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Abstract

To map the polarization state (Stokes vector) of objects

in a scene, images are typically acquired using a polariza-

tion filter (analyzer), set at different orientations. Usually

these orientations are assumed to be all known. Often, how-

ever, the angles are unknown: most photographers manu-

ally rotate the filter in coarse undocumented angles. De-

viations in motorized stages or remote-sensing equipment

are caused by device drift and environmental changes. This

work keeps the simplicity of uncontrolled uncalibrated pho-

tography, and still extracts from the photographs accurate

polarimetry. This is achieved despite unknown analyzer

angles and the objects’ Stokes vectors. The paper derives

modest conditions on the data size, to make this task well-

posed and even over-constrained. The paper then proposes

an estimation algorithm, and tests it in real experiments.

The algorithm demonstrates high accuracy, speed, simplic-

ity and robustness to strong noise and other signal disrup-

tions.

1. Introduction

Polarization is used in various domains of computational

photography, as displays [1, 25, 31], rendering [3] and

imaging [2, 3, 5, 11, 16, 17, 32, 34, 42, 45]. In imaging,

polarization picture post-processing (P 4) is used for solv-

ing inverse problems [36], involving scattering [13, 22, 23,

36, 40, 43], surface reflection [6, 9, 12, 14, 18, 24, 30, 36,

38, 46, 47] and remote sensing [7, 15, 21, 37, 44]. Bio-

logical vision uses P 4 for navigation, communication and

predation.

It has often been thought that quantifying polarization

in imaging and vision requires well aligned polarizing fil-

ters (analyzers). Imaging using a known set of analyzer an-

gles is the foundation of state-of-the-art imaging polarime-

try and many of its applications. This, however, is con-

Figure 1. Polarimetric imaging has typically required a polarizing

filter (analyzer) set to known angles. Commonly, the filter rotates

using a controlled closed-loop motor, or manually with a fine pro-

tractor. This work seeks to dismiss the fine protractor or control,

and still enable polarimetric imaging. Thus, the simplicity of un-

controlled amateur photography can be tamed for scientific mea-

surements.

trary to the easy unconstrained practice of photographers.

In common photography, a free-rolling polarizer is mounted

on the camera lens, rotating coarsely by the wish of the

photographer, without documented angles. This work re-

tains this ease of use, while achieving accurate polarimetry

of imaged objects, on a par with controlled measurements.

Specifically, it is desirable to do photography as with the

system in Fig. 1, but dismiss the protractor. Essentially,

this means self-calibration, based on the unknown observed

scene. Even scientific-grade instruments need to counter
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system drift and errors. Hence, remote sensing [7, 28]

and astronomic polarimetric imagers [21, 41] require elab-

orate on-board calibrations. Potentially, scene-based self-

calibration can simplify or improve some construction and

operation aspects of such imagers.

This paper presents computational self-calibration of a

polarimetric imager. No additional optical hardware is re-

quired. No formulation of statistical scene priors (in space

and polarization) is incorporated. No assumption is made

regarding source separation. Rather, the paper formulates

the modest data size requirements, to make the problem

well-posed or over constrained. A proposed algorithm in-

volves simple steps: a rough set of initial analyzer angles is

assumed, followed by linear least-squares (LS) regressions.

Each regression is non-iterative, since the data size required

is small. We conducted a couple of quick experiments in

uncontrolled environments, and the algorithm demonstrated

success.

2. Model

In this paper, instrument polarizance is not part of the

unknowns to be determined. Without essential loss of gen-

erality, suppose unit-polarizance of the analyzer. This polar-

izance is nearly met even by photography-grade filters. The

paper deals with linear polarization, which is by far more

dominant than circular polarization in the natural world.

The paper does not deal with radiometric (unpolarized) cal-

ibration. Hence, the global unpolarized attenuation due to

the filter, lens and detector array is not part of the variables:

unpolarized transmissivity is assumed to be unit, without

loss of generality.

2.1. A Single Pixel

Object point o has an unpolarized radiance component

co, and degree of linear polarization (DOLP) po. The an-

gle of the polarization axis (phase angle) is θo, relative

to a global coordinate system. The object parameter set

{co, po, θo} is unknown. At measurement (frame) m, the

polarizing filter (analyzer) has an angle αm, relative to the

same global coordinate system.

The acquired intensity is

Im,o = [co + copo cos 2(αm − θo)]/2, (1)

which can also be expressed as

Im,o =
1

2
[1 cos 2αm sin 2αm]




co
aco
aso


 , (2)

where

aco = copo cos 2θo, aso = copo sin 2θo. (3)

Figure 2. The corridor scene. Red rectangles show sampled ob-

ject locations, from which data of polarized radiance readings was

extracted.

While the unknown object is fixed, Nm measurements

(frames) are acquired. In frame m, the polarizer is oriented

at angle αm. There is diversity within the angle set. Thus,

pixel o yields




I1,o
I2,o

...

Im,o

...

INm,o




=
1

2




1 cos 2α1 sin 2α1

1 cos 2α2 sin 2α2

...
...

...

1 cos 2αm sin 2αm

...
...

...

1 cos 2αNm
sin 2αNm







co
aco
aso


 .

(4)

We may use the constraint
√
(aco)

2 + (aso)
2 ≤ c0.

2.2. Multiple Pixels, Multiple Frames

Assume that αm is approximately space-invariant, or

that spatial variations are largely predictable and compen-

sated for. The field of view has many pixels. A set of No

object regions is measured in all the frames, as shown in

Fig. 2. The acquired data can expressed as

D = 2




I1,1 I1,2 .. I1,o .. I1,No

I2,1 I2,2 .. I2,o .. I2,No

...
...

...

Im,1 Im,2 .. Im,o .. Im,No

...
...

...

INm,1 INm,2 .. INm,o .. INm,No




.

(5)

Generalizing Eq. (4) for Eq. (5) yields

D = PO , (6)



where

P =




1 cos 2α1 sin 2α1

1 cos 2α2 sin 2α2

...
...

...

1 cos 2αm sin 2αm

...
...

...

1 cos 2αNm
sin 2αNm




. (7)

and

O =




c1 c2 .. co .. cNo

ac1 ac2 .. aco .. acNo

as1 as2 .. aso .. asNo


 . (8)

2.3. Controlled Imaging Polarimetry

Controlled imaging polarimetry has access to a ground-

truth set of analyzer angles {αtrue
m }Nm

m=1, up to the protrac-

tor measurement error. Through Eq. (7), this set is equiva-

lent to the true analyzer matrix, denoted Ptrue. This matrix

is used to perform rather standard polarimetry, e.g., using

LS fitting (see Sec. 4.1). The result is the set of object

Stokes vectors, organized in a matrix denoted Omeasured.

The mean-squared-error (MSE) between the model and the

data is equivalent to

ftrue = ‖D−PtrueOmeasured‖
2 . (9)

The value of ftrue is not zero, due to noise and other distur-

bances in D.

In the oth column of Omeasured, the second and third

elements form the vector ameasured
o , while the first element

is cmeasured
o . The measured (denoted true) object DOLP and

phase angle are respectively

ptrueo =
‖ameasured

o ‖2
cmeasured
o

θtrueo =
∠ameasured

o

2
. (10)

3. Task

Suppose the analyzer rotates uncontrolled, and there is

no protractor to measure its state. The task is to estimate

the analyzer set of orientations {αm} and the polarization

parameters of all object points {co, po, θo}
No

o . There is a

fundamental ambiguity. As seen in Eq. (1), the measure-

ments are unaffected by the absolute value of either αm or

θo, but by the difference (αm − θo). Suppose all of the val-

ues of the unknown sets {αm}Nm

m=1 and {θo}
No

o=1 are shifted

by an arbitrary global bias β, i.e.,

αm 7→ αm + β, θo 7→ θo + β, ∀m, ∀o . (11)

Then, any measured value (Eq. 1) is unaffected by this bias.

Since the measurements are unaffected by the bias, then this

bias cannot be detected. Hence, all the recovered angles

suffer from a global shift ambiguity.

Without loss of generality, set

α1 = 0. (12)

This sets an origin of a coordinate system, to which all

other angles refer. Consequently, all the recovered angles

{αm}Nm

m=2 and {θo}
No

o=1 are recovered relative to the first

analyzer angle.1 Then,

P =




1 1 0
1 cos 2α2 sin 2α2

...
...

...

1 cos 2αm sin 2αm

...
...

...

1 cos 2αNm
sin 2αNm




. (13)

From Eq. (5), the left hand side of Eq. (6) has NmNo

measurements. From Eqs. (8,13), the number of unknowns

on the right hand side of Eq. (6) is [(Nm − 1) + 3No]. To

sufficiently constrain the task, a necessary condition is that

NmNo ≥ (Nm − 1) + 3No . (14)

Rearranging terms, Eq. (14) is satisfied in the following se-

tups:

• No ≥ 3 while Nm ≥ 4
• No = 2 while Nm ≥ 5.

Generally, images contain much more than two or three

regions having different polarizations. Hence, Eq. (14) is

generally satisfied in practice.

4. Self Calibration by Optimization

Assuming the data is sufficient, the self calibration task

is accomplished by optimization. As cost function, consider

f = ‖D−PO‖2 , (15)

similarly to Eq. (9). The unknown parameters of f include

the set of angles of the polarizer Φp = {αm}Nm

m=2. In addi-

tion, the unknown parameters of f include the set of object

characteristics, i.e. O. Then, we seek

{Φ̂p, Ô} = argminΦp,O f , s.t. O ∈ C. (16)

Here C is a constraint (convex cone) on the feasible object

Stokes vectors:

C =

No⋂

o=1

(0 ≤ co) ∩ (‖[aco, a
s
o]‖2 ≤ co) . (17)

Assuming moderately polarized objects, the chance is

small for constraint C to be active. To ease the optimization,

we unconstrain the problem, i.e. solve Eq. (16) ignoring C.

1The global shift parameter can be resolved by a simple prior in post-

processing. To align the global origin with gravity, one may set the origin

according to the phase angle at an object o known to be horizontal, such as

a water surface.



4.1. Given P

Denote by vector ô the column-stack of Ô. Let d be the

column-stack of D. Let 0p denote a matrix of zeros, of the

dimensions of P. Suppose Φp (and thus P) is given. Then,

an unconstrained LS estimate ô is

ô = [Mt
pMp]

−1Mt
pd , (18)

where t denotes transposition and

Mp =




P 0p 0p . . . 0p

0p P 0p . . . 0p

0p 0p P . . . 0p

...
...

...

0p 0p 0p . . . P




. (19)

4.2. Given O

Suppose O is given. Define

Õ =

[
ac1 ac2 .. aco .. acNo

as1 as2 .. aso .. asNo

]
. (20)

Let 1 be a column vector of length Nm, all of whose ele-

ments are 1’s. Define

D̃ ≡ D− 1[c1 c2 . . . cNo
] . (21)

Then, from Eqs. (6,8,13,20,21),

D̃ =




1 0
cos 2α2 sin 2α2

cos 2α3 sin 2α3

...
...

cos 2αNm
sin 2αNm



Õ . (22)

Hence,

D̃t = Õt

[
1
0

P̃

]
(23)

where

P̃ =

[
cos 2α2 cos 2α3 . . . cos 2αNm

sin 2α2 sin 2α3 . . . sin 2αNm

]
(24)

is unknown.

Let d̃ be the column-stack of D̃t. The first No elements

of d̃ do not depend on the unknown P̃, and thus can be

cropped. Let d̃r be a cropped version d̃, in which the first

No elements of d̃ are excluded. Denote by vector p the

column-stack of P̃. An unconstrained LS estimate of p is

p̂ = [Mt
oMo]

−1Mt
od̃r , (25)

where

Mo =




Õt 0o 0o . . . 0o

0o Õt 0o . . . 0o

0o 0o Õt . . . 0o

...
...

...

0o 0o 0o . . . Õt




. (26)

Here 0o denotes a matrix of zeros, of the dimensions of Õt.

The resulting vector is equivalent to matrix P̂, the es-

timate of Eq. (24). Let vm+1 be the m’th column of P̂.

Based on the structure of Eq. (24), the analyzer orientation

is estimated by

α̂m+1 = (1/2)∠vm+1, m = 1 . . . (Nm − 1) . (27)

4.3. Iterative Algorithm: Alternating Minimization

Neither P nor O are known. A practical approach to so-

lution is alternating minimization: a sequence of iterations

combining the steps of Secs. 4.1,4.2:

Step 1: Initialize the set of analyzer orientations Φp
(0) us-

ing rough assessments.

Per iteration k = 1, 2, 3, . . .
Step 2: Based on Φp

(k−1), estimate Ô(k) using

Eqs. (5,13,18,19).

Step 3: Based on Ô(k), estimate the orientation set

Φ̂p
(k), using Eqs. (5,8,20-27).

Iterate steps 2 and 3 until convergence.

Define the normalized MSE cost,

e =
f

ftrue
. (28)

Sec. 5 details experiments. Here, a typical plot of e(k) is

shown in Fig. 3. Indeed, the cost function monotonically

decreases with iterations. Recall that the aim is to seek per-

formance on a par with standard polarimetry: Φ̂p → Φp
true

and Ô → Omeasured. Consequently, one would ideally

wish to obtain e → 1, but not e < 1. As Fig. 3 shows,

the algorithm crosses the desired value e = 1, and stagnates

slightly below this value.

In the task of this paper, an algorithm has no access to

Φp
true and e. Hence, repeated iterations seek to minimize f ,

even if Eq. (28) yields e < 1, slightly drifting downwards

from e = 1. This may happen as the algorithm seeks to

accommodate noise in D.

5. Experiments

We mounted a Fujinon HF9HA-1B lens on a uEye

monochrome machine-vision camera, eliminating γ-

correction. In each experiment, the camera gain was fixed.
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Figure 3. The optimization process, using data of the corridor

scene (corresponding to Fig. 2). The normalized MSE criterion

e falls off with iterations. Within a few iterations, e decreases by

orders of magnitude towards the desired value e = 1. Afterwards,

e decays very slowly.

The exposure time per frame was 200ms, averaging out reg-

ular fluorescent light flicker caused by 50Hz AC power. A

standard photography circular polarizer (B+W 67mm) was

used as a linear polarization analyzer, by facing the filter to

the scene properly. The filter was tied (by an adaptor ring)

to a manual rotation mount (Thorlabs RSP2), that has a pro-

tractor. The protractor scale has 2o increments. Using this

mount, ground-truth analyzer angles were read with ≈ ±1o

precision. The system, shown in Fig. 1, was set on a tripod

(Fig. 4) and covered by a black hood.

To obtain ground-truth analyzer angles in this setup, each

angle was carefully set and read prior to frame capture. For

this reason, it took overall several minutes to capture any

set of polarization-filtered frames across all angles. In sub-

sequent analysis, some small image regions were selected

(mouse clicked): these regions appeared to have variations

across frames (indicating measurable DOLP), avoiding sat-

urated bright or dark areas. The regions were diverse, ex-

hibiting intensity maxima in different frames.

5.1. Corridor

The first experiment was at the corridor scene, shown in

Fig. 2. It was done during the day. Hence part of the illumi-

nation is from partly-clouded skylight, sunlight reflected off

walls, and overhead indoor fluorescent bulbs. In Fig. 2, red

rectangles show sampled object regions, from which data of

polarized radiance readings were extracted. The scene had

non-ideal conditions and un-modeled effects, as may occur

in typical uncontrolled photography. Specifically, lighting

coming from the window varied while data was captured.

This affected objects differently, depending on their normal,

distance from the window and shadowing configuration rel-

cameralens
polarizer       

(analyzer)

rotating 

mount

Tripod-head

Figure 4. The experimental system is shown in Fig. 1. The rotating

mount includes protractor scales in 2
o increments. The protractor

provides ground-truth analyzer angles, for verification. The sys-

tem was mounted on a tripod, and covered by a dark hood.

ative to the lighting components. The intensity readout I is

plotted vs. the true analyzer angles αtrue
m in Fig. 5, for some

regions. Some plots are well-behaved, while others show

systematic un-modelled drifts over time.

In our task, αtrue
m is unknown. Hence, plots as Fig. 5 pre-

sumably cannot be made in order to prune non-cooperative

regions, prior to the self-calibration algorithm. For this rea-

son, the algorithm was run on data whose source is from

both kinds of regions. The algorithm appeared to hold de-

spite these un-modelled un-cooperative real-world effects.

We used Nm = 5 frames out of the data captured. To

emulate rough prior knowledge, the initial angle-set Φp
(0)

was random, each angle deviating up to ±30o from the cor-

responding true value. Final results were insensitive to the

random initialization, in repeated runs. However, conver-

gence (as illustrated in Fig. 3) varied with initialization,

taking between a handful to dozens of iterations. Typical

results are shown in Table 1. Here No = 21. The results in

Table 1 are within the measurement error of the true angles.

The polarimetric sensing of the object regions is

also consistent. Using the self-calibrated analyzer an-

gles {α̂m}5m=1, the object matrix Ô is obtained by
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Figure 5. Intensity readout I vs. true analyzer angles αtrue

m
, for

sample regions of those marked in Fig. 2. Per region, there are two

adjacent plots corresponding to different session minutes. [Top]

Well-behaved regions, in each of which the plot-pair is rather con-

sistent. [Bottom] Non-cooperative regions, which have significant

inconsistencies within each plot-pair, presumably due to changes

of sky lighting by cloud motion.

Set of angles α1 α2 α3 α4 α5

Initial Φp
(0) 0o 64o 58o 145o 148o

100 iterations 0o 39.5o 79.6o 119.1o 139.6o

True ± 1o 0o 40o 80o 120o 140o

Table 1. Self-calibration results of the corridor experiment, with

No = 21. Angle α1 is fixed, the others are variables. The random

initial guesses are within ±30
o of the true angles. Monotonicity

is not enforced. After iterations, the results are consistent with the

angular measurement errors.

Eqs. (5,13,18,19). In the oth column of Ô, the second and

third elements form the vector âo, while the first element is

ĉo. The estimated object DOLP and phase angle are respec-

true

oθ

ˆ
o
θ

30

60

90

120 1500

180

30

60 90

120

true

op

ˆ
o

p

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.80

Figure 6. Resulting self-calibrated polarimetry in the corridor ex-

periment. The estimated DOLP p̂o and polarization (phase) angle

θ̂o are in tight agreement with values measured using the known

set {αtrue

m
}5
m=1.

tively

p̂o =
‖âo‖2
ĉo

θ̂o =
∠âo

2
. (29)

Figure 6 compares these values to those measured (Eq. 10)

using {αtrue
m }5m=1.



Figure 7. The lab. Red rectangles show sampled object locations,

from which data of polarized radiance readings was extracted.

5.2. Lab

The second experiment was at a lab scene, shown in

Fig. 7. Lighting was solely by an array of ceiling fluorescent

bulbs. Also here, conditions have caveats and un-modeled

effects typical to uncontrolled photography: people work

and move in the lab (out of the field of view), and some bulb

may be erratic. The intensity readout I is plotted vs. the

true analyzer angles αtrue
m in Fig. 8, for 12 regions marked

by red rectangles in Fig. 7. Here the filter orientations were

rather arbitrary, but the 0o state was sampled several times

during the session. In Fig. 8, these repeated measurements

indicate highly noisy data. All 12 spatial regions were used.

From a single continuous 180o interval pass of the rotation

mount, 5 frames were taken.

Again, the algorithms performed despite the distur-

bances. As with the corridor experiment, the initial angle-

set Φp
(0) was random, each angle deviating up to ±30o from

the corresponding true value. Final results were insensitive

to the random initialization, in repeated runs. Results are

shown in Table 2, and are consistent with the angular mea-

surement errors.

The polarimetric sensing of the object regions are consis-

tent also in this experiment. Using the self-calibrated ana-

lyzer angles {α̂m}5m=1, the object parameters are estimated

(Eq. 29). Figure 9 compares estimations to measurements

(Eq. 10) made using {αtrue
m }5m=1.

Software code and data are available at the Self-

Calibrating Imaging Polarimetry research web page:

webee.technion.ac.il/∼yoav/research/polar-self-calib.html

6. Discussion

Imaging polarimetry has inherent self-calibrating capac-

ity. This capacity is in analogy to other domains of com-

I

true

m
α

45 135 1800 90

170

20

110

50

80

140

200

Figure 8. Intensity readout I vs. true analyzer angles αm, for re-

gions marked in Fig. 7. The entire orientation domain was re-

peatedly sampled during several minutes. Plots show significant

inconsistencies relative to a smooth-cosine model.

Set of angles α1 α2 α3 α4 α5

Initial Φp
(0) 0o 60o 68o 146o 116o

100 iterations 0o 48.6o 79.8o 120.0o 145.3o

True ± 1o 0o 48o 79o 119o 144o

Table 2. Self-calibration results of the lab experiment, with

No = 12. Angle α1 is fixed, the others are variables. The random

initial guesses are within ±30
o of the true angles. Monotonicity

is not enforced. After iterations, the results are consistent with the

angular measurement errors.

puter vision and computational photography (structure from

motion [39], radiometric non-idealities [19, 27, 39], photo-

metric stereo [33]). After setting some conditions on the

data size, the paper proposes an estimation algorithm. The

results imply several desirable merits: accuracy, speed, sim-

plicity and handling of noise and other signal disruptions.

Interestingly, attempting to solve Eq. (16) using brute ex-



true

op

ˆ
o

p

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.80

true

oθ

ˆ
o
θ

30

60

90

120 1500

180

30

60 90

120

Figure 9. Self-calibrated polarimetry in the lab experiment. The

estimated DOLP p̂o and polarization (phase) angle θ̂o tightly agree

with values measured using the known set {αtrue

m
}5
m=1.

haustive search often lead to wrong results in some of the

angles, perhaps due to noise, while the LS regressions di-

rectly lead to the correct result. The paper has not proved

theoretically the convergence of the method. Theoretical

analysis may find failure domains. Nevertheless, the empir-

ical results suggest that the problem has an inherent struc-

ture, that imposes projections to a correct solution. The the-

ory needs to be further explored.

The breaking points of the problem and solutions are yet

to be found and derived. How do accuracy and convergence

depend on the noise in D, be it sensor noise or region-

dependent lighting variations? At some levels of disruption,

the algorithm may break down: then robust estimators may

need to be employed instead of, or in conjunction to LS fit-

ting. A version of RANSAC or Hough Transform may then

be developed for this task. No sophisticated priors on im-

ages and object polarization (e.g., independent component

analysis, sparsity, smoothness) has so far been applied. Use

of such priors should be helpful.

How is accuracy affected by the conditioning of O,P
and their singular values? Clearly, if all object regions have

a very similar Stokes vector, or if all analyzer angles are

very similar (close to 0), then the problem becomes ill-

conditioned. Theoretical and numerical analysis is needed

to clarify how performance degrades in near-degeneracy of

partly polarized scenes or analyzer angle span. In practice,

conditioning may not be a common problem: the user can

easily rotate the filter sufficiently between frames, to ensure

angular diversity, while scenes of interest often emanate a

variety of phase angles across the field.

As all prior work on polarimetry, here the experimental

image acquisition required mechanical stability, achieved

by a common tripod. Nevertheless, for hand-held pho-

tographs, advances in computer vision now enable ro-

bust correspondence matchings and registration, despite un-

known inter-frame camera motion. Hence, computer-vision

can likely yield a sufficient set of corresponding measure-

ments, to set O and D.

There are several implications to this work. Photogra-

phers use standard cameras and free-rolling uncontrolled

polarizing filters. They can be empowered to capture and

quantify polarization of each pixel, without any change

to the convenient photo gear. Then, they can employ

polarization-based quantitative algorithms either for en-

hanced photography or scientific exploration. Second, self-

calibration can simplify scientific-grade polarimetric imag-

ing systems, and enhance their resistance to sensor drifts.

Third, feasibility of polarimetric self-calibration can pro-

vide insights in biology: some animals have polarization-

sensitive vision [4, 8, 10, 20, 26, 29, 35]. Polarimetric self-

calibration may help such animals infer their kinetic state.
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