Available online at www.sciencedirect.com

ScienceDirect

NEUROCOMPUTING

ELSEVIER Neurocomputing 71 (2008) 2164-2179
www.elsevier.com/locate/neucom
Blind separation of convolutive image mixtures
Sarit Shwartz*, Yoav Y. Schechner, Michael Zibulevsky
Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
Available online 13 March 2008
Abstract

Convolutive mixtures of images are common in photography of semi-reflections. They also occur in microscopy and tomography.
Their formation process involves focusing on an object layer, over which defocused layers are superimposed. We seek blind source
separation (BSS) of such mixtures. However, achieving this by direct optimization of mutual information is very complex and suffers
from local minima. Thus, we devise an efficient approach to solve these problems. While achieving high quality image separation, we take
steps that make the problem significantly simpler than a direct formulation of convolutive image mixtures. These steps make the problem
practically convex, yielding a unique global solution to which convergence can be fast. The convolutive BSS problem is converted into a
set of instantaneous (pointwise) problems, using a short time Fourier transform (STFT). Standard BSS solutions for instantaneous
problems suffer, however, from scale and permutation ambiguities. We overcome these ambiguities by exploiting a parametric model of
the defocus point spread function. Moreover, we enhance the efficiency of the approach by exploiting the sparsity of the STFT

representation as a prior. We apply our algorithm to semi-reflections, and demonstrate it in experiments.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Typical blind source separation (BSS) methods seek
separation when the mixing process is unknown. However,
loose prior knowledge regarding the mixing process often
exists, due to its physical origin. In particular, this process
can be represented by a parametric form, rather than a
trivial representation of raw numbers. For example,
consider convolutive image mixtures caused by defocus
blur. This blur can be parameterized, yet the parameters’
values are unknown. Such mixtures occur in tomography
and microscopy [23,34]. They also occur in semi-reflections
[34], e.g., from a glass window (see Fig. 1). Here, a scene
imaged behind the semi-reflector is superimposed on a
reflected scene. The light that reaches the camera contains
contributions from the transmitted scene, as well as from
reflected objects. This mixture is linear, and thus pointwise
BSS methods were applied to semi-reflections [1,8,13,21,35].
In general, however, the transmitted object and the reflected
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object are at different distances from the camera. Thus, if
the camera is focused on the transmitted scene, the reflected
object is defocus blurred (see Fig. 2), and vice versa.
Defocus blur is a convolutive process. It is linear and can be
approximated as space-invariant in narrow fields of view.
Hence, a semi-reflection is generally a realization of
convolutive mixtures,' rather than pointwise ones.

We claim that BSS can benefit from such a parametriza-
tion, as it makes the estimation more efficient while helping
to alleviate ambiguities. In the case of semi-reflections, our
goal is to decompose the mixed and blurred images into the
separate scene layers. Typically, in case of semi-reflections,
the objects are rather independent. A natural criterion for
statistical dependency is mutual information (MI). Thus,
MI is commonly used in such BSS problems (see for
example in Refs. [6,15,29,34,35] and references therein).
Therefore, separation of such convolutive mixtures can be

"Tgnoring the convolutive aspect is possible in special cases where the
scene components are at similar distances from the camera, and the light is
intense enough for the camera iris to be small. Some methods, which do
not handle the convolutive aspect of the mixture, use a sequence of images
taken from different viewpoints or sequences of moving layers
[4,16,46,47,49]. Another method exploits flash photography [1].
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Fig. 1. An image of a mixture of two layers, created by a semi-reflector.
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Fig. 2. Image acquisition of the scene depicted in Fig. 1: [Top] the camera
is focused on the transmitted object while the reflection is blurred;
[Bottom] the camera is focused on the reflection while the transmitted
object is blurred.

achieved by minimizing the MI of the estimated objects. An
attempt by Ref. [34] used exhaustive search, hence being
computationally prohibitive. Moreover, MI is not a convex
function of the optimized parameters. Hence, it may be
complex to converge to a global minimum in the method
presented in [34]. An additional problem in [34] is the need
to estimate the joint entropy of the images, which is an
inaccurate operation. Moreover, [34] is not scalable for
more than two images. An alternative approach taken in
Ref. [9] minimized higher order cumulants. That method
suffers from a scale ambiguity: the sources are recon-
structed up to an unknown filter. Moreover, the method’s
complexity increases fast with the support of the separation
kernel.

The complexity of convolutive source separation has
been reduced in the domain of acoustic signals, by using
frequency methods [11,19,25,27,36,42]. There, BSS is
decomposed into several small pointwise problems by
applying a short time Fourier transform (STFT). Then,
standard BSS tools are applied to each of the STFT
channels. However, these tools suffer from fundamental
ambiguities, which may ruin the overall separation quality,
if applied as-is to the convolutive image mixtures (more
details on these ambiguities are in Appendix A). Ref. [17]
suggested that these ambiguities can be overcome by
nonlinear operations in the image domain. However, this
method encountered performance problems when simu-
lated over natural images.

In this paper, we show that these problems can be solved
by exploiting a parametric model for the unknown blur.
Moreover, we use the sparsity of STFT coefficients to yield
a practically unique solution, without a global search. We
use the frequency-decomposition principle described
above, but overcome its associated problems. The algo-
rithm was applied and demonstrated successfully both in
real experiments of semi-reflected true natural scenes as
well as in simulations of such scenes.

2. Problem formulation
2.1. Source separation

Let {s1,...,5x} be a set of K independent sources. Each
source is of the form s; = sx(x), k =1,...,K, where x =
(x,y) is a two-dimensional (2D) spatial coordinate vector in
the case of images. Let {m;,...,mg} be a set of K measured
signals, each of which is a linear mixture of a convolved
version of the sources

mi(X) = a; * s1(x) + - - - + aig * sg(X),
i=1,... K. (1)

Here * denotes convolution and ax(x), k =1,...,K, are
linear spatially invariant filters. These convolutions con-
stitute a linear operator A that transforms {sy,...,sx} to
{ml,...,mK}.

Denote {5y,...,5¢} as the set of the reconstructed
sources. Reconstruction is done by applying a linear
operator W on {my,...,mg}. Each of the reconstructed
sources is of the form

Sk(X) = wip * my(X) + -+ - + Wik * mg(X),
k=1,...,K, (2

where wj.(X) are linear spatially invariant filters. We should
note that even if the convolution kernels a;(x) are perfectly
known, the recovery by Eq. (2) may not be stable for
some image components, as described in Appendix B. All
of the filter coefficients wy; have continuous values. Thus,
the estimated sources {$;}X_, can have any continuous value.

Our goal is: given only the measured signals
{my,...,mg}, find a linear separation operator W that
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inverts the mixing process, thereby separating the sources.’
This separation task is an optimization problem. The
separation criterion used is the independence of the
estimated sources ;. We thus seek W that minimizes the
MI of the estimated sources.

2.2. MI of image mixtures

MI is expressed by using the marginal entropies #’;, and
the joint entropy of the estimated sources 7, ;. as (see
for example [10]),

K
Iy = Z Hy — Ay 3)
k=1
Eq. (3) is non-negative. It equals zero if and only if the
sources are statistically independent. However, estimation
of the joint entropy % . ; may be unreliable [39].
It can be avoided if the mixtures are pointwise, rather
than convolutive. In pointwise mixtures, the separation
operator W is a simple matrix, termed the separation

matrix. In this case, the MI can be expressed as (see for
example Ref. [15])

K

Isrix = = Homy,mg —l0g | det(W)| + > A5, )
k=1

The term 5, _m, is the joint entropy of the measure-

ments. Since it is a constant for a given measurements set
and is independent of W, it can be ignored in the MI
optimization process. Thus, optimizing Eq. (4) bypasses the
problem involved in explicit estimation of the joint
entropies.

It is desirable to do the same for the general convolutive
case. However, if W is a convolutive operator, Eq. (4) does
not hold. We note that similar expressions have been
developed for convolutive mixtures (see for example [28])
assuming spatial whiteness. Nevertheless, algorithms based
on this assumption, or equivalently using the MI rate
[28,44] as the statistical dependency criterion, suffer from
whitening. The separated sources are whitened, corrupting
the estimation severely both in acoustic and in imaging
applications. To bypass the joint entropy estimation, a
different “trick”™ of factorization is presented and detailed
in Section 3.

An additional approach, related to MI, comprises the
maximum likelihood/maximum «a posteriori (ML/MAP)
algorithms [12,20,32]. ML/MAP optimization does not
address the separation quality of the sources directly. In
addition, ML/MAP optimization suffers from both high
dimensionality and complexity: the number of optimiza-
tion variables can reach millions. Note that there are
alternative independence criteria, such as higher order
cumulants [26,31,33,40,45,48], which do not require
entropy estimation. These are used in many existing BSS

This paper deals only with separation between distinct layers, and not
with blind deconvolution of a single image.

algorithms. However, these criteria sometimes fail, as
shown in [6,38,39].

3. Efficient separation of convolutive image mixtures

We may use Eq. (4) in convolutive mixtures, despite the
fact that it is valid only in pointwise mixtures. This is
achieved by decomposing the convolutive optimization
problem into several smaller ones, which are apparently
independent of each other. This approach is inspired by
frequency domain algorithms developed for acoustic
signals [11,19,25,27,36,42]. A transformation of the images
is performed, such that the convolution is expressed as a set
of multiple pointwise problems. This transformation is the
STFT. Source separation is done in each of the STFT
channels exploiting standard independent component
analysis (ICA) tools. Nevertheless, this approach has its
own fundamental limitations, which are discussed and
solved in Sections 4 and 5.

3.1. Factorization by STFT
Applying a Fourier transform to Eq. (1) yields

mi(®) = aj(®)s1(D) + - - - + aix(D)sg (D),
i=1,... K, (%)

where @ = (wy,w,) is the frequency index vector. The
convolution in the spatial domain thus becomes a multi-
plication in the frequency domain. In each frequency there
is a “pointwise’’ mixture of the sources. Therefore, at each
frequency a simple pointwise problem can be solved:

S (@) = Wit (@)m1 (D) + - - - + wig (D)mg (D),
k=1,...,K. (6)

Apparently, this is a simple problem that can exploit
standard ICA tools, particularly Eq. (4). However, in the
frequency domain, the Fourier transform yields only a
single sample per frequency channel. Thus, no statistical
ensemble is available for ICA. Therefore, BSS is not
possible in this case.

To obtain a data ensemble, rather than a single data
point per frequency, sub-band images representing raw
frames by several wide frequency bands are used. This is
achieved by applying a STFT? on Eq. (1),

mi(a)a X) ~ aj ((Y)s X)Sl((T)a X)

+"'+aiK((’7)7X)SK(CT)7x)’ i= 17~--5K (7)

rather than a Fourier transform. If the STFT window
size is larger than the effective width of the blur kernel®
(see for example [27]), then au(®,x)~ ax(d) and

This operation is also termed as a windowed Fourier transform, which
may be more appropriate for spatial coordinates as we use.

4A discussion regarding the STFT window width is given in Appendix C
and in Section 9.
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Eq. (7) becomes

mi(®, X) ~ an ()s1(®,X)

++a1K(6))SK(J)9X)5 l=193K (8)

That is, there are sufficient samples for estimating image
statistics. This is illustrated in Fig. 3. At each frequency
channel, the mixed sources can be separated by simple ICA
optimization. Then, all the separated sources from all the
frequency channels may be combined by inverse STFT.

To describe the ICA optimization, denote W(®) as the
separation matrix at channel @. In addition, denote
J‘T’({ﬁk},’f:l) and %f}’c as the MI and marginal entropies of
the estimated sources at channel @, respectively. Then,
similarly to Eq. (4), the MI of the estimated sources at each
channel is optimized by

K ~
min{— log|det[W(®)]| + Z %Z }, 9)
w(m) —

where }7/;1 is an estimator of the channel entropy of an
estimated source. Hence, using this factorization, MI
minimization of a convolutive mixture is expected to be
performed while bypassing the numerical and complexity
problems that stem from direct estimation of joint
entropies.

Solving the separation problem for each frequency
channel independently may appear simple. However, as
we explain in Section 4 this approach has some inherent
problems. Therefore, it is recommended rof to address the
separation problem in each frequency channel indepen-
dently, but rather use inter-channel knowledge transfer.

3.2. Sparse separation in the STFT domain

Now, we exploit image statistics in order to enhance the
efficiency of the optimization (9) in each frequency
channel. At each channel, we need to estimate the marginal
entropies of the sources. It is known from studies of image

STFT

A(w)

§] ((,(_).,1), IR S] ((75,N)
Sy (@,1), ..., 8,(@, N)

Fig. 3. Short time Fourier transform of the measured images. Each
frequency channel contains a sub-band image of the size of the raw frame.
Therefore, per band, the convolutive mixture problem is transformed to a
pointwise problem.

statistics (see for example [41]) that sub-band images are
sparse signals, i.e., most of their pixel values reside near the
origin. Hence, their probability density function (PDF) has
a peaky shape, as illustrated in Fig. 4. We note that
according to Ref. [S1], sparsity of sources is a strong prior
that can be exploited to achieve a very efficient separation.

A PDF model that is widely used in the literature to
model sparse sub-band images is the generalized Laplacian
(see for example [41])

PI@)] = cp) exp[—[3(@)I’] where 0<p<2. (10)

Here ¢(p) is the normalization factor of p[Si(®)]. The
sparsity of the represented signal is determined by the
parameter p. The smaller p is, the narrower the PDF,
representing a sparser signal. Note that this PDF model’
assumes that the source has a specific variance. This
implicit normalization makes the optimization robust to
some numerical pitfalls.®

We now exploit this prior of image statistics to simplify
the estimation of entropies in our optimization. Entropy is
defined as (see for example [10])

H] = E(—1og(pl@D), (1)

where E is the expectation operator. Denote N as the
number of pixels and » as the STFT shift (out of a total of
N). Then, substituting Eq. (10) into Eq. (11) and replacing
the expectation by empirical averaging, the estimated
channel entropy is

o 1SN

Hiy =52 @) + Clp). (12)
n=1

Here,

Si(@, n) = wi(D)mi (D, n)

+ -+ wg(@mg(o,n), k=1,...,K (13)

and C(p) = log[c(p)]. Since C(p) does not depend on 5, it
can be ignored in the optimization process. Hence, the
generalized Laplacian model yields a very simple expres-
sion (12) of entropy as a function of the variables.
Moreover, the computational complexity of this entropy
estimator is O(N).

In principle, to achieve ultimate accuracy we may need
to fit the PDF model (10) to the samples §;(@), for
estimating p, and then use this p in Eq. (12). However, we
opt to set p in a way that makes the cost function convex.
We can achieve convexity of the channel entropy (Eq. (12))
as a function of W(®) only if p>1. However, the PDF of
sub-band images is typically very sparse, i.e., p<l.
The PDF representing the sparsest signal that yields a
convex function in Eq. (12) corresponds to p=1,
which is the value we choose to set (see also [3,30,51]).
Substituting Eq. (12) in Eq. (9) yields the following MI

>The generalized Laplacian model can be extended to include also a
scale parameter g, by p(§i)~ exp(—|5x/0l”).

SMI optimization can suffer from numerical instabilities due to a scale
ambiguity, as explained in Appendix A.
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Fig. 4. Sub-band images and their statistics. The STFT window width is
11 x 11 pixels: (a) cameraman image; (b) STFT channel @ =[2,3];
(c) STFT channel & = [2,4]; (d) STFT channel @ = [3, 5]; (e) histogram
of the STFT channels.

minimization formulation:

K N
ga(g;{— log | detfW(@)]l + (1/N) > " 15(@.m)| } (14)
k=1

n=1

where §;(, n) is given in Eq. (13).

Eq. (14) is the core of our separation method. Note that
this is a very simple cost function to calculate and optimize:
for each frequency band (sub-band), all that is needed are
simple summation of the absolute pixel values and a
determinant of a small matrix. It is worth noting that the

first term, log | det[W(®)]|, is not necessarily convex in W.
However, practically the MI function (Eq. (14)) has a
unique solution. Moreover, this term is very common in
ICA optimizations [6,15,22,30] and practically does not
affect the convexity. To minimize Eq. (14) we use the
relative Newton optimization [50].

Eq. (14) may be solved for each frequency channel
independently. Then, all the separated sub-band images
can be combined to form the desired output. However,
there are several inherent problems to dealing with each
frequency channel independently. We discuss these pro-
blems in Section 4 and solve them in Section 5.

4. Inherent STFT problems

There are several inherent problems in the STFT
factorization method. These problems can affect the
separation quality. Some are ambiguities problems. They
are shortly summarized here and thoroughly discussed in
Appendix A. Another problem is non-uniform separation
performance over channels, discussed subsequently.

There are two ambiguity problems. The permutation
ambiguity implies that the separated sub-band images at
each channel appear in a random permutation. Hence
some sub-band images associated with the “first”” estimated
source may actually belong the “second” estimated source.
As a result, when the channels are transformed back to the
image domain using the inverse STFT, the reconstructed
images can suffer from crosstalk, even though separation is
achieved in each channel independently. See examples in
Appendix A.

The scale ambiguity implies that the scale of each
separated sub-band image at each STFT channel is
arbitrary and unknown, leading to imbalance between
frequency channels. As a result, when the estimated
channels of a source are transformed back to the image
domain using the inverse STFT, the reconstructed image
can appear unnatural and suffer from artifacts (see
Appendix A).

4.1. Separation performance in different channels

The performance is frequency dependent, as illustrated
in Fig. 5. Typically, there are a few frequency channels with
good separation (Fig. 5(a)), a few channels with very poor
separation (Fig. 5(c)) and the rest of the channels have
mediocre separation quality (Fig. 5(b)). There are several
reasons for this phenomenon, as discussed next.

There are several special channels for which the
separation performance is expected to be poor. Suppose
one of the sources in the scene has no energy in a certain
channel. For example, without loss of generality, assume
that s,(@",x) = 0,Vx in some frequency @*. The set of
equations that describes the acquired sub-band images

mi(d",X) = a1 (D)s1(D", X) + a(d*)s2(d*, x),
my(d*, X) = ar (&)s1(&", X) + an(d*)s(d*, x) (15)
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c

Fig. 5. Scatter plots of separation results in different channels: (a) good channel; (b) poor channel; (c) very poor channel.

Am o

Fig. 6. Separation results for a fixed mixing matrix but different data: [Top] scatter plots of mixed signals; [Bottom] scatter plots of the estimated sources.
The quality of the separation depends on the data: (a) good separation; (b) poor separation; (c) poor separation.

degenerates to

my(@*,x) = aj(&%)s1(d*, x),
my(@*, X) = ar (B*)s1(D*, X). (16)

In this case, the rank of the equation system is 1. It is a
singular set and it is not invertible. Note that it is not
known a priori that s,(@®*,x) =0 since s; and s, are
unknown. The separation algorithm assumes that there are
two independent sources with non-zero energy at each
channel, which is not true in this case. Therefore, the
separation results in this case are useless.

In general, the quality of ICA optimization depends on
the acquired data. This is illustrated in Fig. 6. The results of
three identical separation simulations of sparse sources are
represented by scatter plots of the mixed sources (top) and
the estimated sources (bottom). The mixing matrix in the
three simulations is identical. The only difference between
the three simulations is the source data, which is extracted

from different sub-band images. Fig. 6(a) presents a scatter
plot that is interpreted as corresponding to independent
estimated sources, i.e., good separation results, while the
structure of the scatter plots in Figs. 6(b) and (c) indicates
poor separation (the PDF is not separable). In Section 5,
we detail how to overcome this data dependency problem
by using a priori knowledge about the blur kernel.

5. Inter-channel knowledge transfer

In Section 4.1, we showed that the separation perfor-
mance can be poor in several channels. Moreover,
performance is affected by the acquired data. In addition,
the separation performance can be hindered by
permutation and scale ambiguities, as explained in
Appendix A. In this section we bypass some of these
problems by exploiting prior knowledge about the con-
volutive process.
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5.1. Exploiting a parametric blur model

Blur caused by optical defocus can be parameterized
[5,7,14,24,37,43]. As an example, consider a rough para-
metric model: a simple 2D Gaussian kernel with different
widths in the x and y directions [34]. Denote E,-,k =
[Sikex> Cike,y] @s the vector of the unknown blur parameters
of the blur kernel of source k at image i and

Gy (B) = exp[-w} /&, Ilexp[—w] /(2 )] (17)

as the filter which preserves light energy. In addition to
defocus, let us incorporate attenuation g;, of each source k
into any mixture i.

Assume that in each acquired image, one of the layers is

focused,’ i.e., G = 1. Define A(®) as the mixing operator
in frequency channel :
i 1 912Gz, (@) 1
921G, (@) 1
A(D) =
9K K1 GZ;K‘H@) 1
(18)

Thus, the separation matrix in each channel is parameter-
ized by ¢, and g;; and is of the form

[A@)] " (19)

An example is given in Section 5.2. Note that the
parameters E,-,k and g, are the same for all frequency
channels. Hence, there is a smaller number of actual
unknown blur variables. On the other hand, there is a large
number of frequency channels upon which the estimation
of these variables can be based.

Suppose, as we explain is Section 5.3, that we use
three channels, (7)1,&32 >° , that yield the best separation
results according to a ranking criterion. Define
A@ )_[W(”)]* and similarly A(&%) = [W(3%)]™" and
A(w )= [W(w )7 Leta d; be the elements of A. Then, for
each blur kernel, we calculate the unknown blur para-
meters Zi,k and g;; by solving the following set of
equations:

W(@) =

914Gz (@) = ain@")/a;(@")
914Gz (&7) = @ (@) )@, (@°), (20)
914Gy, (@) = 41y (@°))3,,(@°).

We solve this set to find the parameters E,»,k and g,, thus
deriving the blur and attenuation parameters based on
those few selected channels.

"We stress that we seek layer separation rather than deblurring.
Therefore, if source k is defocused in all the images, we denote the least
defocused version of source k as the effective source we aim to reconstruct.
Then, we denote G~ (w) as the relative defocus filter between the effective
source and the defocused source at image i.

Now, we can use these parameters and Eq. (17) to
calculate g,kGa (a)) for all the frequency channels. This
directly ylelds “the separation operator W for all the
frequency channels. We invert the mixing process by using
this W. Moreover, knowing the parameters of W allows us
to invert the convolutive mixture process in the Fourier
domain or in the image domain rather than the STFT
domain. This yields better accuracy and computational
efficiency.

It may be possible to achieve higher accuracy by
representing each blur kernel using parametric models
other than Gaussian, requiring more parameters. This
would require selection of additional channels, to obtain
enough equations to solve for all of the model parameters.
In general, the minimal number of channels needed for
parameter estimation equals the number of model para-
meters.

5.2. Separation of semi-reflections

In common applications such as semi-reflections [34] or
widefield optical sectioning [23], no attenuation accom-
panies the change of focus. Hence, g;;, = 1 for all i, k. For
each signal, each source is affected only by two parameters
in the Gaussian model. Thus, only two channels are needed
to solve for the unknown ¢; . Moreover, in the special case
of semi-reflections, we have only two sources. Therefore,
the mixing operator and the separation operator are
reduced to

1 GE”(CU)
A(D) = 6, @) L
1 ~G, (@)
W(d) = 6, @ . {det(A(®))} " 1)

The equation system we need to solve in order to
estimate &, and &y is

_sz(ﬁﬂ) = wia(@")/wi (@)
-G, (5’2) = w1 2(@%) /w11 (@),
-Gy, (CU ) = wa i (@) /waa(@"),
—sz(w ) = wo,1 (@) /w2(@°).

(22)

Here, w; are the coefficients of matrix W(&) and o', »?

are the best and second best channels according to the
ranking we describe next. Then, the reconstruction of the
separated layer is done in the frequency domain, which
yields a better reconstruction quality than in the STFT
domain. First, the acquired images and the reconstructed
blurring kernels are transformed to the Fourier domain
(Eq. (5)). Then, we solve Eq. (5) as

my(@) — ap(@)ma(d)
max[(1 — ap(®)ax(®)), 1]’

S1(@) = (23)
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— a1 (D)m (D) + m(d)
max[(1 — a(d)ax (1)), 7]’

$2(0) = (24)
where 7 is a threshold. Note that in low frequency channels,
a12(®)az (@) — 1. Hence the denominator in Egs. (23) and
(24) is close to zero, i.e., the mixing is not invertible, as
explained in Appendix B. Therefore, we use a threshold
7>0 in order to regularize this problem. Its value is user-
defined: as it increases, the low frequency content and its
noise decrease. Following Eqs. (23) and (24), we transform
the reconstructed images from the Fourier domain to the
image domain.

We stress the main benefit of this approach of
parameter-based inter-channel knowledge transfer: the
blur parameterization solves uniquely the permutation,
scale and sign ambiguities of each individual channel.
The sources’ frequency channels are not derived in a
random order or with inter-channel imbalance, but in a
way that must be consistent with the blur model, hence
with the image formulation process. In addition, the data
dependency problem is alleviated since the separation
operator is estimated based on selected channels that
perform well.

5.3. Selecting a good channel

The parameter estimation method of Section 5.1 is based
on the “best” frequency channels. This requires ranking of
the channels. The ranking relies on a quality criterion for
the separation (i.e., independence) of {§;} at each channel @
(see also [8,18]). The MI of these estimated sources is
inconvenient: as seen in Eq. (4), it involves joint entropy
estimation, which may not be reliable, given the small
number of independent measurements at each band.

Thus, we opt for simpler ranking criteria. Recall that we
exploit the sparsity of the sources. A scatter plot of two
sparse independent signals has a cross shape. Specifically,
in the (51, §2) plane, most of the samples should have small
angles relative to the §; and §, axes. Therefore, we may
define a function that penalizes for a non-cross shaped plot.
A simple criterion is based on the #; norm of the
estimated signals, normalized by their ¥, norm,

2 N |~ />
o 3k (@, m)|
10 => 2=t : (25)

=1/ SO [Sk(@, m)P

This criterion increases as the samples in the scatter plot
deviate from the §; and §, axes, and is reduced when each
sample n has non-zero values exclusively in §1 or .

We have also considered a criterion yangles that is
explicitly based on estimation of the angles of the samples
in the (§),$,) plane. For a cross shape, the angles should
densely cluster around ¢ = 0°,90°,180° and 270°. Hence,
we define a function that penalizes for sample angles that
are distant from these values of . In this calculation, we
ignore samples that are very close the origin of the (51, 5)
plane, since their angles are relatively noisy. For a sample n,

its squared Euclidian distance from the origin of the (5, 5,)
plane is d*(&,n) = [|51(®, n)|*> + |5:(&, n)|*]. Ignoring sam-
ples by the origin, the set of samples used in ;.18

= {n:d*&,n)>}, (26)

where { is a threshold. For each sample n € Q°, let its angle
in the (51, §,) plane be ¢, relative to the §; axis.

Define sets of samples associated with each of the four
angles of the cross shape:

¥y ={n:neQ”and g, €[y — 45",y + 45°)}. (27)

Projecting the samples to the unit circle in the (5, 5) plane,
the mean Vector corresponding to each set ‘P‘“ is
wW(®) = [U (@), v} (w)] where

Z Sk(d, n) (28)

nes d(@,n) "

The ideal angles \ correspond to vectors r® =[1,0],

=[0,1], ¥ =[—1,0] and r*’” =[0,—1] on the unit
circle in the (8§,5;) plane. For sparse and independent
signals, we expect v/(&) to be close to r¥, for each .
Hence,

270°

X‘?ngles = Z ”Vl//(a)) — l‘w||2. (29)

Both yy and angles yielded consistent rankings of
channels in our tests. Moreover, both criteria depend only
on the sources estimated by ICA (in each frequency
channel). These expressions determine which frequency
channels yield the most separated sources. Thus, in our
algorithm, we first perform ICA in all the frequency
channels. We then calculate 5%, or 5., thus ranking the
channels. Then, we select the best channels as those that
correspond to the smallest penalty function values. These
channels are used in Section 5.1.

6. Algorithm summary

In this section, we summarize the algorithm. The inputs
to the algorithm are the mixtures of blurred images. The
outputs of the algorithm are separated images.

1. Choose the STFT window width (see Section 9).

2. To enable factorization, apply STFT on the input
images.

3. For each frequency (sub-band) channel
e Find W(®) that minimizes 7% as in Eq. (14), say by

the relative Newton method.

e Calculate the ranking criterion 19 9, or 7ang1es

4. Following step 3, select the channels that correspond to
the lowest values of the ranking criterion. Based on the
separation matrices W(@) of these channels, extract the
vector of blur parameters p.

5. Calculate the blur operator based on p, and invert the
mixing process in the Fourier domain or in the image
domain.
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6. If the separation is unsatisfactory, repeat stage 1 and
subsequently the other stages.

7. Direct BSS using a parametric blur model

Our algorithm (Section 6) has become more elaborate
than a trick of factorization. Some overhead is caused by
channels for which standard ICA tools yield an unreliable
W. Thus, W is estimated based on other channels, where
the estimation is reliable. This inter-channel knowledge
transfer exploits a parametric blur model p. One may
suggest a shortcut: estimating the PSF parameters directly,
without ICA tools which optimize over W. In this section
we discuss this alternative.

To recap, recall that for each frequency channel, we
minimize Eq. (14) explicitly over W. Based on the
estimated W in some channels, we derive the low
dimensional vector of blur parameters p. Let us consider
an alternative approach that skips the intermediate
estimation of W. It would directly optimize over p:

K N
= m,,in{Z]le |3c(6, )| — log | det[W(a, p)]| } (30)
k=1 n=1

Hence, the elements of W would not be optimized directly
in any channel, but be derived from the explicit optimiza-
tion variables p, in contrast to Eq. (14).

Such an approach is problematic. The first term in
Eq. (30) is a convex function in W but it is typically not a
convex function in p. Even for simple models such as the

a

Gaussian model (Eq. (17)), the sum over the absolute value
of the samples is not a convex function in f,-,k. Moreover, it
is typically multimodal. This can lead to many local minima
in the MI function. When using gradient-based optimiza-
tion for multimodal functions, there is no guarantee of
convergence to the global minimum. Therefore, a global
optimization algorithm must be used for such an approach.
In general, global optimization algorithms are less efficient
than local gradient-based optimization algorithms.

The second term in Eq. (30) is generally not convex in p
nor W. However, from our experience and the experiences
reported in [6,15,22,30] this term is practically convex in W,
yielding a unique global solution to which convergence can
be fast. For this reason, in contrast to Eq. (30), we do not
optimize over the blur parameters p. Rather, we optimize
over the separation matrix W(@) by Eq. (14), which is a
practically convex optimization problem in each frequency
channel.

8. Demonstrations

In this section we present results of a simulations and
experiments we made. For the first simulation, we used two
standard pictures (Fig. 7(a)) as the two scene layers. The
blur kernel we used is a Gaussian with standard deviation
of & = 2,& = 3. We used the same blur for both layers. In
addition, we added an i.i.d. Gaussian noise to the mixed
images with a standard deviation of ~2.5 gray levels. The
mixed and noisy images are presented in Fig. 7(b). The
separation optimization was performed using 15 x 15
STFT channels. The reconstruction was done in the
Fourier domain, and using t~0.1.

Fig. 7. Separation results: (a) original sources; (b) convolved and mixed sources; (c) reconstructed sources.
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The separation results are presented in Fig. 7(c). The
separation quality is excellent. There is no visible crosstalk
between the images. However, as seen in Fig. 7(c), the
background (DC) value is incorrect and the contrast of
the reconstructed images is lower than the contrast
of the original images. This problem stems from the nature
of the inversion problem, as shown in [34], and described in
Appendix B: we cannot expect good separation and
recovery in low spatial frequencies, even if the convolution
kernels are perfectly derived. Therefore, we use regulariza-
tion in the low frequencies in order to avoid instabilities.

In a second simulation, we used two natural images of
size 122 x 162 pixels (Fig. 8a) as the two scene layers. The
blur kernels we used are Gaussians with parameter vectors
& =11,2] and &, = [2,1] pixels. In addition, we added an
i.1.d. Gaussian noise with a standard deviation of ~2.5 gray
levels to the mixed images. The mixed, noisy images are
presented in Fig. 8b. The separation results are presented in
Fig. 8c. The separation quality appears good. There is no
visible crosstalk between the images.

We have also quantitatively assessed the crosstalk
reduction. For a fair quantitative comparison, we
high-pass filtered the original sources and the mixtures,
with the same filter used in the displayed reconstructed
layers. The correlation coefficient of the mixed images is
0.96, but it is reduced to 0.4 by the algorithm. Apparently,
we may conclude that the process successfully
reduces crosstalk (here measured by correlation). However,
this result should be viewed with caution: the resulting
correlation is in fact lower than the correlation coefficient
of the original sources, which is 0.6. We believe that one
cause for this apparent hyper-performance lies in the
fact that substantial crosstalk exists in lower frequencies,
which are attenuated by the filters. Hence, change in the
lower frequency components, which is an inevitable
consequence of the recovery problem, disrupts quantitative
assessment.

In the real experiments, we photographed semi-
reflections using a digital camera having a linear radio-
metric response, Nikon D-100. In Fig. 9a an outdoor scene
is reflected from the glass cover of a painting. We acquired
two raw frames, where either scene layer is focused while
the other is defocused. As mentioned in Appendix B, we
cannot expect good reconstruction in the low frequencies.
Therefore, for comparison, a high-pass version of the raw
frames is given in Fig. 9b. These versions still exhibit
significant crosstalk. The separation results are given in
Fig. 9c. The crosstalk between the resulting layers is much
reduced. Another experiment is presented in Fig. 10 where
a shelf in our lab is reflected from the glass cover of another
painting.

9. Discussion

We have presented an algorithm for separation of
convolutive image mixtures. The algorithm exploits image
statistics and a priori knowledge about the physical blur
process. We focused on separation of reflections. We used
STFT in order to factor this complex problem into several
simple pointwise problems. This factorization simplifies the
optimization problem significantly. We exploit image
statistics and a priori knowledge about the physical blur
process. Moreover, a parametric model for the blur kernel
solves scale, sign and permutation ambiguities typical of
ICA and STFT problems.

The computational complexity of the separation optimiza-
tion is linear in the number of image layers K, the number of
image pixels N and the number of STFT channels. In
addition, the computational complexity of solving the
parametric model (Section 5.1) is linear in the number of
parameters of the blur model and proportional to K(K — 1).
For example, in the case of semi-reflections, we use a model
having two parameters, two image layers and the solution is
based on a set of four equations (Eq. (22)).

Fig. 8. Simulation results: (a) two original natural images; (b) the two convolved and mixed images; (c) reconstructed layers.
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Fig. 9. Experimental results: (a) the acquired raw frames exhibit a convolutive mixture; (b) a high-pass filtered version of the raw frames; (c) reconstructed

layers.

Fig. 10. Experimental results: (a) the acquired raw frames exhibit a
(c) reconstructed layers.

The convolutive image separation algorithm has a single
parameter to tweak: the width of the STFT window. It can
affect the separation results. As mentioned in Section 3.1, it
must be wider than the effective width of the blur kernel.
On the other hand, a very wide window can degrade the
sparsity of the of the sub-band images.® We determine the
STFT window width by trial and error (see Appendix C),
but we believe this can be automated. For example, one
may use multi-window STFT and choose the best window/
channels using the criteria described in Section 5.3. This
requires further research.

81f the STFT windows are too large, then most of them include spatial
edges, which have a very wide spatial spectrum. Therefore, the STFT
coefficients in all the frequency channels include large values. Since this
phenomenon happens in most of the windows across the frame, $;(®,n)
will not be close enough to zero for most of the samples. This contradicts
the sparsity assumption. Hence, there is an optimal STFT window width
for each data set.

convolutive mixture; (b) a high-pass filtered version of the raw frames;

In addition, we used source independence as our
separation criterion. However, in applications such as
optical sectioning microscopy, the source layers may have
significant statistical dependency. Thus, an interesting
extension to this research is to adapt this algorithm to
deal with mutually dependent signals, and apply
it to optical sectioning microscopy. Another possible
direction is to consider nonlinear deconvolution methods,
which are capable of overcoming some of the ill-
conditioning described in Appendix B. This would be
important in processing of color images, since color is
highly affected by low frequency image components.
Another possible extension is to use the principles of this
paper with other types of PSFs, such as translation or blur
due to motion [2]. In these cases, the PSF can often be
parameterized. Hence, with the proper parameterization,
the approach presented in this paper may have a general
capacity.
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Fig. 11. The effect of permutation ambiguity in reconstruction from sub-
band images. The reconstructed images exhibit crosstalk, although
separation exists in each of the channels.
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Fig. 12. The effect of scale ambiguity in reconstruction from sub-band
images. The reconstructed image appears unnatural, due to an unbalanced
spectrum and opposite sign in some of the channels.

Appendix A. Ambiguities

Optimization of MI involves permutation and scale
ambiguities. We now detail these ambiguities and their
influence on the separation performance. For simplicity, we
demonstrate these ambiguities on an example of two layers.
Nevertheless, the same explanation holds for the general
case of K layers.

A.l. Permutation ambiguity

Minimization of MI results in sources that appear in an
arbitrary order, since, for example, .3 5 = 55,5 . This
permutation ambiguity implies that the separated sub-band
images at each channel appear in a random permutation.
Hence some sub-band images associated with the ““first”
estimated source may actually belong the ‘“second”
estimated source. As illustrated in Fig. 11, when the
channels are transformed back to the image domain using
the inverse STFT, the reconstructed images can suffer from
crosstalk. Even though source separation was achieved in
each channel independently, distinct sub-band images from
different sources are combined together in the reconstruc-
tion. If this problem is unsolved, frequency decomposition
leads to an overall poor result. However, we counter this
problem by constraining the solution to abide to a
parametric form of the mixture, as detailed in Section 5.

A.2. Scale ambiguity

Let §1,5, be two statistically independent sources. Their
joint PDF is thus separable:

D35, (1, 82) = ps, (51)ps,(52). (31)

Therefore, the MI of §,,58, is #;; =0 (see for example
[10]). Denote 5| = 115 and § = 1,8,, where 1; are arbitrary
constants. The joint PDF of 5,5, is still separable and
equals p;, : (31,5) = p;, (51)p;,(52). Therefore, the MI of 3
and §, is zero as well. This means that minimization of MI
results in sources that have an arbitrary scale (which can
also be negative) of values, per sub-band channel.

There are two problems that stem from this ambiguity.
The first is numerical and occurs at the channel level. The
second is more fundamental and appears when all channels
are combined. First, note that scale ambiguity implies that

Fig. 13. Example scene: (a), (b) image layers; (c), (d) two image mixtures.
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there are infinitely many solutions to a separation problem. It is important to note, however, that while this method
This ambiguity may destabilize the optimization process. stabilizes the optimization at each channel, the funda-
This numerical problem is avoided when using the PDF mental ambiguity is not solved. The true scale of different
parameterization described in Section 3: the pre-set  channels is unknown, leading to imbalance between
variance of the PDF model constrains the resulting sources  frequency channels. As illustrated in Fig. 12, when the
to have fixed energy at each band. estimated channels of a source are transformed back to the

a b

A5 =26

11X11 window 15X15 window 2

5X5 channels

7X7 channels

4 w=(2,7 A S=(11,4)
19X19 window Asz 23X23 window [I'S2

9X9 channels v 11X11 channels

A B=(3,10)
27X27 window AS,

13X13 channels

A 5=(3,12
Slw (3,12)

31X31 window
15X15 channels

Fig. 14. Scatter plots of the STFT channels with different STFT window width. The red lines correspond to the mixing matrix rows and indicate the
expected location of the scattered points: (a) 11 x 11 pixels window, 5 x 5 channels; (b) 15 x 15 pixels window, 7 x 7 channels; (c) 19 x 19 pixels window,
9 x 9 channels; (d) 23 x 23 pixels window, 11 x 11 channels; (¢) 27 x 27 pixels window, 13 x 13 channels; (f) 31 x 31 pixels window, 15 x 15 channels.
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image domain using the inverse STFT, the reconstructed
image can appear unnatural and suffer from artifacts.
Hence, the true scale of each channel has to be estimated
eventually, in order to make proper reconstruction based
on multiple channels. This problem is solved by the method
described in Section 5, since it makes the inter-channel
scale consistent with a parametric model.

Appendix B. A fundamental inversion limitation

Irrespective of the blind aspect of the estimation, and
thus of any BSS method, there is a fundamental limitation
in separating a mixture of images convolved by defocus
blur. It exists even if the operators A and W are perfectly
known, skipping the need for blindly estimating them. This
limitation exists in the low frequency bands.

Details are given in Refs. [23,34]. Here, we wish to
convey an insight, by looking at the special case of two
layers (sources), where either one is focused while the
other is blurred by a symmetric defocus kernel. In this case,
Eq. (1) can be written as

my(x) = 51(X) + (a2 * $2)(X),

my(x) = (a; * 51)(X) + 52(X). (32)
In the frequency domain, Eq. (32) becomes

mi(@) = s1(d) + an(D)s2(&),

(@) = an(@)51(6) + 52(). =
Since aj;p and a;; are symmetric defocus kernels,
Im(a;y) = Im(ay;) = 0. Therefore,

Re[m;(@)] = Re[s1(d)] + ai2(d)Re[s2(d)], (34)

Re[my ()] = az1(@)Re[s1(d)] + Re[s2(d)].

Consider Re[sy(@)] as a function of Re[s;(®)], for a
specific &. In this case Eq. (34) can be visualized as a pair of
straight lines in the {Re[s;(®), Re[s2(®)]} plane. The
solution corresponds to the intersection of these lines. This
intersection exists uniquely for a(@)ax(@)#1. As the
frequency decreases (@& — 0), so aj2,az; — 1, since this is
the nature of defocus blur. Hence at low frequencies the
recovery is ill conditioned. Moreover, due to energy
conservation, the average gray level (at @ = 0) is not
affected by defocusing. Thus, ap(®) =ay (@) =1 at
@ = 0. This makes Eq. (34) ill posed, since there is no
unique solution for {Re[s| (@), Re[s2(®)]}.

Appendix C. Window size

The width of the STFT window determines the number
of STFT channels. The wider the window, the more
channels we have. How many STFT channels do we need?
The answer is that the optimal window width depends on
the input data itself. In particular, as mentioned in Section
3.1, the STFT window should be wider than the effective
width of the PSF of the imaging systems. Otherwise,
Eq. (8) is invalid.

Another consideration for the window width is the
acquired scene. As mentioned in Section 3.2, we assume that
each of the sub-band images has a sparse PDF. Otherwise,
the generalized Laplacian model does not hold. However, a
very wide window can degrade the sparsity of the of the sub-
band images. If the STFT windows are too large, then most
of them include spatial edges, which have a very wide spatial
spectrum. Therefore, the STFT coefficients in all the
frequency channels include large values. Since this phenom-
enon happens in most of the windows across the frame,
Sk(w,n) will not be close enough to zero for most of the
samples. This weakens the sparsity assumption.

To illustrate this phenomenon, consider for example the
scenario in Fig. 13. It contains two pointwise mixtures of
images. The blur kernel is a delta function, and therefore
the mixture in all the STFT channels is identical.” The
mixed pictures were transformed to the short time Fourier
domain using several window widths. Scatter plots of
representative channels in various window widths are
presented in Fig. 14. In this case, a window width of
23 x 23 pixels appears to be best for this scene. A smaller
window yields dense distributions, while a wider
window almost eliminates one of the sources. On the other
hand, a window of 23 x 23 pixels wide results in a clear
“X”” shape, which indicates mixed sources having a sparse
PDF.
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