack, which runs entirely on Knights Corner.

Native Linpack spends majority of its execution time in LU

factorization.

The LU factorization algorithm decomposes a matrix A
into a product of a lower-triangular matrix L and a unit

upper triangular matrix U . The blocked LU formulation is

shown schematically in Figure 5a. In this algorithm, the

lower triangular part of the input matrix is overwritten with

L and the upper triangular part with U . The algorithm

proceeds from left to right in block steps (aka stages) until

the entire matrix is factorized. At each stage i, a portion of

column panel of L, [DLi], is first factored, a block of matrix
rows are swapped based on the pivot vector, produced by

130

�������� 	
���� �
��
��
��
��

	

��
�
��

� ��

� �
��

��
��

�	

�

��

�� ��� �����

(a) Structure of LU factorization.

����� �

����� �

����� 	

��
��
��

��
��
��

��
��
�	

��
��
�

��
��
��

��
��
��

	
����������� �
 ����� �
�������� �
 ����� ��
�����

����������� �
 ��� ����

�����
� �

(b) Directed acyclic graph (DAG) of dependencies
within LU factorization.

���� ���
����� �������	
��������� �� 	
�
����
������
� ������
��� � ������
��
����
���

��� ������
�
�
�� ��� �
����� ����������������� ����	�����
����� ���	
��

���
�
���������������������	�����

����������� �
���

(c) Dynamic load balancing within LU factorization.

Figure 5. Knights Corner native LU Factorization in ith stage.

panel factorization, and a portion of row panel of U , Ui is

updated using a forward solver. The trailing sub-matrix Ai is

then updated with the matrix-matrix product of Li and Ui.

Panel factorization and trailing matrix update are the two

most critical LU kernels. When the current stage completes,

next stage performs the same sequence of operations on

updated sub-matrix Ai. After the last stage, original matrix

is factorized, and the solution of Ax = b is obtained by

forward and back substitutions using L and U factors. A

more detailed treatment of the algorithmic issues can be

found in Golub and Van Loan [9].

Our implementation is based on dynamic scheduling

scheme of a Data Acyclic Graph (DAG), originally proposed

by Buttari et al [4] for a multi-core architecture with a

small number of cores. We extend this idea to scale on an

architecture with large number of cores, such as Knights

Corner.

A. Implementation

Figure 5b demonstrates DAG-based approach for a matrix

divided into six panels. Each node represents computational

task which involves a panels. There are two categories

of tasks: panel factorization Task1 and a composite task

Task2, which is comprised of pivoting, forward solve and

trailing update. The edges enforce dependencies between

these tasks. For example, tasks within the j-th row cannot be

performed until the respective factorization of the j-th panel
is completed. However all Task2 tasks within a row can be

executed in parallel. Finally, the rows of the DAG represent

stages of computation, as described in the beginning of this

section.

To reduce storage requirements of the required DAG, we

represent it as one dimensional array of the length equal

to the number of panels. Each element of the array stores

the current stage of the panel, among other information. As

a task completes, its stage is incremented. Threads access

and update the DAG array dynamically in order to keep

track of the stage of the computation, exploit available

parallelism and satisfy the dependencies. The parallel code

is shown in Figure 5c. Task distribution is encapsulated in

the DAG object. To obtain a new task, each thread calls

DAG.AvailableTask() atomically. This function searches the

DAG for a new task from the current stage, and only

proceeds to the next stage when all current stage tasks are

finished or in progress by other threads. The only exception

is panel factorization (Task1) from the next stage: this task

is immediately performed when the corresponding panel is

updated in the current stage by Task2. To see if this de-

pendency is satisfied, DAG.AvailableTask() checks the stage

number of the corresponding panel. This operation is known

as look-ahead [17], which effectively allows tasks from the

previous stage to be overlapped with panel factorization from

the next stage. Likewise, Task2 from stage i can only start

when the corresponding panel factorization in the same stage

is completed: its stage number is greater or equal to i. When

task completes, a commit function increments its stage. This

increment does not require critical section, because it is

always performed by the same thread which completed the

task.

In addition to compact storage representation of the DAG,

this dynamic scheduling of LU factorization tasks has sev-

eral advantages: (i) it avoids global barrier synchronization

between consecutive stages, (ii) it improves resource utiliza-

tion: threads that finish one task can immediately switch to

other available tasks.

In its original implementation, threads (from one or more

cores) are partitioned into groups, such that each group

works on the same task. The assignment is fixed. This

scheme has two disadvantages. The first disadvantage is

potential contention over the critical section; while the over-

head of such contention may be acceptable for small number

of cores, it limits scalability on many-core architectures,

such as Knights Corner. To address this problem, only a

single “master” thread within a group accesses the critical

section to obtain a new task, while the remaining threads

131

�

���

���

���

���

���

���

	��

��

���

�����

� � � 	 � �� �� �� �	 �� �� �� �� �
 ��

��
��
��

������ ���� ���

 �� !��" �����# �$$�%&"'�($� �) �� !��" *+��,�# �#"'(-.��/ $� �)
����0' *�1�� $� �) ��� ���2�#� $� ��3%1� -4��/ �� ����

���5

	
�
5

��
5

Figure 6. Native Linpack performance comparison on Sandy Bridge EP
and Knights Corner for different problem sizes.

wait on the local group barrier for the “master” thread to

return with a new task, at which point the entire group starts

computing the task. Allowing only the “master” threads to

access the critical section, significantly reduces contention.

The second disadvantage is that using static thread par-

titioning for all stages creates load imbalance and exposes

panel factorization overhead. For example, while using four

threads in a group may be sufficient to hide panel fac-

torization during early stages dominated by large trailing

matrix updates, later stages which work on smaller matrices

require more threads to hide the panel. To address this load

imbalance, we extend the original approach by breaking LU

factorization into super-stages. Each super-stage consists of

some number of stages. Within each super-stage, the thread

grouping is fixed, so that each group has enough threads

to hide panel factorization overhead in each stage within

the super-stage. After a super-stage is complete, and before

factorizing a smaller matrix, we perform a global barrier

synchronization, followed by thread re-grouping, which in-

creases the number of threads assigned to a panel to speed

up panel factorization. While this approach requires global

barrier synchronization, the barrier is executed infrequently,

at the end of the super-stage. This amortizes its overhead.

B. Performance Results

Figure 6 shows a comparison of Linpack performance

between Sandy Bridge EP using Intel MKL 11.0 SMP

Linpack [2] and Knights Corner using the above imple-

mentation, as we vary problem size from 1K to 30K,

which is the largest problem that fits into 8 GB memory

on Knights Corner. We see that for this problem, Sandy

Bridge EP achieves 277 GFLOPS which corresponds to

83% efficiency. This is within 7% from its native DGEMM

performance (Figure 4). For Knights Corner we show two

curves: one with static look-ahead scheme and the other with

(a) static look-ahead

(b) dynamic scheduling

Figure 7. Gantt chart of LU execution profile for 5K problem. Light
blue: DLASWP, orange: DTRSM, violet: DGETRF, green: DGEMM, white:
barrier, black lines separate thread groups.

dynamic scheduling. The static look-ahead implementation

uses global barrier synchronization between stages [5]: at

each stage it assigns the minimum required number of

threads to each panel factorization to achieve the best load-

balance with trailing update. We see that up to 8K, dynamic

scheduling outperforms static look-ahead scheme. This is

expected. As Figure 7a shows, for smaller problem sizes

significant amount of time is spent in panel factorization and

global barrier synchronization. As Figure 7b shows, dynamic

scheduling significantly reduces the time spent in both of

these regions and as the result performs better overall. How-

ever, as the problem size increases, the fraction of time spent

in panel factorization and global barrier synchronization

becomes smaller and the performance of the static look-

ahead scheme approaches that of the dynamic scheduling

scheme. For the 30K problem, both schemes achieve 832

GFLOPS, which corresponds to ≈79% efficiency. This is

within 12% of the native DGEMM efficiency, shown by the

upper curve and within 5% from Sandy Bridge EP efficiency

as shown by the lower curve.

V. HYBRID LINPACK

While our native Linpack implementation on Knights

Corner achieves nearly 79% efficiency, this implementation

limits the problem size to the 8 GB of memory available

on Knights Corner. In this section, we describe our hybrid

Linpack implementation, which runs on one or more hybrid

nodes, where each node consists of a Sandy Bridge EP host

and one or two Knights Corner co-processors. In contrast

to native, our hybrid implementation takes full advantage of

the large memory capacity, available on the host.

A. Implementation

Our implementation of Linpack for this hybrid system

is based on the standard open-source implementation, High

Performance Linpack (HPL) [15], originally designed for

homogeneous clusters. Similar to Bach et al. [3], our imple-

mentation uses Knights Corner only to accelerate DGEMM,

and uses Sandy Bridge EP to run remaining HPL tasks.

The key challenge in such a hybrid implementation, is

to utilize Knights Corner as highly as possible. As Table I

shows, two Knights Corner cards can deliver more roughly

132

��
��

��
��

	

��

����� �
�����	

�
�

�
��

��
	

��
��

��
��

��

��
��

�	
��

�
��

�
��

��
�

��
�

��
��

�
 �

!�
"#

$�
��

%

��� ����� 	
� ���

(a) No lookahead: no overlap between
DGEMM on Knights Corner and the rest of
the kernels on Sandy Bridge EP.

��
��
��
��
	

��

����� �
�����	

�
�

�
��
��
	

��
��

��
��
��

��
��
�	
��

�
��
�

��
��

�
�

�
!
��

�"
#

��
�
��

��
�

�

�
!
��

$"
�

��
�

��
��

�
�

�
!
��

�"
#

%&
'(
���

)�

�
�

(�
��
��
��

*�
�

+

�
,�
	�
��
��
�-

��� ����� 	
� ���

(b) Basic lookahead: DGEMM on Knights Cor-
ner is overlapped with panel factorization on
Sandy Bridge EP.

��
��

��
��
	

��

����� �
�����	�
�

��
��

�
��

��
��

�
��
���

��
�
!	
��

�
��

�
�"

#�
�

�

�$
%
��

��
&

��
�
�"

#�
�

�

�$
%
��

��
�

��
�

�"
#�

�
�

�$
%
��

��
&

�'
()

���
��

�

�
)�

��
��

��
*�
�

+

�
,�
	�
��
��
 �

�
�

��
��

�
��

��
��

�
�-
�&

�

�
�

��
��

�
��

��
��

�
���
-�

��� ����� 	
� ���

(c) Pipelined lookahead: overlaps DGEMM on
Knights Corner and the rest of the kernels on Sandy
Bridge EP.

Figure 8. Three implementations of hybrid HPL. DGEMM is offloaded to Knights Corner and performs panel factorization, swapping, DTRSM and U
broadcast on Sandy Bridge EP.

six times flops compared to Sandy Bridge EP. Therefore,

when Knights Corner is idle, the system performs six times

less work, compared to when Sandy Bridge EP is idle for

same amount of time. Hence, a simple HPL extension in

which Sandy Bridge EP simply offloads a larger portion

of DGEMM to Knights Corner, while performing the panel

factorization, swapping, DTRSM and U broadcast, will

significantly expose Knights Corner idle time. This naive,

no look-ahead, scheme is illustrated in Figure 8a.

A more advanced optimization extends a simple look-

ahead scheme to the hybrid implementation. In our new

scheme, the panel factorization from the next stage is done

on Sandy Bridge EP and is overlapped with the current stage

trailing update performed on Knights Corner. Specifically, as

soon as DTRSM completes, Knights Corner starts executing

offload DGEMM (see Section V-B) while Sandy Bridge EP

updates (frees-up) the left-most panel and then proceeds to

panel factorization. As soon as Sandy Bridge EP finishes

the panel factorization, it immediately starts working on the

rest of the trailing update together with Knights Corner. To

improve load balance, this scheme is implemented using

dynamic work-stealing (see Section V-B for further details).

Overlapping panel factorization and trailing update in this

fashion, reduces idle time on Knights Corner. This scheme,

which we call basic look-ahead, is shown in Figure 8b.

While overlapping panel in Sandy Bridge EP with

DGEMM on Knights Corner reduces a portion of the

Knights Corner’s idle time, the coprocessor still remains

idle during three steps: U broadcast, row swapping and

DTRSM used to update the U panel. Swapping, constrained

by both DRAM and interconnect bandwidth, exposes a larger

fraction of Knights Corner’s idle time compared to DTRSM,

which is compute-bound. To address this challenge, we

pipeline these three steps, as shown in Figure 8c. This

scheme, which we call pipelined look-ahead, applies each

of three steps to a subset of columns at a time, instead

of all the columns. As soon as Sandy Bridge EP finishes

the first subset of columns, Knights Corner immediately

starts the trailing matrix update, which overlaps with the

next set of columns on Sandy Bridge EP. By pipelining

these three steps, pipelined look-ahead hides their overhead,

further reducing Knights Corner’s idle time, compared to the

basic look-ahead scheme.

To illustrate the effect of pipelining, Figure 9 shows HPL

execution time profile for N = 84K with and without

pipelining for a 2 × 2 multi-node run. Execution time is

broken into four regions. The bottom (green) region shows

time during which Knights Corner executes DGEMM. The

other three regions show exposed time during which Sandy

Bridge EP executes the remaining kernels, while Knights

Corner remains idle. We see that without pipelining (Fig-

ure 9a) Knights Corner is idle at least 13% of the time during

which U broadcast, swapping and DTRSM are exposed.

With pipelining (Figure 9b), Knights Corner idle time is

reduced to less than 2.5%. However for the later stages, as

the matrix becomes smaller, panel factorization gets exposed

more than in the case without pipelining. This due to the fact

that pipelined look-ahead breaks U broadcast, swapping and

DTRSM into multiple steps which incur extra overhead that

delays panel factorization. However, due to the fact that HPL

spends most of its time in the earlier execution stages, this

overhead is small and is further mitigated by our dynamic

load-balancer described in Section V-B. This effect can be

clearly seen in Figure 9c, as the swapping pipeline reduces

the iteration time by up to 11% in the early and most time-

consuming iterations.

Note that the static overlap of swapping and DTRSM with

DGEMM was originally proposed by Bach et al. [3] in the

context of hybrid HPL running on AMD Cypress GPU and

24-core Magny-Cours CPUs. However, their implementation

133

��

���

���

���

���

���

	��

��

���

���

����
��

��
�

�
��

�

�

��
�

	�
��

�
	�

	�
�

��
��

�
��

��
�

��
��

�
��

��
�

��
	�

�
��

��
�

��
��

�
��

��
�

��
��

�
��

	�
�

��
��

�
	�

��
��

��

���� ������������� ������ ����

!"#$$ �� %��&'�� ������

!()*$ ������ ����

� +�������� ��� ��, �,���&
������ ����

(a) basic look-ahead: roughly 13% of each itera-
tion time is spent in U broadcast, swapping and
DTRSM in case of basic lookahead.

��

���

���

���

���

���

	��

��

���

���

����

��
��

�

�

��
�

�
��

�
	�

��
�

	�
	�

�
��

��
�

��
��

�
��

��
�

��
��

�
��

	�
�

��
��

�
��

��
�

��
��

�
��

��
�

��
	�

�
��

��
�

	�
��

��
��

���� ������������� ������ ����

!"#$$ �� %��&'�� ������

!()*$ ������ ����

� +�������� ��� ��, �,���&
������ ����

(b) pipelined look-ahead: less than 3% is spent
in these routines when employing the proposed
swapping pipeline.

�

�

�

�

�

��

��

��
��
�

��
��
�

�	
��
�

��
��
�

�	
��
�

�
��
�

�
��
�

��
��
�

��
��
�

	�
��
�

	�
��
�

	�
��
�

�

��
�

��
��
�

�

��
�

��
��
�

��
��

��
��

���
�
��

��
�	
�

�

������� ��� ��� ��������
��������

������� ��� �����
�������� ��������

������� ��� � ��������
��������

(c) runtime comparison: comparison for an ex-
ecution with two co-processors. Up to 11% can
be saved per iteration due to swapping pipeline.

Figure 9. Execution profile of multi-node (2x2) hybrid HPL with and without pipelining. The x-axis gives the problems size per iteration whereas the y
axis denotes the (relative) execution time per iteration.

resulted in only 0.5% improvement, while our implemen-

tation enjoys up to 11% gain, as shown in Section V-C.

Such large improvement is due to pipelining of U broadcast,

whose exposed time hurts Knights Corner more than AMD

Cypress GPU, which is slower. Bach et al. [3] mentions

pipelining the U broadcast in the future work section.

B. Offload DGEMM

The offload DGEMM kernel, which offloads the trailing

matrix update from Sandy Bridge EP to Knights Corner,

is the key part of our hybrid HPL implementation. In

this section, we describe the design and implementation of

this kernel and show how it addresses the following two

challenges, paramount to achieving high performance: (i)

choosing optimal block size, such that data transfer over-

head is hidden, while Knights Corner DGEMM efficiency

is maximized, (ii) dynamically load-balancing computation

between Sandy Bridge EP and Knights Corner.

Figure 10 shows the high-level design of offload

DGEMM. Sandy Bridge EP divides and copies large input

matrices into smaller tiles (eg., A0, B2) and sends them to

Knights Corner. Knights Corner, in turn, locally computes

DGEMM on these tiles and sends the result C tile (eg., C02)

to Sandy Bridge EP, which accumulates it back into original

C matrix. Due to the fact that copying input tiles is memory

bound, Sandy Bridge EP combines ‘copy’ operation with

packing data into our Knights Corner-friendly format (see

Section III-A3). To hide the overhead of transferring C tiles

back to the host, we choose tile size as follows. To compute

one tile on Knights Corner takes (2 ·Mt · Nt · Kt)/Pdgemm,

where Mt, Nt, and Kt, are tile dimensions, and Pdgemm

is Knights Corner’s achievable DGEMM performance. The

PCIe transfer time, Tpcie, of the correspondingMt×Nt output

tile is Tpcie = 8 ·Mt · Nt/Bpcie, where Bpcie is PCIe transfer

bandwidth. To hide the PCIe transfer overhead requires the

ratio of compute to transfer be greater than 1.0, which results

in the following lower-bound on Kt: Kt > 4 ·Pdgem/Bpcie. In

our case, BWpcie is ≈ 4 GB/s 4 and Pdgm is ≈ 950 GFLOPS.
As a result, the panel width Kt should at least be 950. To

further account for transferring input tiles (which result in

a much smaller portion of PCIe traffic compared to output

tile) and the fact that the best performing Knights Corner

DGEMM requires k = 300 (see Section III-B), we use

Kt = 1200 in our experiments.

Figure 10b shows the detailed steps involved in im-

plementing DGEMM. We use several designated Sandy

Bridge EP cores to pack input tiles, initiate DMA requests

and copy result tile back into original matrix (Steps 1, 2

and 10). All communication between Knights Corner and

host happens via memory-mapped queue: Sandy Bridge EP

inserts a Knights Corner DGEMM into a queue (Step 4),

while Knights Corner constantly polls this queue (Step 5)

for new requests and starts the DGEMM kernel when the

request arrives (Step 6). The remaining Sandy Bridge EP

cores are free to do other work, such as panel factorization,

as well as work in parallel with Knights Corner on the rest

of the DGEMM. To achieve good load-balance and reduce

idle time on both Sandy Bridge EP and Knights Corner, we

use dynamic work-stealing (mentioned in Section V-A), as

follows: Knights Corner starts with the first tile in the upper-

left corner of the matrix (C00 in Figure 10a), and continues

forward in column-major order, stealing one tile at a time.

When Sandy Bridge EP finishes other tasks and is ready

to work on the trailing update, it starts with the last tile

in the lower-right corner of the matrix (C33 in Figure 10a)

and continues backwards also stealing one tile at a time.

Both Knights Corner and Sandy Bridge EP continue in this

fashion, until there are no more tiles to steal.

As Figure 10a shows, overlapping communication and

computation in offload DGEMM, exposes the overhead of

4While 5.5 GB/s bandwidth is possible to achieve, in our case, PCIe
transfers compete for memory bandwidth with swapping and DGEMM,
executed on Sandy Bridge EP

134

A0

A1

A2

A3

B0 B1 B2 B3

C01 C03

C10 C11

C20 C21 C22 C23

C30 C31 C32 C33

C12

C02C00

A0 B0 C00

C01

DGEMM

B3

(A0,B1,C02)

DGEMM

(A0,B1,C01)

B2

(A0,B0,C00)

DGEMM

B1

DGEMM

(A3,B,C3)
CPU

C13

CPU

Knights
Corner

Knights
Corner

(a) Matrix is divided into tiles and distributed
across Knights Corner and Sandy Bridge EP.

Queue
Req

GDDR

Memory

GDDR

Memory

Queue
Res

#4, Enqueue

#7, Enqueue#5, Dequeue

#8, Dequeue

#3, DMA #9, DMA

#6

Steps #1, #2, #10

Offload DGEMM CPU

CPU DGEMM

Memory

Host

Memory

Host

Knights

CPU

Corner

Offload DGEMM Knights Corner

Core DGEMM Kernel

(b) Detailed diagram of DGEMM offload.

Figure 10. Design of offload DGEMM.

processing the first and last tile on Knights Corner. Note that

this overhead is higher with bigger tile sizes, as there are

fewer tiles to amortize it, and lower with smaller tile sizes,

as there are more tiles to alleviate it. On the other hand,

smaller tiles result in lower DGEMM efficiency on Knights

Corner. To address this challenge, for each matrix size, Mt

and Nt, we pre-compute the best tile sizes that maximize

overall offload DGEMM efficiency, and dynamically pick

the best tile size at run-time.

We also performed several other optimizations to further

improve offload DGEMM efficiency. First, if the matrix

size is not a multiple of the tile size, partial (smaller)

tiles will exist and processing them on Knights Corner can

expose data transfer overheads. To alleviate this overhead,

we merge the last two tiles (one complete tile and one

partial tile) at the end of each row or column and process

them together. Second, to effectively utilize the memory

bandwidth available from two CPU sockets, it is critical to

distribute load uniformly between the sockets. For example,

if there are two PCIe operations or two copy operations in-

flight, we need to ensure that they go to different sockets.

We achieve this by explicitly partitioning the matrices and

distributing these partitions across the two sockets in an

interleaved manner.

Lastly, as presented in Section V-A, pipelined look-ahead

software pipelines swapping within HPL to overlap swap-

ping on the host with a portion of the trailing update on

Knights Corner. This requires a synchronization mechanism

between swapping threads and DGEMM offload threads on

Sandy Bridge EP to assure that offloaded DGEMM tiles have

already been swapped. This synchronization mechanism

along with dynamic work stealing and dynamic tile size

selection are our main contributions to the design of offload

DGEMM. The rest of the design is similar to the offload

DGEMM design described by Bach et al. [3] Philips [6],

and Yang et al. [20].

Figure 11a shows the performance of offload DGEMM

using a single Knights Corner for varying matrix sizes. For

82K matrix it achieves ≈917 GFLOPS, resulting in 85.4%

efficiency. This is 4% lower compared to native DGEMM

efficiency, which achieves 89.4% (see Section III-B). The

reason for 4% efficiency loss is as follows: first, during

offload DGEMM, one of the cores on Knights Corner is used

for communication with the Sandy Bridge EP. This results in

1.5% efficiency loss. The remaining 2.5% efficiency loss is

due to the exposed overhead of transferring first and last

tiles. Overall, efficiency degrades slowly with decreasing

matrix sizes. We observe similar performance trends when

using two Knights Corner cards, as shown in Figure 11b.

The achieved peak offload DGEMM performance for dual

Knights Corner systems is 1785 GFLOPS, resulting in 83%

efficiency. We see that the efficiency degrades much faster as

compared to the single Knights Corner system. In the dual

Knights Corner system, each Knights Corner is only solving

half the problem size as compared to a single Knights Corner

system; thus, the first and last tile processing contribute to a

larger extent, resulting in overall performance degradation.

C. Hybrid HPL Performance Results

In this section we present the single-node and cluster-level

results of our hybrid HPL implementation. Each node has

a peak performance of 1.4 TFLOPS with a single Knights

Corner card and 2.48 TFLOPS with two Knights Corner

cards, respectively. Cluster nodes are connected with a single

rail FDR Infiniband network.

The results of HPL run are shown in Table III, which

is divided into four sections. The first section shows HPL

results on a CPU-only cluster featuring the host system’s

135

��
���
���
���
���
���
	��

��
���
���

�
���
���
	��
���
����
����
����
�	��
����
����

�
��

��

��
�
�

��
	
�

��
�
�

�	
�

��
�
�

��
�
�

�

	
�

	�
�
�

�
�

�
�
�

������

����������

��
��

��

�	
	
�

�
�
�

�
(a) 1 coprocessor accelerated offload-dgemm.

��
���
���
���
���
���
	��

��
���
���

�
���
���
	��
���

����
����
����
�	��
����
����

�
��

��

��
�
�

��
	
�

��
�
�

�	
�

��
�
�

��
�
�

�

	
�

	�
�
�

�
�

�
�
�

������

����������

��
��

��

�	
	
�

�
�
�

�
(b) 2 co-processors accelerated offload-dgemm.

Figure 11. Offload DGEMM performance for matrices occurring during trailing update: M = N and Kt = 1200.

System N P Q TFLOPS Eff.

Sandy Bridge EP, 64GB 84K 1 1 0.29 86.4
Sandy Bridge EP, 64GB 168K 2 2 1.10 82.8

no pipeline, 1 card, 64GB 84K 1 1 0.99 71.0
pipeline, 1 card, 64GB 84K 1 1 1.12 79.8

no pipeline, 1 card, 64GB 168K 2 2 3.88 69.1
pipeline, 1 card, 64GB 168K 2 2 4.36 77.6

no pipeline, 1 card, 64GB 825K 10 10 95.2 67.7
pipeline, 1 card, 64GB 825K 10 10 107.0 76.1

no pipeline, 2 cards, 64GB 84K 1 1 1.66 68.2
pipeline, 2 cards, 64GB 84K 1 1 1.87 76.6

no pipeline, 2 cards, 64GB 166K 2 2 6.36 65.0
pipeline, 2 cards, 64GB 166K 2 2 7.15 73.1

no pipeline, 2 cards, 64GB 822K 10 10 156.5 64.0
pipeline, 2 cards, 64GB 822K 10 10 175.8 71.9

pipeline, 1 card, 128GB 242K 2 2 4.42 79.6

Table III
ACHIEVED PERFORMANCE ON NODE AND CLUSTER LEVEL FOR

DIFFERENT KNIGHTS CORNER CONFIGURATION AND HOST MEMORY

CONFIGURATIONS. THE NUMBER OF USED NODES CAN BE DERIVED BY

MULTIPLYING P (# PROCESS-ROWS) AND Q (# PROCESS COLUMNS).

processor (Intel R© Xeon R© E5-2670), using Intel MKL MP

Linpack [2]. This implementation achieves 82.8% efficiency

on 2x2 cluster, 4% degradation, compared to single node

efficiency.

The second and third sections show hybrid results with

one and two Knights Corner cards per node, respectively.

First, we observe that pipelined look-ahead improves hybrid

HPL efficiency by 7%-9%, as it reduces exposed idle time

on Knights Corner. Second, the efficiency loss due to a

second Knights Corner card is 4.2%. This is due to the

lower efficiency of the dual card offload DGEMM as well

as higher penalty of Knights Corners’ idle time. Note that

similar to the Sandy Bridge EP-only result, performance

degradation of multi-node implementation, compared to a

single node is 4%. Finally, as the fourth section shows,

doubling available node memory to 128 GB, the dual card

cluster-level efficiency increases by 3.5% to 79.6 %.

Overall, using dynamic scheduling and enhanced look-

ahead scheme, our HPL implementation scales well to a

100-node cluster, on which it achieves over 76% efficiency

while delivering the total performance of 107 TFLOPS.

VI. RELATED WORK

There is a large body of related work in the area of

exploiting multi-core processors and hardware accelerators,

such as GPUs and Cell B.E., to accelerate a variety of dense

linear algebra routines.

As the result, there are many highly optimized DLA

libraries for these architectures. [11, 2, 22, 18, 16] are

some more recent examples of these libraries. Our design

and implementation of DGEMM and Linpack kernels builds

upon ideas found in these libraries, and extends them in the

context of Knights Corner.

High Performance Linpack [15] has traditionally been

a benchmark of choice for ranking top 500 fastest su-

percomputers [19]. Recent work has focused on speeding

up HPL using GPUs [3, 8, 7, 6]. To overcome limitted

memory capacity of GPUs, these implementations let the

entire problem reside in CPU memory, and offload critical

computations, such as DGEMM and DTRSM, to GPU. Our

HPL implementation using Knights Corner, builds upon

several ideas found in these approaches, such as work

splitting between CPU and GPU, task co-scheduling and

software pipelining to hide PCI-Express communication

overhead. We enhance these techniques with dynamic work

stealing, and run-time adaptive tile size selection, as well as

advanced pipelined look-ahead schemes, to further improve

HPL efficiency on Knights Corner.

VII. CONCLUSION

We have described the design and implementation of

several dense linear algebra kernels on single- and multi-

node systems, based on the recently released Intel R© Xeon

Phi
TM

coprocessor. These implementations take advantage

of our highly tuned DGEMM, which achieves close to

90% efficiency on Knights Corner architecture. Using our

novel pipelined look-ahead scheme, our hybrid Linpack

implementation achieves 76.1% efficiency. This is 11%

improvement in efficiency over the corresponding entry that

136

we submitted to TOP500 list in June’12, which achieved

118 TFLOPS (on 140 nodes) and ranked number 150 [19],

but did not use pipelined look-ahead.

There are several drawbacks of our hybrid Linpack

implementation. First, limited PCIe bandwidth imposes a

lower-bound on block size, which slows panel factorization,

relative to the rest of Linpack. To hide panel factorization

requires increased amount of host memory. Second, the

fact that Sandy Bridge EP is several times slower than

Knights Corner, but consumes comparable power, makes

hybrid implementation less energy efficient compared to

the fully-native multi-node implementation that only uses

Knights Corners.

Our fully native 79% efficient single-node Linpack imple-

mentation on Knights Corner is a first step in the direction

of running the Linpack directly on a cluster of Knights

Corners, while CPU cores are put into a deep sleep state

to significantly reduce their energy. This is the focus of our

future work.

ACKNOWLEDGMENT

The authors would like to thank Andrey Moskalev, Kon-

stantin Arturov, and Michael Chuvelev for their help in

designing and optimizing various portions of the native Lin-

pack implementation. We would also like to thank Cather-

ine Djunaedi, Ravi Murty and Susan Meredith for their

continuous support in building, debugging and analyzing

the systems. Finally, we thank Jason Sewall for carefully

proof-reading the paper and providing useful comments and

suggestions.

REFERENCES

[1] Basic Linear Algebra techical forum standard, August

2001.

[2] Intel Math Kernel Library (Intel MKL) 11.0, 2012.

[3] M. Bach, M. Kretz, V. Lindenstruth, and D. Rohr.

Optimized HPL for AMD GPU and multi-core CPU

usage. Comput. Sci., 26(3-4):153–164, June 2011.

[4] A. Buttari, J. Dongarra, J. Kurzak, J. Langou,

P. Luszczek, and S. Tomov. The impact of multicore on

math software. In Proceedings of the 8th international

conference on Applied parallel computing: state of the

art in scientific computing, PARA’06, 2007.

[5] M. Deisher, M. Smelyanskiy, B. Nickerson, V. W.

Lee, M. Chuvelev, and P. Dubey. Designing and

dynamically load balancing hybrid LU for multi/many-

core. Comput. Sci., 26(3-4), June 2011.

[6] E. Philips and M. Fatica. CUDA Accelerated Linpack

on Clusters. In GPU Technology Conference, 2010.

[7] T. Endo, A. Nukada, S. Matsuoka, and N. Maruyama.

Linpack evaluation on a supercomputer with heteroge-

neous accelerators. In IPDPS, pages 1–8. IEEE, 2010.

[8] M. Fatica. Accelerating linpack with CUDA on het-

erogenous clusters. In Proceedings of 2nd Workshop on

General Purpose Processing on Graphics Processing

Units, page 4651. ACM, 2009.

[9] G. H. Golub and C. F. V. Loan. Matrix Computations.

The Johns Hopkins University Press, 1996.

[10] K. Goto and R. A. v. d. Geijn. Anatomy of high-

performance matrix multiplication. ACM Trans. Math.

Softw., 34(3):12:1–12:25, May 2008.

[11] K. Goto and R. Van De Geijn. High-performance

implementation of the level-3 blas. ACM Trans. Math.

Softw., 35(1):4:1–4:14, July 2008.

[12] Greg Henry. BLAS Based on Alternate Data Struc-

tures. In Cornell Theory Center Technical Report

Number 89, 1992.

[13] HPC Advisory Council. Toward Exascale computing,

2010.

[14] J. D. McCalpin. The STREAM Benchmark.

[15] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary.

HPL - A Portable Implementation of the High-

Performance Linpack Benchmark for Distributed-

Memory Computers.

[16] F. Song and J. Dongarra. A scalable framework for

heterogeneous gpu-based clusters. In Proceedinbgs of

the 24th ACM symposium on Parallelism in algorithms

and architectures, SPAA ’12, pages 91–100, New York,

NY, USA, 2012. ACM.

[17] P. Strazdins. A comparison of lookahead and algorith-

mic blocking techniques for parallel matrix factoriza-

tion, 1998.

[18] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. Dense

linear algebra solvers for multicore with GPU accel-

erators. In Proceedings of IPDPS 2010: 24th IEEE

International Parallel and Distributed Processing Sym-

posium, 2010.

[19] www.top500.org. TOP500 list, June 2012 release.

2012.

[20] C. Yang, F. Wang, Y. Du, J. Chen, J. Liu, H. Yi, and

K. Lu. Adaptive optimization for petascale hetero-

geneous cpu/gpu computing. In Cluster Computing

(CLUSTER), 2010 IEEE International Conference on,

pages 19 –28, sept. 2010.

[21] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua,

K. Pingali, and P. Stodghill. Is search really necessary

to generate high-performance BLAS? Proceedings of

the IEEE, 93(2), 2005. special issue on ”Program

Generation, Optimization, and Adaptation”.

[22] F. G. V. Zee, E. Chan, R. A. v. d. Geijn, E. S. Quintana-

Orti, and G. Quintana-Orti. The libflame library for

dense matrix computations. IEEE Des. Test, 11(6):56–

63, Nov. 2009.

137

